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6.3 Specific Relaxation Processes and Flow Behavior 257

Low Frequency Properties of Polymer Melts

Also of interest in Fig. 6.16 is the finding that the shapes of curves in the
terminal region remain similar to each other for all molar masses. More specif-
ically, within the limit of low frequencies, a constant slope emerges, indicating
a power law G′(ω) ∝ ω2. It is possible to explain this asymptotic behavior
and to relate it to the properties of flowing polymer melts.

For a Newtonian low molar mass liquid, knowledge of the viscosity is fully
sufficient for the calculation of flow patterns. Is this also true for polymeric
liquids? The answer is no under all possible circumstances. Simple situations
are encountered, for example, in dynamical tests within the limit of low fre-
quencies or for slow steady state shears and even in these cases, one has to
include one more material parameter in the description. This is the recover-
able shear compliance, usually denoted by J0

e and it specifies the amount
of recoil observed in a creep recovery experiment when the load is removed.
J0

e relates to the elastic and anelastic parts in the deformation and has to be
accounted for in all calculations. Experiments show that, at first, for M < Mc,
J0

e increases linearly with the molar mass and then reaches a constant value
that essentially agrees with the plateau value of the shear compliance.

At higher strain rates more complications arise. There the viscosity is no
longer constant and shows a decrease with increasing rate, which is com-
monly addressed as shear-thinning. We will discuss this effect and related
phenomena in Chap. 9 when dealing with non-linear behavior. In this section,
the focus is on the limiting properties at low shear rates, as expressed by the
zero shear rate viscosity, η0, and the recoverable shear compliance at zero
shear rate, J0

e .
Our concern is to find out how the characteristic material parameters η0

and J0
e are included in the various response functions. To begin with, consider

a perfectly viscous system in a dynamic-mechanical experiment. Here the
dynamic shear compliance is given by

J = i
1
η0ω

. (6.99)

This is seen when introducing the time dependencies

σzx = σ0
zx exp(−iωt) ,

ezx = Jσ0
zx exp(−iωt)

into the basic equation for Newtonian liquids

σzx = η0
dezx

dt
, (6.100)

which results in

σ0
zx exp(−iωt) = −η0iωJσ0

zx exp(−iωt) . (6.101)
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In a polymer melt, the viscous properties of Newtonian liquids combine with
elastic forces. The latter contribute a real part to the dynamic shear compli-
ance, to be identified with J0

e :

J ′(ω → 0) = J0
e . (6.102)

Combining Eqs. (6.99) and (6.102) gives the dynamic shear compliance of
polymeric fluids in the limit of low frequencies

J(ω → 0) = J0
e + i

1
η0ω

. (6.103)

As we can see, η0 and J0
e show up directly and separately, in the limiting

behavior of J ′ and J ′′.
The dynamic shear modulus follows as

G(ω → 0) =
1

J(ω → 0)
=

η0ω

η0ωJ0
e + i

=
η2
0ω

2J0
e − iη0ω

(η0ωJ0
e )2 + 1

, (6.104)

giving
G′(ω → 0) = J0

e η
2
0ω

2 (6.105)

in agreement with Fig. 6.16, and

G′′(ω → 0) = η0ω . (6.106)

We thus find characteristic power laws also for the storage and the loss mod-
ulus that again include J0

e and η0 in a well-defined way.
One may wonder if η0 and J0

e can also be deduced from the time-dependent
response functions, as for example, from G(t). Indeed, direct relationships
exist, expressed by the two equations

η0 =
∞∫

0

G(t)dt (6.107)

and

J0
e η

2
0 =

∞∫

0

G(t)tdt . (6.108)

The first relation follows immediately from Boltzmann’s superposition princi-
ple in the form of Eq. (6.38) when applied to the case of a deformation with
constant shear rate ėzx. We have

(dx=̂)dezx = ėzx dt (6.109)
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