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SUMMARY: 

The current status of the statistical thermodynamics of dilute solutions of chain poly- 
mers is reviewed, with particular attention to the interactions between single chain 
molecules and solvents and to the mutual interactions of two chains. 

With respect to the problems of one and two chains, thefollowing topics are considered: 
the potential of mean force between chain segments and its dependence on the solvent; 
relationship between lattice and continuum theories; comparison between machine 
calculations and analytical theories of chain dimensions ; exact series and approximate 
or semi-empirical theories of the osmotic second virial coefficient, and comparison with 
the experimental data; effects of polydispersity ; behavior in mixed solvents. Higher 
virial coefficients and phase separation are also briefly discussed. 

ZUSAMMENFASSUNG: 

Der heutige Stand der statistischen Thermodynamik der verdiinnten Hochpolymer- 
losungen wird betrachtet. Folgende Probleme werden diskutiert : das Potential der Durch- 
schnittskraft zwischen Kettenelementen und seine Abhangigkeit von dem Losungsmittel; 
die Beziehungen zwischen Gittermodell und Kontinuum-Modell; ein Vergleich zwischen 
Monte-Carlo-Rechnungen und analytischen Theorien der Dimensionen von Kettenmole- 
kulen; verschiedene Theorien des zweiten osmotischen Virialkoeffizienten; der EinfluS 
der Molekulargewichtsverteilung ; das Verhalten in Mischungen von Losungsmitteln; 
der dritte Virialkoeffizient und die Phasentrennung. 

The object of this paper is to  examine certain selected aspects of the 
statistical thermodynamics of solutions of flexible chain molecules. Since 
the model proposed by M E Y E R ~ )  led HUG GINS^) and F L O R Y ~ )  to  the first 
successful quantitative theories of polymer solutions at equilibrium, 
the experimental and theoretical efforts in this field have been very 
numerous. The books by F L O R Y ~ )  and ToMpA5) give rather complete 
accounts up to  about 1954. Here we must be more selective and restrict 

*) Supported by the Office of Ordnance Research and by the U.S. Army Quartermaster 
R and E Command. 
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Problems of the Statistical Thermodynamics of Dilute Polymer Solutions 

ourselves to  some important problems encountered principally in dilute 
sohtions. 

1. Interactions of Solute Molecules and Chain Segments 

One of our purposes is t o  compare calculations based on explicit lattice 
models with more formal theories involving integrals over molecular 
distribution functions. Since the  latter are not restricted to  any particular 
model, they must embrace the lattice theories as special cases, as we 
shall now more specifically recall. 

Thorough treatments of molecular distribution functions are given 
by MUNSTERG) and by HILL’), whose treatment we follow. For simplicity, 
we first consider a classical monatomic substance. Here we shall need 
only the  “generic” singlet and pair distribution functions p(1) (TI) and 
p@)(r,,r.J, so defined tha t  p(l>(r,) dr, gives the  probability tha t  an 
unspecified molecule lies in the volume element dr, a t  r, and p(2)(rl,r2) 
dr, dr, gives the probability that  a molecule is in dr, a t  r, and another 
simultaneously is in dr, a t  rr These functions are so normalized tha t  

p(2)(r1, r2)  dr, dr, = N2-N (1.2) 

where N is the  number of molecules. When an open system is treated by  
the grand canonical ensemble, the average values m2 and are t o  be 
used, and this leads by means of the well-known formula for the  density 
fluctuation to  the equation: 

pv . /’* /  [p(2)(rl,r,)-p(1) ( r2)  p(1) (r?) 1 dr, dr, = xpkT-1 (1.3) 

(V) 

where x is the isothermal compressibility, kT has its usual meaning, and 
p is the average number density m/V. For convenience the above equation 
is sometimes expressed in terms of the  pair correlation function g(2) 
defined by 

(1.4) 

For a fluid, p(1) is independent of position and reduces t o  p, while g(2) 
becomes the  familiar radial distribution function g(r) which depends 

d2) (rlrrZ) = P(~) (rlrrJp(*) (rJ p(1) (r2) 
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W. H. STOCKMAYER 

only on the separation r = /rl - r21. In  this case, (1.3) reduces to  the 
familiar ORNSTEIN-ZERNIKE equation 

co 

p / [g(r)-1] 4m2dr = xpkT-I 

b 
(1.5) 

For liquids below their normal boiling points, the  quantity zpkT is only 
about 0.01 or 0.02, and is therefore negligible compared to  unity in first 
approximation. 

