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ABSTRACT: We use large-scale computer simulations of star
polymer gels to analyze which structural features can be assessed
from scattering data of polymer networks. We separate static and
dynamic contributions of the scattering intensity I(q), allowing us
to determine the correlation length ξ of the corresponding polymer
solution and the static correlation length Ξ of network
inhomogeneities, combining several properties of the denser
cross-link blobs. The dynamic contribution Idyn is related to the
correlation length ξ, incorporating parts of the form factor of the
star polymer for polymer volume fractions around the overlap
condition. At swelling equilibrium, the cross-link motion is
confined within a volume comparable to the size of the somewhat
denser cross-link blob. Since the cross-link blob size scales ∝ ξ, we
measure Ξ ∝ ξ for our nearly ideal model networks. The motion of the cross-links in a harmonic confining potential implies a
Gaussian shape of the static density inhomogeneities, a dependence confirmed by the static contribution to the scattering data of all
samples in our study. At swelling equilibrium, dynamic scattering Idyn(0) from thermal fluctuations is almost identical to the
scattering intensity Istat(0) from static inhomogeneities. At preparation conditions, Istat(0)/Idyn(0) decays with a power law following
the polymer fraction of the cross-link blobs. Here, the larger volume available for cross-link motion stands out for increasing polymer
volume fraction ϕ, reducing the concentration dependence of Ξ.

1. INTRODUCTION
Polymer networks and gels have the ability to adjust the
volume when exposed to a suitable solvent, resulting in
significant changes of gel volume and material properties, like
permeability or resistance to mechanical deformations. The
relevance of this behavior is highlighted in numerous technical
applications operating at swelling equilibrium or utilizing the
swelling process. Examples include tissue engineering and
other biomedical applications,1 antimicrobial hydrogels,2

wearable sensing, soft robotics,3 drug delivery systems,4 soft
contact lenses,5 food science,6 or superabsorbent materials,7

among many others.8

The key to tailor the properties of the networks and gels is
to understand the structure of the material on the relevant
length scales. This task inevitably requires reliable tools for
analyzing and interpreting the structure of these materials. In
this respect, well-defined model systems are highly valuable for
developing and testing theoretical predictions. Decades ago,
the end-linking of linear chains by multivalent junctions was
considered to be the best way for producing the required
model networks.9−12 To date, comparison with end-linked
model networks still pushes our understanding of network
structure13 and rubber elasticity14−18 to new limits.
More recently, it has been shown that a cross-coupling

scheme of monodisperse 4-arm star polymers19 produces

networks with superior material properties as compared to
end-linked model systems,20 mainly due to avoiding pending
loop defects.21,22 At present, these star polymer networks are
considered as an ideal model system to improve our
understanding of the properties of polymer networks,23 and
they are frequently used for developing and testing
theory.24−27 The ideality of these samples is also advantageous
for understanding scattering experiments because they produce
very little excess scattering28−30 when compared with a
polymer solution at the same polymer volume fraction and
composition.31 Similar trends for regular networks are
observed only in the limit of long elastic strands significantly
exceeding the entanglement length32 and when linking the arm
ends of star polymers by a bifunctional unit.33 Hence, the
improved homogeneity largely simplifies the analysis of the
generic structural features of star polymer model networks.
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Scattering techniques are the basic tool to analyze the
structure of polymer gels and networks.34−37 The major
challenge for understanding experimental data arises from the
fact that scattering experiments on isotropic samples provide
“only” the Fourier transform of the radial pair correlation
function instead of the full description of a 3-dimensional
structure. Hence, the significant data reduction along this path
can produce rather similar results for quite different
structures.a For a deeper insight into the network structure,
labeling was used to mark individual chains,38−44 linear chains
spanning several network strands,45−52 or the regions around
the network junctions,38,53 see Figure 1 for an illustration.

