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This study presents the new relaxation function describing the non-Debye relaxation phenomena. The
relaxation function is based on a new theoretical model of the relaxation polarization. The non-Debye
relaxation is explained with the model of nonlinear damped oscillator. It is shown that the relaxation
function describes the relaxation spectra of the Davidson-Cole and Havriliak–Negami types as well as
spectra with the left-skewed loss peak.
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1. Introduction

It is well known that broadband dielectric spectroscopy is a
powerful tool for investigating a variety of dielectric processes
both for electrical and non-electrical application. It provides the
unique information pertaining to the structure, chemical composi-
tion and molecular processes in matter. In recent years, numerous
experimental and theoretical studies have focused on understand-
ing of the non-exponential dynamics in more detail.

At present a number of empirical formulas are used for the
description of relaxation dielectric spectra. One of as of the best
known is the Debye equation:

eðxÞ ¼ es þ
es � e1
1þ isx

ð1Þ

where e(x) is the complex permittivity, s is the time constant or the
relaxation time, e1 and es are respectively the high and low fre-
quency permittivity limits, x is the cyclic frequency of an external
electric field change, i is the complex unit [1–4]. Despite the
extremely wide application of Eq. (1) in various branches of science
and engineering, it does not explain the nature of relaxation
polarization.

The inverse Fourier transform of the Debye formula gives the
time-dependent exponential relaxation function:

PðtÞ ¼ P0e�
t
s; ð2Þ

here P(t) is the polarization, P0 is the polarization value at the
moment t = 0.

Wide-ranging experimental information leads to the conclusion
that pure Debye behavior is hardly ever found in nature. Eq. (1)
describes the behavior of an assembly of non-interacting ideal di-
poles that have the same time constant. In practice dispersion oc-
curs over a wider frequency range. The Debye relaxation is
generally limited to water in liquid state and weak solutions of po-
lar liquids in non-polar solvents [1–3].

Cole and Cole (CC) suggested the following empirical equation

eðxÞ ¼ es þ
es � e1

1þ ðisxÞ1�a ð3Þ

where a is the constant (1 P a > 0) depending on a certain type of
material, temperature and pressure [5]. Eq. (3) describes the dielec-
tric spectra of many liquids and some polymers exhibiting symmet-
rical loss peak and wider dispersion area in comparison with the
Debye formula [6].

In work [7] Davidson and Cole (DC) suggested the following
formula for types of glass and glass-like substances having the
asymmetric loss peak.

eðxÞ ¼ es þ
es � e1

ð1þ isxÞ1�b
ð4Þ

here b is the constant (1 > b P 0) depending on material properties,
temperature and pressure. The real and imaginary components of
functions (1), (3), and (4) are plotted in Fig. 1.

Some polymers have CC-type spectra at low frequencies and
DC-type spectra at high frequencies. In work [8] Havriliak and
Negami (HN) proposed the following function:

eðxÞ ¼ es þ
es � e1

ð1þ ðisxÞ1�aÞ
1�b

: ð5Þ

when a = b = 0 the Debye function is obtained. Eqs. (4) and (5)
describe the spectra exhibiting the right skewed loss peak (Fig. 1).

The inverse Fourier transform of Eqs. (3)–(5) into the time
domain are not analytic functions. For the polarization time
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Fig. 1. The real and imaginary parts of dielectric constant vs. logarithmic frequency
for Eqs. (1), (3), and (4).
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dependence description the Kohlrausch–Williams–Watts (KWW)
empirical relaxation function is used.

PðtÞ ¼ P0e�ð
t
sÞ

v
ð6Þ

where c is the constant (1 P c > 0) [9]. The KWW is usually called
the stretched exponential. It is easy to see that function (6) is a
modified version of relaxation function (2). The digital Fourier
transformation of function (6) into the frequency domain allows
to describe the spectra of DC and HN type.

Obviously, functions (3)–(5) are the modified Debye equation.
An experiment demonstrates that very few materials completely
agree with Eqs. (3)–(5). In fact, slight (or not so slight) deviations
from distributions (3)–(5) have been commonly observed for the
majority of materials. Moreover, there are quite a few materials
exhibiting the left-skewed loss peak; none of a known formulas,
including (1)–(6), describes the spectra of such type.