Now consider, for contrast, a perfectly ordered lattice. The singlet 
density is discontinuous and vanishes except a t  lattice sites: 

where Ri is the  position of the  ith lattice point. Also, the  pair correlation 
function is unity when r, and r2 are a t  two different lattice points, zero 
when both molecules are at  the same lattice point, and need not be 
defined otherwise. Substitution into (1.3) then leads t o  the result 

p(’) (r1)[g(2) (r,,Ri)-11 dr, = -1 (1.7) 

as is intuitively obvious since the perfect lattice obviously corresponds 
t o  a classical absolute zero of temperature. The point we wishto emphasize, 
however, is tha t  even the most extreme form of the lattice model, although 
notoriously deficient in many respectse), gives a value for the integral 
of (1.3) which differs only slightly, for dense fluids a t  low temperature, 
from the exact value given by (1.5). In  the next section this fact permits 
us to  compare analytical expressions for the mean dimensions of chain 
molecules with those obtained from machine calculations for the lattice 
model. Conversely, it is clear tha t  essentially no information can be 
obtained about the functional form of the  radial distribution function 
g(r) from the value of the integral in (1.5), as long as K p k T  < 1. 

Distribution functions for systems of polyatomic molecules are dis- 
cussed by HILL’). If the molecules are “rigid” (no internal rotations or 
vibrations of large amplitude) the rotational coordinates can be treated 
classically and symbolically absorbed in r,, while the (intramolecular) 
vibrations can usually be completely ignored. For long flexible chain 
molecules, the  customary pearl necklace model corresponds to  treating 
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Problems of the Statistical Thermodynamics of Dilute Polymer Solutions 

the interactions between two non-bonded beads (chain segments), 
whether in the same chain or  in two different chains, as those of rigid 
molecules. The bonding between adjacent beads must of course be 
appropriately expressed in the complete distribution function of a 
chain9~l0)  as must all vicinal interactions governing the internal ro- 
tat,ions about chain bonds. Detailed study of the last-named interactions 
hils recently11~12) been stimulated by the great interest in stereospecific 
polymers. These details are also essential t o  formulate the  statistical 
thermodynamics of undiluted polymers 13). For dilute polymer solutions 
their effect is contained in the dependence on polymer structure, solvent 
and temperature of the  “unperturbed” root-mean-square distance a 
between adjacent beads of the random-flight model, and we shall not 
be able to  consider them further. 

Treatments of the statistical mechanics of solutions in terms of mole- 
cular distribution f u n ~ t i o n s l ~ - ~ ~ )  lead to  the now familiar analogy be- 
tween osmotic pressure and gas pressure, first exploited for polymer 
solutions by Z I M M ~ )  and subsequently pursued by many authors (cf. 
Section 3). As is well known, the effects of interactions between rigid 
solutes, or between non-bonded segments of polymer chains, are ex- 
pressed for sufficiently dilute solutions in terms of the binary cluster 
integral1’): 

m 

p = [1-g*(r)] 4xr2dr 

b 

where g*(r) is the correlation function for solute particles (or segments) 
a t  infinite dilution in the chosen solvent. Frequently the result is stated 
in terms of the pair potential of average force I ) ,  defined by 

w(r) = -kT In g*(r) (1.9) 

It is all too tempting to  forget that  w(r), although formally taking 
the  place of a potential energy for solute-solute interactions, depends 
intimately on solvent-solute and solvent-solvent interactions as well. 
Also, w(r) is a complicated function of separation (and perhaps orienta- 
tion) even in the simplest systems. Consider, for example, a classical 
fluid mixture of monatomic isotopes, obviously an ideal solution. I n  
this case g*(r) is exactly the radial distribution function g(r) for any 
pair of molecules in the fluid, and thus would undulate a t  short range, as 
wadd  w(r), even if the molecules were hard spheres without attraction. 
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W. H. STOCKMAYER 

It can also be seen from (1.5) that ,  with the  neglect of compressibility, 
9 is equal in this case t o  the  molecular volume p-l, a well known re- 
sult9-lG) for an ideal solution. 

It is again instructive to  consider the  extreme lattice model. If the 
species of a lattice solution mix randomly and without change in lattice 
energy, the correlation function behaves as for a pure lattice, leading to  
the  equivalent of (1.8): 

3 = p-’ [1-g*(r,,Ri)] p(’) ( rJ  dr, = p- l  (1.10) s 
with the aid of (1.7), again the  ideal solution. 

The above examples should make it clear that  (in analogy with the 
earlier discussion of pure fluids) very little can be learned about g*(r) or  
w(r) from values of p over a restricted range of temperature. Thus, any 
function w(r) with a repulsive core a t  small r and attraction for some 
range of r must give positive at  high T, negative p at low T and vanish- 
ing $ a t  an  intermediate BOYLE or FLORY temperature @. Special and 
analytically convenient forms for w(r), such as that  employed by KU- 
RATA ,YAMAKAWA, and TERAMOTO Is), therefore have no great fundamental 
significance, but almost any such function can be used with impunity, 
provided its short-range nature is preserved, as required by the  inequality 

p < ( R 2 ) 3 / 2  (1.11) 

where F2 is the mean square displacement length of the chain molecule 
considered. It is physically quite unrealistic, however, to  speculate about 
the  detailed temperature dependence of p by using such a special simple 
form for w(r), e.g., a LENNARD-JONES 6-12 functionls); nor can the 
parameters derived from such expressions be regarded as any more 
significant from a molecular standpoint than macroscopic parameters 
such as F L O R Y ’ ~ ~ )  0 and +l. 

