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ABSTRACT: A nonadsorbing, flexible polymer (in dilute solution with a good solvent) enters a pore (of
diameter D smaller than its natural size, R) only when it is sucked in by a solvent flux, J, higher than
a threshold value, Jc. For linear polymers Jc ∼ kΤ/η (where T is the temperature and η the solvent
viscosity). We discuss here the case of statistically branched polymers, with an average number, b, of
monomers between branch points. We find that there are two regimes, “weak confinement” and “strong
confinement”, depending on the tube diameter. By measuring Jc in both regimes, we should determine
both the molecular weight and the number b.

I. Introduction
Thanks to suitable metallocene catalysts,1 it is now

possible to produce polyolefins with adjustable average
molecular weights, M ) XM0 (X, polymerization index;
M0, monomer molecular weight), and with adjustable
average levels of branching. But standard rheological
measurements are not quite sufficient to characterize
the resulting complex mixtures. This led us recently
to propose another, complementary method of charac-
terization, based on permeation studies using nanop-
ores.2 The discussion in ref 2 was restricted to a very
simple family of branched objects, namely star mol-
ecules. We found that stars can be sucked in a narrow
pore when the solvent flux J inside the pore exceeds a
certain threshold, Jc(star):

where f is the number of arms in the star (f . 1), and
N ) X/f is the arm length. k is the Boltzmann constant,
a is the monomer size, T is the temperature, and η is
the solvent viscosity. (Equation 1 should hold when the
molecules do not adsorb on the pore walls.) The critical
current predicted by eq 1 is very sensitive to the amount
of branching (i.e. to f).
In the present paper, we present a theoretical discus-

sion (at the level of scaling laws) for the more usual
case: a statistically branched polymer. In section II,
we discuss the statistics of confined chains. The main
idea here is based on what we call the “Ariadne length”
of a cluster. The principle was discovered first by Vilgis
et al.,3 using a slightly different language, in relation
with what is called the spectral dimension, ds of clusters
(see Appendix A for a discussion of ds). Our approach
in section II is based on a simple Flory argument, and
predicts in fact the value ds ) 4/3, which is currently
recognized to be an excellent approximation.4 In section
III, we set up the hydrodynamics and compute the
critical current. Section IV extends the discussion to
cases of “weak branching”, where the number of mono-

mers between adjacent branch point has a large average
value b: this is the most useful case in practice. Section
V analyses all the results.
For readers inclined to somewhat more mathematical

discussions, the case of branched objects with more
general spectral dimensions ds is studied in Appendix
B.

II. Statistics of Branched Clusters
(1) Overall Size in Dilute Solution, R. An inter-

esting approach, based on a Flory type of calculation,
was set up by Lubensky and Isaacson;5 a lucid descrip-
tion (incorporating many physical phenomena) was set
up by Daoud and Joanny.6
An ideal branched structure (with no steric interac-

tions) would have a size R0 ∼ X1/4a.7,8 If we now
incorporate excluded volume (with a volume per mono-
mer of a3), we can write a coil energy F(R) depending
on the size R as follows:

Here, the first term is an elastic energy, and the
second term is the effect of intermonomer repulsions
(Xa3/R3 is the internal volume fraction). Optimizing (2)
with respect to R, we arrive at:

Some verifications of eq 3 have been obtained (on
dilute solutions of branched polymers) by M. Adam et
al.9 In the following, we shall be concerned with pores
of diameter D , R.
(2) Flory Argument in a Tube. Let us now modify

eq 2 for a confined polymer, extended over a length, L
(Figure 1). The allowed volume is now LD2, and we
have

Optimizing with respect to L, we find
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Jc(star) = kT
η
f ( DNa)

2/3
(1)

(whenever f > (Na/D)2/3)

F(R) = kT[R2

R0
2

+ X2a3

R3 ] (2)

R = X1/2a (3)

F
kT

) L2

X1/2a2
+ X2a3

LD2
(4)

L
D

) X5/6(aD)
5/3 ≡ (RD)

5/3
(5)

8379Macromolecules 1996, 29, 8379-8382

S0024-9297(96)00941-2 CCC: $12.00 © 1996 American Chemical Society

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

IN
C

IN
N

A
T

I 
on

 F
eb

ru
ar

y 
22

, 2
02

4 
at

 2
2:

51
:4

4 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.