None of the above mentioned functions explain the nature of
non-Debye relaxation. There are a number of models explaining
the non-Debye relaxation processes, the hopping model, the distri-
bution of relaxation times, etc. [1–3], but none of them give an ana-
lytical relaxation function. The coupling model, suggested by Ngai
et al. work [10] and citations, treated the non-Debye process as the
non-linear vibrations of arrays of phase-coupled oscillators. The
model is in good agreement with experimental data, a close fit
for the calculated relaxation function to the KWW function. This
one, however, does not give a relaxation function in analytical
form.

2. Physical model of the relaxation polarization

2.1. Debye relaxation

It should be noted that in accordance with the Debye theory a
water molecule rotates freely in the viscous continuous medium
[4]. The microscopic mechanism of interaction between the given
molecule and neighboring molecules was not considered. The aver-
age viscosity factor was used to describe the interaction. Hence we
can conclude that the Debye relaxation model is macroscopic, since
it considers an average molecule rotating in a viscous continuous
medium with an average linear friction.

To find a simple relaxation function, we have to take into ac-
count the fact that a complicated microscopic model usually either
gives a complicated solution or does not give an analytical solution
at all.

In accordance with the definition, the dielectric polarization is
relative displacement the charged particles or the orientation of di-
poles towards the direction of external electric field [1–3]. In the
alternating field the particle changes the move direction towards
the direction of external field, i.e. the particle vibrates. It is also true
for the relaxation polarization. Hence, the linear oscillator model
[11] may be applied for the relaxation polarization description.

Thus, following the aforementioned arguments, consider an
average molecule in a viscous medium. Obviously, the interaction
between that molecule and its neighbors is due to Coulombic inter-
action, i.e. the molecule is located in the Coulombic potential well.
Hence, the rotating molecule not only loses energy due to friction
but it is also affected by the Coulombic restoring force. Therefore,
consider an average vibrating particle in the potential well. Follow-
ing Debye, introduce the average friction coefficient to take into ac-
count the energy loss. For the dipole orientation description the
angle variable is used, for the particle movement the linear coordi-
nate x is used. In both cases the linear oscillator equation has the
same form. Below the coordinate x will be used.

Consider the linear oscillator equation [11]

d2x

dt2 þ 2d
dx
dt
þx2

0x ¼ FðtÞ
m

: ð7Þ

here x is the oscillator coordinate, m is the oscillator mass, x0 is the
own frequency, d is the damping coefficient, F(t) = q�E(t) is the exter-
nal driving force, q is the elementary particle charge, and E(t) is the
external field strength. The own frequency is related to the spring
constant k according to x2

0 ¼ k=m. The first term in Eq. (7) is respon-
sible for the inertia force, the second for the damping force, and the
third for the elastic restoring force.

For relaxation processes the inertia force is of little importance
due to high friction. If the damping force is greater than the inertia
force, then the first term in Eq. (7) may be neglected. In this case
Eq. (7) becomes degenerated [11]:

dx
dt
þ 1

s
x ¼ FðtÞ

mx2
0

ð8Þ

where s = 2d/x0
2 is the time constant. The degeneracy condition is

d P 3x0
2 [12]. The general solution of Eq. (7) is:

xðtÞ ¼ x0e�
t
s: ð9Þ

Further, it is easy to obtain the spectral function for the damped
linear oscillator using the Fourier transform:

SðxÞ ¼ x0 � s
1þ i �x � s : ð10Þ

Thus, taking into account the relationship p = q � x between
polarization p and the charged particle displacement x, we can con-
clude that the spectral Debye function and relaxation function (2)
are the consequences of damped linear oscillator Eq. (8). In other
words, the Debye type polarization of a dielectric is damped linear
vibrations of charged particles.

2.2. Non-Debye relaxation

Since very few materials completely agree with the Debye
equation, it was supposed in work [13] that non-Debye relaxation
may be described as the damped nonlinear vibrations of an average
charged particle in a viscous medium.

Let us consider the special case of the damped oscillator with
nonlinear spring force

f ðxÞ ¼ k � xþ k1 � xn: ð11Þ

Here k � x is the linear spring force, k1 � xn is the nonlinear term, k,
and k1 are the spring constants, and n is the numerical parameter



Fig. 2. (a) The particle + q in the potential well. (b) f1(x) is the restoring force, the
dashed line is the tangent to f1(x) at x = 0, U(x) is the potential.