2 .  Dimensions of Chain Molecules 

It now seems w-ell established that  the configurations of flexible chain 
molecules deviate from the  statistics of random flights because of the  
interactions between non-bonded segments, as measured by  the cluster 
integral or  “excluded volume” of Section 1. The effects of these inter- 
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Problenis of the Statistical Thermodynamic of Dilute Polymer Solutions 

actions are often expressed in terms of the  expansion factor4) cc, con- 
veniently defined *) by 

- _  
CL’ = Rz/R: (2.1) 

where R2 is t he  mean square displacement length of a chain and Rg is its 
Tk-alue in the  absence of such interactions, i.e. a t  T = 0 where (3 = 0. 
Provided tha t  clusters of three o r  more segments can be ignored, as seems 
almost certain, the  expansion factor for long chains ia a function of a 
.;ingle 1 ariablelO), which may be written 

Tor a chain of n segments, where a as earlieris t he  unperturbed effective 
llength of a link. The function is known only for small z :  

4 16 28ir 

- “ - ( 3  3 - 21 I ” % + - -  
a2 -.- 1 + 

the  linear term having been derived many times and t,he quadratic term 
being due to  FIX MAN^^). It seems unlikely that  many more terms in this 
series will yield t o  exact treatment. 

FLORY long agoz3) obtained b y  means of an  approximate theory the  
dosed expression 

w-a3 = 2CMMlI2 ?j, (1 - @IT) (2.4) 

When the  notations are brought into correspondencez4), we find 

\\here V, is the  molecular volume of t he  solvent, and finally (2.4) becomes 

3/2 where the  constant C has the  value 3 /2 = 2.60, or about twice tha t  
needed t o  secure agreement with the  exact series (2.3) for small z. 

*) For the purpose of this discussion the difference between variously defined expansion 
factors, caused by the non-GAussian character of the chain, can be ignored. However, 
for an exact interpretation of frictional properties, this difference is very important, as 
discussed in the paper of M. K U R A T A ~ ~ ? ~ ~ ) .  

59 

 0025116x, 1960, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

acp.1960.020350103 by U
niversity O

f C
incinnati, W

iley O
nline L

ibrary on [27/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



W. H. STOCKMAYER 

Several derivations of the  form (2.6) have now been g i ~ e n ~ 5 9 ~ 6 )  which 
lead t o  alternative values for C, but it is difficult t o  assess the validity of 
the  approximations used. No alternative closed expression for a(.) has 
been proposed. 

It is found21) tha t  if C is set equal t o  4/3, thus forcing agreement 
with the linear term in (2.3), the coefficient of z2 in the expansion of 
(2.6) is in fair agreement (2.67 compared to  2.08) with the  correct value. 
Moreover, this value of C was d e m ~ n s t r a t e d ~ ~ )  to  agree with the  ex- 
perimental results for a t  least one system near the  @-point, and other 
examples are now known1*) which give similar agreement. The proposal24) 
t o  adopt this revised value of C in general was not accepted by  OROFINO 
and FLORY~'),  who supposed tha t  a t  higher values of a and z the  original 
constant would be superior. We shall now show, however, t ha t  the most 
recent Monte Carlo calculations of WALL and his co-workers28) are in 
distinctly better agreement with the lower value of C. 

The calculations of WALL and ERPENBECK are for a diamond lattice 
with unit step length. From Section 1, the appropriate value of p is the 
volume per lattice point, which is (4/3)3/2 for this lattice, while the 
effective link length a is 1/2 for the tetrahedral valence angle. The 

0 10 20 30 40 50 
n t  

Fig. 1 .  Expansion factors on a diamond lattice plotted as a2 against nIf2 :  Curve 1, Monte Carlo 
calculations of WALL and E R P E N B E C K ;  Curve 2, FLORY's theory eq. (2.6) with C = 2.60; 

Curve 3, FLORY's theory with C = 1.33 
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Problems of the Statistical Thermodynamics of Dilute Polymer Solutions 

resulting value of z is 7 r 3 1 2  u112, and the corresponding plots of u2 against 
n112 are shown in Fig. 1 for both C = 2.60 and C = 1.33. For comparison 
with these curves, the results of WALL and E R P E N B E C K ~ ~ )  are also 
plotted. These authors fitted their numerical results, extending up to  
n 2: 800, by  the equation 

- 
log,, R2 = 0.15 + 1.18 log,, n (2.7a) 

b u t  these are represented almost as well by  

log,, R2 = 0.10 + 1.20 Iog,, n (2.7b) 

which has the virtue of agreeing with the asymptotic form of (2.6). I n  
t.he absence of excluded volume effects, the  dimensions of chains with 
t.etrahedra1 valence angles are given by 

which with (2.7b) leads t o  

log,, r2 = -0.20 + 0.20 log,, n + 0.326 n-l (2.9) 

the  equation used in plotting curve 1 of Fig. 1. It is seen that (2.6) gives 
higher results than the  Monte Carlo curve for both values of C, but the  
lower value is considerably the better a t  all values of u. It is interesting 
t o  remark that for very high n curve 3 falls below curve 1, but since this 
occurs several decades beyond the  range of the numerical work it is a t  
present without significance. 