Besides these classical ways to label parts of the network, the
cross-coupling scheme of Sakai19 provides the possibility to
address the scattering of conetworks made from star polymers
in an idealized way.21

The labeling of individual chains (Figure 1a) provides
information on the conformations and the deformation
behavior of the network chains, while labeling of chain
sections longer or shorter than a network chain shifts the
analysis to the behavior on the length scale of the

corresponding sections. Scattering data of single chains (Figure
1a) have been discussed recently54 and will not be covered in
the present work. If the full network is labeled (Figure 1b), the
structural information is limited to the correlation length ξ and
static contributions including any kind of a possible
heterogeneous sample density on length scales exceeding ξ.
In the present work, we use star polymer networks to focus on
the generic information, suppressing additional large-scale
heterogeneities. Moreover, our simulations provide real-space
information on the corresponding structures, allowing for a
direct identification of the contributions to the scattering
intensity. If only cross-links are labeled (Figure 1c), we expect
information about the effective repulsion between the network
junctions,55 while labels around cross-links (Figure 1d) should
provide a mixed information on cross-link repulsion and the
form factor of the resulting labeled regions around the
junctions. Notably, some works report data for this kind of
labeling differing from theoretical predictions or lacking a
simple interpretation.38,53 We contribute a discussion of (c)
and (d) in a subsequent paper.56 Finally, a labeling in the form
of (e) and (f) is possible with the star polymer network
architecture developed by Sakai et al.19 We discuss these cases
in combination with a selective swelling response of the
different star polymers in another follow-up work.57

In several preceding simulation studies on model gels or
(swollen) polymer networks, scattering functions were
computed for the full network structure,21,58,59 labeled
chains,60 labeled star polymers,21 labels on chain ends,61

labeled cross-links,61,62 and related model systems.63−65

However, to date, a systematic discussion of approaches
allowing for a data analysis both in real space and regarding
scattering data is still lacking, together with a comparison of
advantages and limitations of a real space picture and
interpretations relying exclusively on the scattering data.
With the present publications, we close this gap for completely
labeled networks, while the remaining cases of Figure 1 will be
addressed in subsequent works.
The simulations and details of the network parameters used

in the present and subsequent studies are summarized in
Section 2. A set of suitable model functions and their Fourier
transforms for interpreting both the real-space structure and
scattering data are discussed in Section 3. Our results for the
completely labeled networks are presented in Section 4, where
we address a decomposition of scattering into contributions
from the time-average inhomogeneous density and from time-
dependent thermal fluctuations around this average. This
decomposition is made both for the preparation state and for
swelling equilibrium, providing in each case two correlation
lengths ξ and Ξ, where ξ characterizes the solution-like
dynamic scattering from thermal density fluctuations and Ξ the
network-like static component of the scattering intensity,
respectively. While ξ is discussed in depth in Section 4, an
explanation for the static correlation length Ξ is developed in
Section 5. The key findings of the present study are discussed
in Section 6 in the context of preceding literature. Additional
information on data averaging and processing, a table with the
key results of the simulations, snapshots of the samples, and
additional information on the network structure are provided
in the Supporting Information.

2. SIMULATIONS
We apply the bond fluctuation model (BFM)66,67 to simulate
network formation and subsequent structuring of the samples

Figure 1. Different ways to label polymer networks: (a) single chains,
(b) full polymer network, (c) only cross-links, and (d) chain ends or
small regions around cross-links. In heterocomplementarily coupled
conetworks of star polymers, either both stars can (e) have maximum
contrast or (f) only one type of star is labeled.
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by a selective solvent. All simulations discussed rely on the
LeMonADE implementation68,69 of the BFM model on
graphical processing units. In the present investigation, we
use the simulation data of a preceding paper,25 and we refer the
reader to this work for details on the network parameters,
sample preparation, equilibration, and the acquisition of
conformation data.
In brief, our simulations concern networks where two