Fig. 3. The real and imaginary parts of normalized spectral function of the
nonlinear oscillator for various values of n at a = 0.99.
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(n > 1). Following the above scheme, we introduce the own fre-
quencies x0

2 = k/m, x01
2 = k1/m and the time constants s = 2d/x0

2,
s1 = 2d/x01

2.
Consider a simple physical model to show the validity of

relation (11). Let the loosely bounded charge +q is localized in
the potential well created by the two strongly bounded charges
+Q1, and +Q2 (Fig. 2(a)). Under action of the external field E the par-
ticle +q is displaced from the point x = 0 to x = Dx. Two equal and
opposite forces f1 and f2 act upon the charge +q (Fig. 2(a)). The
restoring force f1 is caused by Coulombic interaction and the force
f2 = q � E is caused by the external electrical field. It is easy to find
the restoring force using the Coulomb’s law.

f1 ¼ Qq
4Dx

ðL2 � ðDxÞ2Þ
2

 !
; ð12Þ

here Q = Q1 = Q2. Fig. 2(b) shows that the restoring force is approx-
imately linear in the range Dx 6 0.1 (L/2); under the condition
x > 0.1 (L/2) it is significantly nonlinear. The graph of function (12)
closely fit to (11) at n = 3.8. Here and below for function coincidence
test the digital minimization procedure is used.

Further, using Eqs. (8) and (11) we get the degenerated
equation for a damped nonlinear oscillator.

dx
dt
þ 1

s
xþ 1

s1
xn ¼ FðtÞ

mx2
0

: ð13Þ

This is the Bernoulli’s equation [15], the solution of that is

xðtÞ ¼ C � eðn�1Þts � s
s1

� �� 1
n�1

¼ C�
1

ðn�1Þ eðn�1Þts � a
� �� 1

n�1 ð14Þ

here C is the constant determined by the initial condition, a ¼ s
C�s1

.
For the rationality of function (14) it is necessary a < 1. Obviously,
at a = 0 Eq. (14) transforms into the exponential relaxation function
(9).

It is easy to see that Eq. (13) at n = 1 describes the damped lin-
ear oscillator with the time constant.

s� ¼ s � s1

sþ s1
ð15Þ

Since the charged particle displacement is small (x << 1) at large
n (n > 10) the third term in left part of Eq. (13) becomes negligible,
i.e. at n > 10 Eq. (13) describes the linear oscillator with the time
constant s. Moreover, under condition s1>>s the third term also be-
comes negligible. Hence, function (14) transforms into simple
exponential form (2) if at least one of the following conditions
hold: (i) n � 1; (ii) n > 10; (iii) a � 0. Also, function (14) does not
depend on a and n if the listed conditions hold.

Thus, using the simple physical model we have obtained the
new relaxation function. Below relaxation function (9) will be
mentioned as linear, functions (6) and (14) as nonlinear. Here the
term nonlinear means the nonlinearity of original Eq. (13).

The aim of the paper is to present the new relaxation function.
The detailed analysis of the theoretical model will be the object of
another article.

3. Nonlinear relaxation function properties

Find the frequency spectra of permittivity corresponding to
relaxation function (14) using the Fourier transformation. Since
the Fourier transform of Eq. (14) is not an analytic function, the
digital procedure will be used below. Relaxation function (14) de-
pends on the parameters n and a, therefore consider the influence
of these parameters on the spectra shape separately. The real e’(x)
and imaginary e’’(x) parts of permittivity, both normalized by
e’(0), for various values of n at a = 0.99 are shown in Fig. 3. Since
the parameter a is limited (a < 1), the graphs are plotted for
a = 0.99 to show the highest possible curves distortion caused by
the nonlinearity.

As follows from the above the spectral functions shown in
Fig. 3(a) at n = 1 and at n > 10 correspond to the spectral function
of linear oscillator (the Debye shape). At n = 1 the loss peak maxi-
mum is located in the point xm2 = 1/s, and at n > 10 in the point
xm1 = 1/s⁄. In the range of n = 1 to 10 the spectra shape depends
on n. The raising of n (n > 1) causes a significant widening of the
loss peak. In the range 1 < n < 1.84 the loss peak is skewed to left
(negative asymmetry); at n > 1.84 it is skewed to right; at
n = 1.84 the peak is symmetric. At n � 2 the peak exhibits a near
HN shape. At n � 2.5 the real and imaginary parts are described
by the HN distribution with sufficient accuracy. In the case of
n = 3 Eq. (13) describes the Duffing oscillator [11]. As shown in
work [14], the Duffing oscillator spectral function coincides with
the DC distribution to within �5%. At higher values of n (n > 3)
the spectra completely coincides with the DC function and tends



Fig. 5. The real and imaginary parts of permittivity obtained by the Fourier
transform of the KWW (dashed) and function (14) (solid). The KWW parameter c
values are shown in the graphs.
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towards Debye shape with further increase in n. At n > 10 the spec-
tra with high accuracy (<1%) coincides with the Debye function.