and the internal concentration is

The diameter

corresponds to maximum squeezing (φ ) 1).10 Of
particular interest is the corresponding value of L:

Ariadne helped Theseus through the Minoan laby-
rinth, by giving him a reel of thread, which kept a track
of his march. lA represents the length of the shortest
path, from the starting point, to the monster which is
to be killedsin our context, the thread distance between
two arbitrary points on the cluster (see Appendix A).
In the squeezed polymer, assuming that there are no
loops, the corresponding path becomes completely
stretched, and thus:

As usual for semidilute solutions in good solvents, we
can think of the squeezed polymer as a compact stacking
of blobs, each with a diameter (ê) and a number of
monomers (g). The relation between g and ê inside one
blob is derived from the size of a single cluster (eq 3):

Writing that φ ) ga3/ê3 (compact arrangement) and
comparing with eq 6, we ultimately find the correlation
length:

For weak confinement (D ) R) we recover ê ) R, and
for very strong confinement (D ) Dmin) we have ê ∼ a.

III. Suction into the Tube
We now force our polymer through the pore and

assume that a certain length (y) of the squeezed
structure has entered, as shown in Figure 2. The free
energy required for this may be written as

where Fc is a force resulting from confinement, while
Fh is a hydrodynamic force. We can write simply

where Π is the osmotic pressure of the squeezed object,
given by the usual scaling law,

and D2 is the cross sectional area of the tube. The
hydrodynamic force is equivalent to a Stokes force per
blob,

where V ) J/D2 is the local solvent velocity and D2y/ê3
is the number of blobs inside the pore.
Returning now to the energy, F(y) (eq 11), we see that

it is a maximum for

corresponding to an energy barrier,

Aspiration occurs when E* ∼ kT; this gives a critical

current,

Equations 16 and 17 are a natural extension of the
result for the “symmetric mode” of stars (ref 2). For the
stars in this mode, we had f/2 branches in parallel, each
occupying a cross section ê2 ) 2D2/f, and the barrier
energy was proportional to (f/2)2/J, as in eq 16.
We can now insert the results of section II on the

correlation length (eq 10) , and we find:

IV. Extension to Weaker Branching
Our discussion assumed a very high density of

branching. In a more chemical language, if we make
our polymer via condensation reactions, using a mixture
of two and three functional units, we were assuming
that the initial concentrations of these species were
comparable.
In practice, we often operate with a much smaller

fraction of three functional unit species, and the average
number of difunctional monomers between two adjacent

Figure 1. A branched polymer forced in a pore of diameter
D smaller than its natural size, R. The interior of the polymer
is a semidilute solution of correlation length ê.

Figure 2. The entry process for the branched polymer: only
a certain length, y, has penetrated in the tube.

Fc ) ΠD2 (12)

Π ) kT/ê3 (13)

Fh = η ê V D2y
ê3

) ηJy
ê2

(14)

y ) y* )
Fcê

2

Jη
(15)

E* ) 1
2
Fc y* )

(kT)2

Jη (Dê )
4

(16)

Jc = kT
η (Dê )

4
(17)

Jc ) kT
η (RD)

4/3
(18)

) kT
η
X2/3(a/D)4/3 (19)

φ ) Xa3

LD2
) (Dmin

D )4/3 (6)

Dmin ) aX1/8 (7)

Lmax ) aX5/6( a
Dmin

)5/3 (8a)

lA ) Lmax ) aX3/4 (8b)

ê ) ag1/2 (9)

ê ) a(Da )
4/3
X-1/6 (10)

F ) Fc y - ∫0ydy′ Fh(y′) (11)
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branch points (b) is much larger than unity. Then, our
formulas have to be adjusted as follows.
(1) An unconfined polymer in dilute solution will have

a size

and an Ariadne length

One may check these exponents by noticing that if b
) X (i.e.: when we return to linear polymers), we have
the standard values R ) aX3/5 (the Flory radius) and lA
) aX).
(2) The length L of the confined polymer is still given

by the second form of eq 5

where R is now taken from eq 20. At maximum
stretching, we must have L ) lA, and this corresponds
to a size

(3) There is one complication, however: there are two
regimes, depending on the size of the correlation length
(ê) when compared to the size (êb) of one linear piece of
b monomers. In good solvents, êb is given by the Flory
law:

(a) When the tube diameter D is larger than a certain
crossover value, D*, we have ê > êb.We call this “weak
confinement”. In this regime, the results of section II
can then easily be transposed, using blobs of b mono-
mers (and size êb) instead of monomers. (This leads, in
particular, to a derivation of eq 22). The correlation
length is

(b) The crossover occurs when ê ) êb. Using eq 25,
we find that the corresponding tube diameter is

(Conversely, if one type of nanopore (fixed diameter
D) is being used to separate a polydisperse mixture, it
is useful to rewrite eq 26 in terms of a critical molecular
weight: X* ) (D/a)8b-19/5).
Note that (from eqs 23 and 26)

(c) In the interval D* > D > Dmin, we have a new
regime of strong confinement. We retain the same law
for L (eq 22), but the blob structure is different. There
are many blobs between two adjacent branch points, and
the correlation length ê versus volume fraction φ follows
the classical law for semidilute solutions of linear
polymers ê ) aφ-3/4. The concentration φ can be derived

from

Using eq 22 for L, we then arrive at a very simple
result:

(4) Knowing these static properties, we can now
return to the critical current, Jc (eq 17), and we find

In the second regime (strong confinement), Jc is
independent of the tube diameter.

V. Concluding Remarks
(1) The critical current Jc(X) of branched polymers (Jc
∼ X2/3) is a signature of their Ariadne length (or
equivalently of their spectral dimension, as defined in
the appendices). For instance, if we had not a statisti-
cally branched object but a spheroidal clump taken from
a three-dimensional gel (X ∼ R3), we would expect Jc ∼
X4/3.
(2) If we return to the general formulas (30a,b) for

statistically branched clusters with weak branching
levels (b . 1), we see that one measurement of Jc in
each regime (D > D* and D < D*) should allow us to
determine both the molecular weight (X) and the chemi-
cal distance between branch points (b). Thus the
permeation may be a rather powerful characterization
method; it may also have separation potentialities.
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(Isaac Newton Institute, Cambridge, May 1996). We are
especially thankful for the remarks of T. McLeish and
S. Milner during this symposium.

Appendix A: Fractal and Spectral Dimensions
of Branched Objects
(1) The fractal dimension of our clusters describes the

relation between the size, R and the polymerization
index, X:

For our branched systems in good solvents, df ) 2 (eq
3)
(2) The spectral dimension of a cluster, ds, depends

on its chemical formula (describing linear sequences and
branch points), but is independent of the exact confor-
mation of the polymer (e.g. its linear segments may be
rigid or flexible, ds will be the same). The concept was
introduced by Alexander and Orbach,4 and exploited by
Rammal and Toulouse.11 Here, we shall present it
qualitatively, using an acoustic model as a tool.
Let us assume that our bonds can propagate sound,

with a velocity c measured along the chemical se-
quence: the transit time between adjacent, bonded,
monomers is a/c. We choose an “emitter” site (one
particular monomer) and we send a signal at time 0.
After a certain time, t, all the monomers which have a
curvilinear distance to the emitter smaller than ct, have

R ) aX1/2b1/10 (20)

lA ) aX3/4b1/4 (21)

L ) D(RD)
5/3

) a(aD)
2/3
X5/6b1/6 (22)

Dmin ) X1/8b-1/8a (23)

êb ) ab3/5 (24)

ê ) a(Da )
4/3
X-1/6b-1/30 (25)

D* ) aX1/8b19/40 (26)

D*
Dmin

) b3/5 > 1 (27)

φ ) Xa3

LD3
(28)

ê ) a D
Dmin

(29)

η
kT

Jc ) {X2/3(a/D)4/3b2/5 (D > D*) (30a)

(X/b)1/2 (D < D*) (30b)

X = (Ra)
df
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received the signal. Their number is called m(t).
Clearly, m(t) increases with time. For “self similar”
situations (i.e. when m < X), it is correct to postulate a
power law for m(t):