Similar calculations, though over a much more restricted range of n 
can be based on the  older results of WALL, HILLER, and ATCHISON29) 

for the simple cubic lattice, and lead to  similar results. We thus again 
conclude tha t  (2.6) with C = 1.33 (or perhaps better, C = 1.28 t o  agree 
lvitll the radiuq of gyration, as opposed to  the  displacement length) 
is the  best available expression for the expansion factor of an isolated 
chain molecule in solution. 

The abo\-e discussion is largely concerned with chain molecules in  
good solvents. for which 3 > 0, but the case of strong net attractions 
(p <: 0) between the polymer segments should also be considered. A case 
of great interest is found in those natural and synthetic polypeptides 
svliich can form s t  able helices in solution. The special statistical mechanics 
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W. H. STOCKMAYER 

of the  helix-coil transformation in such (necessarily stereojpecific) 
macromolecules is already well developed30-s), but will not be discussed 
here. 

It can be expected that  even atactic chain molecules must collapse 
to  a rather dense form (very small a )  if the  net attraction between their 
parts becomes sufficiently large. LANGMUIR, for example, long ago pointed 
out 34) that, because of the intramolecular VAN DER WAALS forces, hydro- 
carbon chains in a dilute gas must on the average be rolled up into 
spheres with a density comparable to  that  of the liquid phase. An exact 
theory of this effect would be prohibitively difficult. A very rough value 
of the  “collapse point” is afforded by the observation that  equation (2.6) 
has no positive real roots unless z is more positive than a critical value: 

which with the preferred value of C corresponds to  z * =  -0.14. When 
z > z*, there are two positive real roots, of which the  larger corresponds 
to  the  observable state of the chain, but for z < z *  only the  completely 
collapsed coil is stable. This prediction is not without interest, for ex- 
ample in connection with the mechanism of polymerization in precipitat- 
ing media, but it is not easily verified under equlibrium conditions 
because the  solubility of the polymer is too low. 

The dimensions of branched molecules cannot be considered here, but 
an  unresolved conflict may be mentioned. According to  a formula of 
P T I T S Y N ~ ~ )  as quoted by VOLKENSTEIN~~) ,  the  expansion factor of a 
branched polymer exceeds tha t  for a linear chain of the same molecular 
weight, but FIX MAN^^) came t o  the  opposite conclusion in evaluating 
the  linear term in z for a cruciform molecule. It seems best for the  ex- 
perimental study of branching to  avoid this problem by working at  
the  @-temperature. 

3. The Second Virial Coefficient 

I n  this section we restrict ourselves to  a brief physical discussion of 
recent theories of the osmotic second virial coefficient, A,, as defined by  
the  osmotic pressure expansion: 

P/c RT = M-I + A,c + A# + . . . (3.1) 

in which P is the  osmotic pressure, M the molecular weight of the solute, 
and c the concentration expressed as mass of solute per unit volume of 
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Problems of the Statistical Thermodynamics of Dilute Polymer Solutions 

solution. The general formulation of A, as a definite integral over mole- 
cular distribution functions was first given for flexible chain polymers by  
Z I M M ~ ) .  Since there are several excellent recent discussions36-3*) of this 
mathematical foundation i t  will not be treated in detail here. 

According to  the  original lattice A, should be independent 
of molecular weight: but  t he  first steps toward a theory of dilute polymer 
iolutions 391 9), reinforced by better experimental results, clearly showed 
tha t  A, is a decreasing function of M. It is perhaps discouraging t o  admit 
tha t  in spite of almost fifteen years of further effort there still is no 
completely satisfactory theory of t he  function A,(M). The study of this 
function remains a central problem of polymer solution theory, for as 
long as the  functional dependence of A, on M (and also, i t  must be 
emphasized, on molecular weight distribution) is not firmly established. 
i t  is impossible t o  discuss unambiguously the  interactions of chain 
segments with each other and with solvents. 