The dependence of nonlinear spectra shape on a at n = 1.5 is
shown in Fig. 4. At a � 1 the loss peak is skewed to left and shifted
to the high frequency region; the ratio e00(xm)/e’(0) is less than that
for the Debye distribution. At a � 0.9 the peak is symmetrical. At
a < 0.9 the spectra obeys the DC law, and tends to the Debye shape
with further decrease in a. At a 6 0.2 the spectra completely
coincides with the Debye graph; the loss peak maximum shifts
to the point xm1.

So we can conclude that the spectra have the negative asymme-
try if the following conditions hold: a > 0.9, n < 1.8. The n rising
leads to the following transformation of the spectra shape: the
Debye shape – the left asymmetry – symmetrical – the right
asymmetry – the Debye shape; correspondingly the loss peak
width rises at n < 1.85 and decreases at n > 1.85. The spectra
transformations caused by the a decreasing are: the left asymme-
try – symmetrical – the right asymmetry – the Debye shape; the
loss peak width decreases in the mentioned range.
Fig. 6. The imaginary part of nematic liquid crystal permittivity at various constant
bias voltages obtained in work [20] (with permission of Elsevier). The a and n values
giving the close fit to the experimental curves are shown in the graphs.
4. Discussion

Let us compare the spectral functions of KWW and function
(14) obtained by Fourier transform. In Fig. 5 the graphs for the var-
ious values of KWW parameter c are plotted. One can see that the
spectra of KWW and the new relaxation function are sufficiently
fitted with each other. Hence all kinds of curves described by
KWW are described by function (14). Since the new relaxation
function describes the spectra with positive and negative symme-
try, the function (14) area of use is wider than that of KWW.

To show the applicability of function (14) for the relaxation
spectra description the digital modeling of a number of experimen-
tal relaxation spectra were performed. The experimental spectra
taken in [16–18] obey the HN law and taken in [19] does not obey
the one. The digital modeling gives the good agreement of calcu-
lated curves with the experiment with accuracy to within 3–5%.

Fig. 3 shows that function (14) describes the relaxation spectra
with the negative asymmetry. In practice, it is not unusual to find a
material exhibiting the relaxation spectra with the left-skewed loss
peak. Let us consider the spectra of nematic liquid crystal at vari-
ous bias voltages obtained by Ösder et al. in work [20] (Fig. 6).
One can say, that the spectra should be described by the distribu-
tion of relaxation times model. But the application of the model
leads to the question: Why does the bias rising cause the transfor-
mation of multi-s spectra into the single-s. From the point of view
of above suggested model the nematic crystal exhibits single-s
Fig. 4. The real and imaginary parts of normalized spectral function of the
nonlinear oscillator for various values of a at n = 1.5.
spectra and the bias rising causes linearization of molecules
vibration.

One can see that at low bias (0 V, 5 V) the loss peaks have the
left asymmetry. The shape of peaks 10 V, 15 V, and 20 V are esti-
mated by the graphical method [21]. The peaks 10 V and 15 V have
the slight negative asymmetry, the peak 20 V has the near CC
shape, i.e. with the bias increase the left-skewed peak tends to
the CC shape. As follows from Fig. 3, the parameter n rising
(n < 1.85) leads to the significant loss peak widening, at the same
time the a decreasing (a > 0.9) leads to the insignificant narrowing
of the one. The simple measurement by a ruler of the loss peak
half-height width in Fig. 6 shows the insignificant rising of the
one with the bias rising. Hence the bias rising causes the parameter
a decreasing. The digital Fourier transform of function (14) shows
close fit of calculated functions to the curves shown in Fig 6. The n
and a parameter values giving close fit of calculated functions to
the experimental curves are shown in the figure.
5. Conclusions

In the present work the novel theoretically validated relaxation
function is obtained. It has some advantageous in comparison with
the KWW function. The presented theoretical model gives a key to
understanding the nature of relaxation phenomena. Moreover, the
new approach to the relaxation polarization problem solving is
shown.
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The private case of oscillator with nonlinear spring force (11) is
considered above. The restoring force function may be more com-
plicated; moreover the friction force may be nonlinear too, i.e. a set
of relaxation functions may be unlimited.

The subject of relaxation covers all types of stress relief in solids
– dielectric, mechanical, chemical and so on. Therefore, the all of
the above conclusions in the stated model may be used in various
branches of science and engineering.
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