The exponent ds is characteristic of the chemical
structure: a linear polymer has ds ) 1 (be it flexible or
rigid). A sheet (like a graphite layer) has ds ) 2, even
if it is crumpled, etc.
After a certain time, t*, our whole cluster (X mono-

mers) has received the acoustic signal. t* is defined by

The length

is what we call the Ariadne length. From eq A2, we
see that

Comparing this with eq 8b for our statistically branched
clusters, we get ds ) 4/3.
(3) We now derive the cluster conformation (L and ê,

eqs 5 and 10) using the Ariadne length.
(a) Vilgis et al.3 assumed that the maximum stretched

length of a confined cluster would scale like lA (eq A4).
Using the scaling form derived from the Flory argument
for the length of the confined object (eq 5), they find the
corresponding minimum tube diameter, Dmin (eq 7).
(b) Conversely, the maximum stretching (Lmax ≡ lA)

is due to confinement; it is thus reasonable to assume
φ ∼ 1 in this situation (which defines some tube
diameter D ≡ Dmin, eq 7). Assuming the existence of a
unique scaling law from the unperturbed regime L ∼ R
∼ D to the maximum stretching (L ) lA, D ) Dmin), we
recover eq 5.
(c) The same scaling argument as in b can be used to

provide a description of the confined fractal in terms of
blobs. Let us assume that confining the fractal into a
tube of diameter D leaves its structure unperturbed at
small length scales, i.e. that blobs of a certain size ê(D)
retain their unaltered structure. Renormalizing these
blobs as monomers, we can look at the confined object
as a cluster in a tube of minimum diameter: D ≡
Dmin(ê(D)). More precisely, we have L ≡ ê(X/x)1/ds
(similarly to eq A4), and LD2 ≡ (X/x)ê3 (i.e., φê ∼ 1),
where x ) (ê/a)2 is the mass of one blob (eq 3). The
resulting blob size is given by eq 10.

Appendix B : Injection Threshold for
Statistically Branched Polymers of Arbitrary
Spectral Dimensions
(1) A useful picture for the Ariadne length, lA, is the

following. The fractal object, made of monomers, can
be parametrized3 by a function RB(x), where RB is the
monomer position in real space (d ) 3) and x is a vector
in the discrete, ds - dimensional, parameter space {1,
2, ..., N}ds. The parameter space describes the object
connectivity, independently of how it is embedded in
real space (loose or dense, crumpled or stretched). It is
clear from this picture that N represents the maximum
distance between two points in the object, i.e., lA = Na.

(This is obvious with the particular cases ds ) 1, linear
polymer, and ds ) 2, crumpled sheet). Obviously, the
fractal molecular weight is also X ) Nds.
(2) A generalized Flory approach yields the object

radius of gyration, without use of the ideal size of a
branched polymer R0 ) aX1/4 (eq 2). Indeed, the
Edwards Hamiltonian12 can be generalized3 as

The corresponding mean-field Flory free energy,

gives the correct radius of gyration in good solvent, R
) aX(2+ds)/5ds (when ds ) 4/3, we recover eq 3).
(3) The conformation of the fractal confined in a tube

can be worked out in the same way as in the main text.
The Flory approach gives directly the exponent 5/3 for
the dependence of L (eq 5). The assumption that the
Ariadne length is the maximum stretched length3 is
made clear through the parametrization (paragraph
B1): since a monomer cannot be stretched beyond
extension a, the fractal cannot be stretched beyond Lmax
= Na ) lA. From this we deduce, as in paragraph A3,
another derivation of the scaling law for L (eq 5) and
the blob size ê ) D(D/R)w (compare with eq 10), where
w ) (ds - 1)/(2ds/df + 1 - ds) (or w ) 5(ds - 1)/3(3 -
ds), using the fractal dimension derived from the Flory
argument, df ) 5ds/(2 + ds). Note that w ) 0 for linear
polymers (ds ) 1, df ) 5/3, ê ) D), and w ) 1/3 for
statistically branched polymers (ds ) 4/3, df ) 2; see eq
10).
(4) The critical solvent current for the injection of such

a fractal into a nanopore is derived in the same way as
for a statistically branched polymer (section III):
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m(t) ) (cta )
ds

(A1)

X ) (ct*a )ds (A2)

lA ) ct* (A3)

lA ) aX1/ds

) aX3/4 (A4)

F
kT

) ∫ddsx(∇xRB(x)2) + ∫ddsx ∫ddsx′(a3 δ3(RB(x) -

RB(x′))) (B1)

F
kT

) R2Nds

a2N2
+ a3N2ds

R3
) R2

a2X(2-ds)/ds
+ X2a3

R3
(B2)

Jc ) kT
η (Dê )

4
) kT

η (aD)
4w
X4w/df (B3)
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