In  almost all t he  existing theories of A,, the molecular model requires 
t he  introduction of two parameters. These have already been encountered 
in the discussion of single chains, and are the effective unperturbed seg- 
ment length a and the  cluster integral (3, or equivalent quantities *). For 
thle interaction of two identical chains, these theories may all be cast into 
th.e form 

A, = (Nopn2/2Me) h(z) ( 3 4  

where No is AVOGADRO’S number, and n and z are defined as in equation 
(2.2). The function h (z )  starts from unity a t  z = 0 and decreases mono- 
tonically with increasing z. It seems useful, before discussing this function 
in more detail, t o  ask whether t he  existing experimental data  support 
t he  assumption tha t  two parameters are sufficient. To investigate this 
question we may first combine equations (2.1) and (2.2) with (3.2) t o  
obtain the  result 

(3 .3)  

*) I t  may be objected that the segment size must be chosen, and hence that the number 
of segments n in the molecule constitutes a third parameter. However, as remarked 
elsewhere2*), the combinations $3 and nu2, which alone occur in the final equations 
for long chains, are invariant to the choice of segment size, so that there are only two 
significant parameters. It is thus permissible and convenient to follow FLORY by 
choosing a segment to have the same volume as a solvent molecule. 
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W. H. STOCKMAYER 

Recalling from (2.3) that  there is an unique relation between tc and z, we 
see that  a plot of the dimensionless left-hand member of (3.3) against cx, 
which can be obtained from light scattering measurements, should pro- 
duce a single “reduced” curve for all well-fractionated polymers in all 
solvents. Since light scattering data for the  computation of tc are not so 
readily available, we have preferred to  evaluate @ and 01 from intrinsic 
viscosity data by means of the FLORY-FOX relations4) 

[q] M = @ (p)”* (3.4) 

(3.5) 

It is now well established, both e~perimental ly~o)  and theoretically20,3*,41 ) *  
that  the exponent of tc in (3.5) is somewhat less than 3, and hence tha t  0 
is not strictly constant but decreases with increasing molecular weight or 
solvent power. However, since the newer theory still makes the  ratio 
[q]/[q]o a function only of tc, except for quite low values of the  “draining 
parameter” of the intrinsic viscosity calculation, the use of the  FLORY- 
FOX relations should not seriously hinder the construction of a reduced 
curve. By combining equations (3.3) to  (3.5), we obtain 

A plot inspired 
is plotted against 

by equation (3.6) is shown in Fig. 2, where A,M/[q] 
( ~ ~ - 1 )  from the  experimental data selected by ORO- 

FINO and FLoRY2’) .  The values of [?]a required to  compute tc were 
taken from FLORY’S book4) with the  exception of those for polymethyl 
methacrylate. which come from the work of CHINA1 and BONDURANT42). 

The experimental points shown in the graph certainly do not lie very 
closely on a single cur\ e, but if the  data for methyl methacrylate polymers 
(reprecented by squares) are omitted the  remaining points define a 
fairly definite curve. With regard t o  the  methacrylate results, i t  may be 
pointed out tha t  the  agreement with the other polymers would have been 
even poorer if we had used the  [ r j ] ~  values given in FLORY’S book*) 
instead of the  lower figures of CHINAI and BONDURANT. If the t rue [ q ] ~  
were still lower by about 10 yo, or i f  the xiscosity “drainage parameter” 
were abnormally low for this polymer, the  discrepancy could be explained 
without abandoning the  two-parameter theory of 4,. I t  M ould obviously 

*)  Reference 4). p. 618, Table XXXIX. 

64 

 0025116x, 1960, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

acp.1960.020350103 by U
niversity O

f C
incinnati, W

iley O
nline L

ibrary on [27/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Problems of the Statistical Thermodynamics of Dilute Polymer Solutions 

3 

Fig. 2. Reduced second osmotic virial coefficients, plotted as A?M/[n] against ( ~ ~ - 1 ) .  Reference 
numbers and equations refer t o  the  text. 

Experimental points: 
o Polystyrene in toluene 
0 Polystyrene in butanone 

Polyisobutylene in cyclohexane 0, Polymethyl methacrylate in acetone 

0 Polyisobutylene in benzene 
A Polyvinyl acetate in butanone 

Curves: 
I .  FLORY-KRIGBAUM, with original constants, Eq. (3.9.) - 2. FLORY-KRIGBAUM, with 
modified constants, Eq. (3.11). - 3. CASASSA50.5*), Eq. (3.12). - 4. KRIGBAUM5'), empirical 
Eq. (3.13). - 5. STOCKMAYER36), empirical, Eq. (3.14). 
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W. H. STOCKMAYER 

be \ a h a b l e  to  repeat t he  above analysis with light scattering data 
instead of 1-iscosities. Ignoring this difficulty for the moment, we accept 
t he  existence of a t  least an  approximate reduced curve and now consider 
t he  merits of t he  theories which pretend t o  predict it. 