batches of star polymers were reacted using a cross-
complementary coupling scheme, allowing stars of type A to
form bonds only with stars of type B. Both batches of stars are
monodisperse, with degrees of polymerization NA = 37, 73, and
145 and NB = 53, 97, and 181, originally designed to provide a
match with experimental data.70 All stars have f = 4
monodisperse arms, containing either (NA − 1)/f or (NB −
1)/f monomers per arm. Three classes of networks are
prepared, where either stars with the smallest, the second
largest, and the largest degree of polymerization are reacted,
leading to network strands containing N = 23, 43, and 82
segments, respectively. MA and MB are the number of star
polymers of either type, providing a total of n = NAMA + NBMB
monomers. We study stoichiometric systems where MA = MB,
with a total number of stars M = 2MA. Networks with the three
available strand lengths N are prepared from equilibrated
polymer solutions over a large range of different polymer
volume fractions at preparation, ϕ0. Boundary effects are
corrected by replacing the nominal volume fraction ϕ0 by an
effective volume fraction ϕ1 introduced previously.25 In the
present work, we analyze 21 out of the 38 networks of this
preceding paper. The networks were selected regarding the
following three criteria: (a) the samples were prepared in the
largest box (size L = 512u, where u is the lattice constant) to
minimize finite size effects and to maximize the available range
of the scattering vector q, (b) ϕ0 must be sufficiently low to
allow for an unambiguous determination of ξ in the
preparation state, and (c) ϕ0 must be sufficiently large to see
sufficient volume change upon swelling. The results for all
networks are summarized in Table S1 of the Supporting
Information; key features of the networks are found in Table 1
of ref 25 by comparing with data for the same N, M, and L. As
described in ref 70, the concentration scale was matched with
the experiments, setting a reference value for the overlap
polymer volume fraction ϕ* of the star polymers. We use this
reference in the present work by presenting the data as a
function of ϕ* for a rough orientation. The conversion of all
samples is identical, p = 0.95, eliminating additional depend-
encies of p on the polymer volume fraction ϕ in the samples.
Additionally, we prepared networks in periodic boundaries
with the same parameters as the networks in the nonperiodic
boxes for testing the impact of the confining wall on the
simulation results.

3. STRUCTURAL ANALYSIS OF THE NETWORKS
In the present section, we compile several definitions and
model equations that are used in the present work for the
characterization of the network structure. These equations
focus on basic relations used to compute the scattering
intensity or pair correlation of the samples, and on particular
models for either pair correlation or scattering data.

3.1. Scattering Intensity. For each snapshot, the
scattering intensity I(q) is calculated from a Fourier transform
of the monomer positions, allowing for a discrete set of wave
vectors q on the lattice, with

q
L

j j j2
( , , )x y z=

(1)

where L = lu is the size of the cubic box, and 0 ≤ jx, jy, jz < l are
integers. The scattering intensity is given by

qI a e( ) q r

j

n

j
i

1

2j= | |
=

·

(2)

where rj is the position of monomer j, aj describes its scattering
length, and ⟨...⟩ denotes an ensemble average over independent
configurations of the same network. We use nA = MANA and nB
= MBNB to denote the total numbers of A and B monomers,
respectively. We arrange all monomers such that the first nA
monomers are of type A, and we assume that the scattering
lengths depend only on the type of monomer. This gives

qI a e a e( ) q r q r
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k n

n n
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A B

= | + |
=
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·

(3)

Different choices of the scattering lengths give access to
complementary observables. The most natural choice consists
in equal amplitudes for all monomers, aA = aB = 1/(nA + nB),
which we abbreviate as Iall(q) in the following, corresponding
to the situation in Figure 1b. For the choice aA = 1/nA and aB =
0, we obtain the normalized scattering intensity IAA(q) among
monomers of type A, and for aA = 0 and aB = 1/nB, we get the
normalized scattering intensity IBB(q) among B monomers
(Figure 1f). For aA = 1/(2nA) and aB = 1/(2nB), a “non-
selective scattering” intensity is obtained, where all stars
contribute with the same weight, which we call IA+B(q).
Moreover, the maximum contrast between A and B polymers
(Figure 1e) can be calculated with aA = 1/(2nA) and aB = −1/
(2nB), resulting in a scattering intensity abbreviated as IA−B(q).
Experimentally, such a maximized contrast in small-angle
neutron scattering data can be achieved via synthesis of the
precursor stars from materials with controlled deuteration. In
general, in simulations, arbitrary choices of labeled monomers
of “type A” against unlabeled monomers of “type B” can be
made, allowing us to treat any kind of labeling in a similar
manner, including the cases illustrated in Figure 1c,d.
Using the above conventions for the scattering length, the