According to  the  formal theory, 8, is an  integral o\-er all configuration 
of two chain molecules, and the  integrand is proportional t o  the  difference 
between the  actual probability of a configuration and probability tha t  
would result if all interactions between the  two chains were negligible. 
ZIMM’S expansion 16) of this integrand precisely resembles the  cluster 
expansion of t he  theory of gases (see, for example, references6) and 7 ) ) ,  

involving sums of products of t he  “short range” functions, f,, 
I g* (ri,) - 11, for individual pairs of chain segments. A product of k such 
f-functions has a negligible value except when the  indicated k pairs of 
segments are actually quite close to  each other, and after integration 
yields a contribution t o  A, which is proportional t o  fJk. The sum of all 
such contributions with a given value of k is usually called the  k-contact 
term. ZIMM evaluated the  first two terms, and the  third has been treated 
by  ALBRECHT 36) and YAMAKAWA3’~ 38) who considered most rigorously 
the  effects of intramolecular contacts within the  separate chains. No 
complete higher terms are known, although certain special types have 
been studied36). We therefore have, in terms of t he  function of equation 
(3.2). 

h(z) = 1 - 2.8652 + 18.51 2’ -- ‘ ’ ‘ (3.7) 

= 

where the  third term is riot quite complete. This expression, like (2.3), 
is useful only in  the  vicinity of t he  @-temperature where z is small. It 
has been tested in this r e g i 0 n ~ ~ 9 ~ ~ )  with satisfactory results. The cor- 
responding initial slope in Fig. 2 depends on the  choice of t he  viscosity 
constant a, which is further discussed below. 

As in the  single-chain prohlem of Section 2, a theory which aims a t  
a closed expreskion for A2, suitable for all values of z, must be based on a 
simplified physical model or  on equivalent mathematical approximations. 
Again the  pioneer in  the  construction of such theories was FLORY, who 
represented the  polymer molecule as a swarm or  cloud of segments with 
a fixed spherically symmetrical distribution about t he  center of mass, 
thus smoothing out t he  chain-like connectivity of t he  actual macro- 
molecule. I n  FLORY’S first theory of this type39), t he  segment cloud was 
chosen t o  be a sphere of constant density, bu t  this model has not been 
widely used. Somewhat later, FLORY and KRIGBAUM43144) constructed 
their now well known theory based on a GAussian distribution of chain 
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:,epnieiits ahout t he  ceuter of mass. ' h e i r  results were s h o w ~ i  by GRIM- 
LEY 17) t o  follow from the  equivalent mat.hematica1 assumption tha t  tlie 
complete internal distribution function of a chain of n segments is equal 
to  a product of n independent GAussian functions, one for each segment, 
and all with the same modulus. This assumption does not give the  cor- 
rect 453 46) average segment density for a random-flight rhain. 
ISIHARA and K O Y A M A ~ ~ )  have repeated t,he calculation w i t h  the  proper 
density function. but  t he  effect of this change on the  final result is not 
very great, and i t  appears tha t  in genera148) the  precise choice of t he  
density function is not crucial. All smoothed-density theories may there- 
i'ore be discussed together. A close approximation t o  the  definite integral 
appearing in the  FLORY-KRIGBAUM theory was reported by OROFINO 
a n d  FL0RY2').  In  t he  notation of this paper, their formula is 

h(z) - ( C ? ~ a - ~ ) - l  h(l + C , U * - ~ )  (3.8) 
Mith C, = 2.30. 

Tests of the  FLORY-KRIGBAUM theory65 2g) have shown that  i t  predicts 
the  general niagnitude of LIZ quite well if FLORY'S theory of the  expansion 
factor is used (in ou r  notation, equation (2.6) with C = 2.60). but that  
A, is not predicted t o  decrease rapidly enough with increasing molecular 

This may also be seen from the  full curve labelled 1 in Fig. 2. 
M hich represents t he  equation 

A,M 

14 1 
= 4.14 log,, [l + 0.885 (a2-l)l (3.9) 

'I'hih equation is obtained from equations (2.6). (3.6) and (3.8), with the  
numerical constanti C = 2.60, C, = 2.30 and CD = 2.2-lOZ3. The last of 
these figures *) is lower than  the  theoreticcil value of2.87- (strictly20) 
applicable only at  T = 0)  but  it is more appropriate t o  calculations for 
good solvents, and without any allowance for t he  effects of polydispersity. 

Expansion of t he  logarithm in (3.8) for small x gikes. with C, = 2.30, 

h(z) = 1 - 1.15 z + ' . . (3.10) 

showing in comparison with (3.7) tha t  t he  magnitude of' the  double- 
contact term is seriously underestimated. In analogy with a manoeuvre in 
Scction 2. we may read just t he  value of t he  constant in (3.8) t o  
C2 = 5.73, thus  securing the  correct value of t he  double-contact term. If we 

*) The value is appropriate to intrinsic viscosities expressed in tnI.g.-'. 
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W. H. STOCKMAYER 

preserve consistency by also taking C = 1.276 for equation (2.6), the  
analog of (3.9) is found to  be 

= 1.65 logl, [I + 4.50 (az-l)] A 8  
I G l  

_ _  (3.11) 

which is shown as Curve 2 of Figure 2. The improvement over Curve 1, 
particularly at  low z, is apparent. 

The above device of adjusting the constants of the smoothed-density 
expressions to  force agreement with the exact perturbation theories for 
small z gives surprisingly good results for much larger values of z. This 
is perhaps sufficient justification for its practical use, yet from the theo- 
retical point of view i t  leaves something to  be desired, since in a spherical 
smoothed-density model all fluctuations of the segment distribution 
from its long-time average are necessarily ignored, as is the specific chain- 
like connection of the segments. 