first four cases are normalized to Iall(0) = IAA(0) = IBB(0) =
IA+B(0) = 1 for a zero wave vector, while the scattering
intensity with maximum contrast vanishes for q = 0, i.e.,
IA−B(0) = 0. In the figures presented below, scattering
intensities obtained for the same absolute of the wave vector
q = |q| are averaged isotropically, resulting in I(q). Data
averaging for all plots containing scattering intensities from
simulations was performed as described in the Supporting
Information.

3.2. Pair Correlation Functions. In order to allow for a
more detailed interpretation of the arrangement of the
monomers or the segregation between A and B components
in real space, we introduce several pair correlations (also called
“pair distribution functions”) between different types of
monomers. For an extended homogeneous system involving
nA A monomers and nB B monomers within a reference volume
V, these pair correlations shall converge to a limit of 1 for large
distances. Accordingly, they can be defined by counting the
number of pairs within a shell of thickness Δr around a
distance r, e.g., for A−A pairs
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where Θ is the Heaviside step function that is equal to 1 in the
interval r rr rr

j k
r

2 2
< | | < + and 0 outside this

interval. Other quantities like gAB(r) and gBB(r) or the pair
correlation function of the full network, gall(r), can be defined
similarly. In a macroscopic experiment, the above pair
correlations gAA(r), gAB(r), and gBB(r) converge to a constant
value of 1 for large radii, as the sample size is typically huge as
compared to the structure that is analyzed. We reproduce this
behavior in simulations of the as-prepared state with periodic
boundary conditions. The pair correlation with maximum
contrast among both types of polymers can be defined as

g r g r g r g r( )
1
4

( ) 2 ( ) ( )A B AA AB BB= [ + ]
(5)

From these radial pair correlations, we obtain the respective
scattering intensities via a radial sine Fourier transform, using

I q r r g r
qr

qr
( ) d 4 ( ) 1

sin ( )
AA

0

2
AA[ ]

(6)

for the pair correlations with a long distance limit of unity like
gAA(r), gBB(r), gA+B(r), and gall(r). Among these, the limit q →
0 of Iall(q) is inversely related to the osmotic compressibility of
the system, I(q) ∝ [dΠ(c)/dc]−1.71 For the pair correlation
gA−B(r) with vanishing long distance limit, see Figure 1e; we
use the transform

I q r r g r
qr

qr
( ) d 4 ( )

sin ( )
A B

0

2
A B (7)

3.3. Data Analysis of Homogeneous Samples. In what
follows, we introduce different indices to distinguish model
functions adapted to specific situations. These contain the
Debye function (D) for ideal chains, the Ornstein−Zernike
function (OZ),72 and its generalization to fractals (F)73 for
polymer solutions or networks. Sample inhomogeneities will be
modeled as hard spheres (HS) by the Debye−Bueche model
(DB)74 or by Gaussian distributions (G). Where possible,
closed analytical forms will be given both for scattering
intensities I(q) and for pair correlations g(r).
An ideal chain in a dense melt or in a dry network (Figure

1a) scatters according to its form factor described by the
Debye function

I q
O

O O( )
2

exp ( ) 1D 2= [ + ]
(8)

with O = q2Rg
2, allowing us to extract the squared radius of

gyration of the chain from the data, whereas the collective
behavior of the entire sample (Figure 1b) can be modeled by
an Ornstein−Zernike function

I q
q

( )
1

1 ( )OZ 2+ (9)

compatible with an exponentially decaying pair correlation,
g(r) − 1 ∝ e−r/ξ/r.
In a system with fractal dimension Df = 1/ν over the

distance range b ≤ r ≤ ξ between monomer size b and
correlation length ξ, the number of monomers within a range r
scales as N(r) ∝ rDf. Moreover, assuming that the deviation of

the radial pair correlation from its asymptotic limit toward
large distances decays exponentially as e−r/ξ, the integrand in a
radial Fourier transform like eq 6 becomes proportional to

g r r( ) 1 eD r3 /f (10)