CASASSA and M A R K O V I T Z ~ ~ )  have taken an important step toward an 
improved theory. They assumed that  the conditional probability of a 
multiple-contact configuration. given the existence of a first contact, 
may be written as a product of independent pair probabilities. This 
assumption automatically gives the correct double-contact term. To 
take approximate account of the effects of intramolecular contacts, 
CASASSA and MARKOVITZ followed FLORY and KRIGBAUM by assuming 
GAussian probabilities uniformly modified by  the expansion factor u. 
Their treatment then leads t o  a result approximated to  within one per 
cent by the simple function 

h(z) = [I - exp(-K~a-~)]/Kzcr-~ (3.12) 

with K = 5.68. By essentially similar but more intuitive arguments, this 
expression was also derived by FIXMAN 51). Very recently. CASASSA52) 

has modified the  theory by recognizing that  after a first intermolecular 
contact is established the expansion factor u2 that  should be used in the 
probabilities for subsequent contacts must be greater than u for a single 
chain. Following FIXMAN’S methods22). he computes u2 for the cruciform 
structure formed from the two chains by their first contact, and then 
uses this quantity in place of u in equation (3.12). The value of h(z) 
is thereby slightly increased, but it remains somewhat low, as can be 
seen from Curve 3 of Fig. 2, which represents this modified form of 
(3.12). It must be remembered that  no constants in this theory have been 
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Problems of the Statistical Thermodynamics of Dilute Pol>-mer Solutions 

t:mpirically adjusted to  give improved agreement with the experimental 
data, and from this point of view it is the best so far proposed. 

Another and somewhat different statistical theory taking approximate 
ilccount of the connected nature of the chain has recently been constructed 
hy KRIGBAUM and his collaborators53). It cannot be discussed furt.her 
here, hut t,he agreement with experiment is reported to  be good. 

Two other curves have been drawn in Fig. 2, corresponding to  two 
semiempirical equations : 

proposed by KR1GBAUMs4 and 

A3M - 3.21 (a2-1) 
[~j] 1 2.25(~' -1)  
- -  

(3.13) 

(3.14) 

Iby the writer (see reference36) ). Both are seen to be inferior t o  the modi- 
fied FLORY-KRICBAUM-OROFINO expression (Curve 2) of equation (3.11), 
which is recommended for practical calculations at  the  present time. 

OROFINO and FLORY ,') have elaborated the  smoothed-density model 
by introducing a third parameter corresponding to  triple clusters of 
segments, analogous to  the third virial coefficient of a monatomic gas. 
'The greatest effect of the extra parameter is produced at low molecular 
weights, but it seems in all cases t o  be rather small. 

The effect of molecular weight distribution on A, has been much less 
studied. The double contact term of the perturbation theory can be 
evaluated without difficulty for two chains of unlike size, but no simple 
average of the two molecular weights emerges. The FLORY-KRIGBAUM 
theory predicts tha t  the A, value for two different chains can sometimes 
exceed the  values for both like pairs of chains. This prediction seems 
rather surprising a t  first b u t  i t  has been experimentally verified55). 

The temperature dependence of A, remains to  he discussed. The 
parameters a and p both depend on T, the dependence of p on T being 
greater in most cases. Unless the measurements extend over a very wide 
temperature range, it is very probable tha t  a linear form for p, as in 
equation (2.5) with constant values of and 0, will suffice. This does 
not imply a linear dependence of A, on T-l, as all powers of occur in 
the function h(z)  and curvature is t o  be expected in any case. 

We close this section by repeating our opinion that it is imperative t o  
bring the  molecular weight problem in the theory of A, under better 
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W. H. STOCKMAWXI 

control before speculating too extensively on the magnitudes of inter- 
action parameters such as FLORY'S & and 0 and their molecular struc- 
tural significance. 

4. Mixed Solvents 

Only a very restricted topic relating t o  the behavior of polymers i n  
mixed solvents will be briefly discussed. This is the problem of solvation. 
which is here understood to  mean preferential adsorption of one solvent 
component to  the  polymer. The phenomenon is of some practical im- 
portance because it affects the determination of molecular weights by 
several methods, for example by light scattering if the solvent components 
have different indices of refraction. It is also important in the density- 
gradient ultracentrifuge method of MESELSON, STAHL and VINOGRAD 569 57). 

which is intriguing because of the possibility it offera in principle for 
the  measurements of quite high number-average molecular weights. 
For both cases the thermodynamic quantity required is t,he same. With 
subscripts 1 and 2 for the solvent components and 3 for the  polymer. 
the desired quantity is the limit a t  vanishing c3 of 

(4.1) 

where c denotes weight concentration and p chemical potential. 
Since the number of segments in contact within a coil is much smaller 

than the  total number of segments, 1' is fortunateiy independent of the 
polymer molecular weight. From the FLORY-HUGGINS equations for 
a ternary system4), it is predicted t o  have the form 

where the vi are volume fractions, 1 = V,/V,, V; molecular volumes and 
;c;j interaction coefficients. This equation not only states precisely how A' 
depends on solvent composition but also indicate; that  it could be pre- 
dicted from a knowledge of the three separate binary systems 1-2, 1-3 
and 2-3. -4 recent study58) by light scattering of the  system benzene- 
cyclohexane-polystyrene has shown, however, t h a t  a ternary interactioii 
parameter zlm, which is not found in any binary system, is required to  
fit the  results. This is perhaps not surprising in a system of rather non- 
spherical even though non-polar solvent molecules. Physically, it means 
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t tiat t h e  interactions of a benzene molccule u itli ;I c>c.lolie.iane moleciilc 
are changed when both are brought near a polystyrene chain. Practirall j ,  
it complicates t h e  interpretation and prediction of intrinsic vi-cosities 59), 
solubilitieq*) and  other properties in mixed solvent-. 

5. The Third Virial Coefficient and Phase Separation 

The general statistical theory of concentrated polymer solutions is not 
considered here, b u t  a discussion of t h e  third osmotic virial coefficient A, 
i;. appropriate t o  a t reatment  of dilute solutions for several reasons4): 
(.L) a knowledge of A, is very- useful in extrapolating experimental results 
t o  obtain accura.te values of A,: and (2) a method of obtaining t h e  entropy 
parameter from phase separation experiments4) depends on t h e  value 
assumed for A,. as will b e  indicated. 

The theory of A, has not t o  t h e  writer's knowledge been t reated since 
his paper wit,h C A S A S S A ~ ~ ) ,  which gave a n  approximate treat,ment based 
on t h e  smoothed-density model. There t h e  dimensionless ratio A,/MAg 
was evaluated as  a function of t h e  expansion parameter dc. and was pre- 
dicted t o  rise monotonically from zero at. dc = 1 (i.e. at  T = 0)  t o  t h e  hard- 
sphere value of 5/8 a t  very large a. From t h e  point of view of t h e  basic 
statistical theory 16), i t  is extremely unlikely that A, should vanish 
exactly a t  T = 0, since it contains contributions from t h e  ternary cluster- 
ing of segments. However. there  are many more possibilities for binary 
clustering, so t h a t  a t  small b u t  non-vanishing t t h e  dominant te rm 
should be contributed b y  configurations in which each of t,he three chains 
m.akes one contact with each of the two others. We have evaluated this 
term, and find 

(5.1) -4  z . 3  - .- 4DN'~32,,4~,3M3 .+ . . . 
where 

1 I I E / ' <  /:/:/:/:/:/ (x -f- y 1 ~)-~/~dEdqd<dxdydz - 0.208 

0 0 0 0 0 0  

With t h e  aid of (2.6) and (3.2) this leads t o  

A3/iMA< =. 1.73 (a-1) i . . . 

which is t o  be compared with the relation 

(5 .2)  

A,/MA: - 1.03 (a-1) + . ' (5 .3)  
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w. H. STOCKMAYER 

given by the approximate60) theory. This seems quite satisfactory 
agreement. 

The separation of a polymer solution into two liquid phases has been 
extensively treated by  FLORY~).  For high molecular weights, it suffices 
t o  consider the osmotic pressure series (3.1) terminating at  the term in 
A,. The first and second derivatives of P with respect t o  c are simul- 
taneously zero at  the  critical point, and this gives two relations from 
which critical concentration and temperature can be found : 

- A,, = M-l = 3A3cZ (5.4) 

If we recall that A, contains16) a ternary-cluster term A: independent of 
M which does not vanish at  T = 0, and that  the other terms are negligible 
in the  small temperature range near this point, we may find the critical 
temperature T, from 

-A ,  = (3A;/M)'b (5.5)  

The FLORY expression4) for T, is obtained only if we replace the function 
h(z) in (3.2) by unity and use the special FLORY-HUGGINS value V3/3Vf 
for A:, where 7 is polymer specific volume. More generally, we may put 

where E is a constant *) easily obtainable for any assumed value of the 
double-contact term in A,. The critical temperature then is given by 

V2V1-l (OTc-' - 1 )  [l + E(3A::)1/2] = (3A:/M)'h' (5.7) 

and it is seen that, although a plot of TC-l against M-1/2 may always be 
extrapolated to  find 0, it is not possible to  evaluate the entropy para- 
meter without accurate knowledge of A;. From this point of view, the 
discrepancy4) between +1 values obtained from precipitation temperatures 
and those obtained from dilute solution measurements is not surprising. 

The writer thanks E. F. CASASSA and W. R. KRIGBAUM for com- 
munications regarding their unpublished work, and R. E. BACON for 
assistance in preparing this paper. 

* Here we ignore the temperature dependence of a. 
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