The resulting scattering intensity can be obtained analyti-
cally73,75,76

I q
q

q
D q

( )
1

(1 )

sin (D 1)arctan
( 1)DF 2 2 ( 1)/2

f

ff
=

+
[ ]

(11)

normalized here to IF(0) = 1. Please note that the fractal
exponent Df determined from fitting the asymptotic depend-
ence of the scattering intensity at large q via the above
definition of IF(q) will differ from an analysis relying on
alternative approximations like I(q) ∝ 1/(1 + q2ξ2)Df/2 or I(q)
∝ 1/(qξ)Df. Equation 11 has been applied successfully to
scattering data from fractal silica aggregates,77 protein
complexes,78 and swollen polymer networks.79 For a swollen
polymer phase in an a-thermal solvent, we expect ν ≈ 0.587680

and Df = 1/ν ≈ 1.70. Among different possible model
functions with asymptotic decay ∝ q−1/ν,81,82 eq 11 has the
advantage of relying on an analytic model for g(r). Moreover, a
Taylor series expansion up to the order q2ξ2

I q
D D

q( ) 1
1
3

1
2

( 1)
6F

f f
2

2 2
Ä
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ÅÅÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑÑÑ
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6

2 2f f
2Ä
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É
Ö
ÑÑÑÑÑÑÑ+ + +

(13)

can easily be compared to other known model functions like
ID(q) or its Taylor series expansion. For simplicity, we restrict
this comparison to the reference case of ideal chains, Df = 2,
and we use a notation where the second order of the Taylor
series is moved to the denominator, guaranteeing a decrease
toward large q. Then, both the Guinier approximation for the
form factor and the Debye function give

P q
q R

( ) exp
3

1

1

1

1q R q R

2
g
2

3 18

2
g
2 2

e
2

i

k
jjjjjj

y

{
zzzzzz +

=
+ (14)

so that we recognize that the real space end-to-end distance of
a correlated chain section as expressed by Re is larger than ξ by
a factor of roughly R / 18 4.24e .

3.4. Boundary Effects and Frozen Inhomogeneities.
In finite samples, all pair correlations inside the network
converge to zero at distances exceeding the size of the sample,
and therefore, we have to correct for the shape of the network.
As a rough approximation, the nearly cubic shape of our
aperiodic polymer slabs can be captured by the behavior of a
HS with radius R

g r R
r
R

r
R

( , ) 1
3
4

1
16HS

3Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjj y

{
zzz i

k
jjj y

{
zzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
= +

(15)

Hence, the scattering intensities of a finite size sample will
roughly resemble the form factor of a HS83,84

P q R
qR

qR qR qR( , )
3

( )
sin ( ) cos ( )HS 3

2i
k
jjjjj

y
{
zzzzz= [ ]

(16)
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normalized here to PHS(0) = 1. Taking the cubic shape into
account, the Fourier transform over the finite box size along
each Cartesian direction will result in pronounced spikes at
wave vectors parallel to a Cartesian direction like
q j( , 0, 0)

L x
2= , with intensities scaling as 1/jx2. As demon-

strated below, the interpretation of scattering data from
aperiodic polymer slabs becomes simpler when ignoring the
respective discrete values of q: periodic and aperiodic samples
at otherwise equivalent preparation conditions show matching
scattering data at all absolute values of wave vectors q = |q|
where contributions along Cartesian directions do not
dominate.
Alternatively, sample inhomogeneities fading away over a

large length scale can be modeled by an exponentially decaying
contribution to the radial pair correlation function as proposed
by Debye and Bueche74

g r( ) e r
DB

/ DB (17)

compatible with a contribution to scattering intensity

I q
q

( )
1

1 ( )DB
DB

2 2[ + ] (18)

The scattering intensities according to eqs 16 and 18 decay ∝
1/q4 for large wave vectors, in accordance with Porod’s law for
sharp boundaries.
By a combination of dynamic and static scattering

techniques, a static, “frozen”, and nonergodic density
heterogeneity can be separated from a contribution that is
homogeneous, ergodic, and dynamic.36,85,86 In simulations, the
frozen density inhomogeneity is available from the time
average of the density at each lattice site of the simulation box.
A simple model for randomly dispersed static domains on top
of a homogeneous medium consists of a Gaussian pair
distribution proportional to

g r r
( ) exp

2G

2

2

i
k
jjjj

y
{
zzzz

(19)

transforming into a contribution to scattering with Gaussian
shape

I q
q

( ) exp
2G

2 2i
k
jjjjj

y
{
zzzzz (20)

For rather inhomogeneous polymer networks, the resulting
scattering intensity may dominate the measured data over a
certain range of wave vectors q < 1/Ξ, and accordingly, fits of
scattering data allowing for a combination of eqs 9 and 20 can
reveal both ξ and Ξ ≫ ξ,87,89 whereas a linear combination of
eqs 9 and 18 may be used as an alternative interpolation of
measured data.88

3.5. Structure at Small Length Scales. At larger wave
vectors, small interatomic distances between adjacent mole-
cules result in further scattering peaks, best documented for
pure solvents, where they can be related to the structure factor
of the liquid and to the respective pair correlation.90,91 In our
simulations, we either use implicit solvent or we assign a
scattering amplitude of zero to an explicit solvent. Therefore,
scattering peaks at large q correspond to the packing of the
nearest neighboring monomers on the lattice. These
contributions are discarded by restricting fits of simulated
scattering data to q < 1/u.

3.6. Scaling of Simulated Scattering Intensities. At q =
0, according to eq 3, all monomers in the system interfere
constructively with phase factors of unity. With our
conventions for the scattering amplitudes introduced above,
the resulting scattering intensities are normalized to one, e.g.
Iall(0) = 1. When analyzing the shape of the simulated
scattering intensity in the limit q → 0 with some model
function, e.g., IF(q), the amplitude of this model function
measures the fraction of all monomers still interfering
constructively. In a solution of long linear polymers, this
corresponds to the number of monomers in a correlation
volume divided by the total number of monomers in the
system. In a polymer network, such a contribution can be
superimposed with the excess scattering around the cross-links
as discussed in the following sections.

4. RESULTS
An advantage of computer simulations is that real space
information including the full network connectivity can directly
be compared with the scattering data of the samples.
Moreover, the scattering data can be decomposed into a static
and a dynamic contribution by considering either time average
or instantaneous particle densities. Finally, we can track the
swelling of particular locations inside the network and correlate
these with features of the network structure. The combination
of these possibilities is particularly interesting for testing
different models regarding the swelling of networks and the
excess scattering of the networks as compared to a polymer
solution at the same polymer concentration. This testing is
performed against the simulation data of heterocomplemen-
tarily coupled star polymer model networks that are the
current “gold standard” for homogeneous networks. In this
way, we can identify the generic contributions to the scattering
signal of polymer networks and gels aside from additional
contributions that encode heterogeneity on large length scales.

4.1. Scattering Data at Preparation Conditions. The
scattering intensities Iall(q) of a series of star networks and star
solutions prepared at different polymer volume fractions were
calculated according to eq 3, see Figure 2. In simulations of
networks in a periodic box, fits with a model function for a
fractal dimension Df = 1/ν according to eq 11 for ν = 0.587680

are suitable for a smooth interpolation of the numerical data
for all q < 1/u. The results for the correlation length are given
in Table S1 of the Supporting Information as ξall. Scattering
data in an aperiodic simulation box agree with these data when
spikes at specific wave vectors q = j(2π/L) with integer j are
omitted. This good correspondence demonstrates that
boundary effects have little impact on the structure of the
networks, showing that the aperiodic samples are suitable for
studying equilibrium swelling. This is corroborated by the
close correspondence of the measured correlation lengths of
the samples in the preparation state with and without periodic
boundary conditions, see Table S1.
In Figure 2, scattering data from star solutions coincide with

data from star networks over the region q > 0.2/u for all
polymer volume fractions. At lower wave vectors and for small
polymer volume fractions ϕ0 ≲ ϕ*, the networks produce
significant excess scattering as compared to the solutions,
whereas this effect fades out for ϕ0 significantly above ϕ*, in
agreement with the experiment.31,92 Similar to experimental
findings, see Figure 4 of ref 93, the structure factor of star
polymers (“star hump”94) becomes apparent in the solution
data around ϕ*. In the opposite limit of large ϕ0, the
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correlation length ξall becomes too small to interfere with the
characteristic star hump, but there, the intensity decay of the
scattering data becomes quite limited, see, e.g., the 6ϕ* data in
Figure 2. In fact, this prevented us from also analyzing the
networks of our preceding paper25 prepared in simulation
containers with L = 256u and referring to larger ϕ0 than shown
in Figure 2. Moreover, the decreasing dynamic range of Iall(q)
for large ϕ0 inhibits a stable determination of ν from a fit to the
data, whereas at small ϕ0, close agreement with the theoretical
prediction was achieved. Therefore, we have fixed the
asymptotic decay of the model function by using ν =
0.587680 throughout.
A more detailed analysis of the scattering data is possible

when splitting the data into a static and a dynamic
contribution. This is achieved by computing additional
scattering functions from the time-averaged density profiles
of the networks.58 In more detail, the scattering data as
presented in Figure 2 refer to an average of the scattering data
summed over X = 100 independent frames, corresponding to a
time average of the scattering intensity

I q I q t( ) ( , )all all t= (21)

On the other hand, the same X = 100 independent frames can
be superimposed on the lattice, defining throughout the sample
a local time average of the polymer density. This time average

density allows to compute a static contribution to the
scattering data, abbreviated as Istat(q) in the following. On
this basis, we can decompose the time average scattering
intensity into scattering from static density inhomogeneities
and dynamic scattering arising from solution-like thermal
fluctuations of the density around its local time average85,86

I q t I q t I q( , ) ( , ) ( )all t dyn t stat= + (22)

After extracting both Iall(q) and Istat(q) from the simulations,
the dynamic scattering I q t I q t( , ) ( , )dyn dyn t= can easily be
determined from their difference according to eq 22. The
origin of the static intensity Istat(q) is explored in detail in
Section 5.
In a trivial case like a solution of star polymers, no static

density inhomogeneities are possible, so that Istat(q) vanishes
for X → ∞. For a finite set of X frames, Istat(q) remains finite
and reproduces the shape of Iall(q), but with an intensity
reduced by a factor 1/X if the consecutive frames are
independent. This dependence was tested successfully with
the data of the star polymer solutions, which can be
approximated by a model function IF(q), see Figure S1 and
Section SII of the Supporting Information. Moreover, this test
revealed that the time interval between consecutive frames is
sufficiently long to provide independent data on all length
scales relevant for our analysis. For analyzing the static part of
the scattering intensity, we thus assume model functions of the
form of IG(q) + IF(q)/X according to eqs 11 and 20. As shown
in Figure 3, this model function interpolates the data quite well
and reproduces the factor of 1/X for the high q part of the
static contribution, whereas the total intensity Iall(q) is well
approximated by IG(q) + IF(q). This procedure allows us to
separately determine the static correlation length Ξ0 at
preparation conditions from Istat(q) and the correlation length
ξ0 from Idyn(q). The resulting fits for the correlation lengths
based upon this analysis are summarized in Table S1 of the
Supporting Information.
Our fractal model function IF(q) does not account for

Benoit’s star hump.94 Hence, in order to obtain more reliable
estimates for the correlation length ξ, we exclude the region of
the star hump from the fit. In effect, the amplitude of IF(q) is
mainly determined within the interval (0.01/u ≤ q ≤ 0.05/u),
whereas a combination with the decay over large wave vectors
(0.6/u ≤ q ≤ 1/u) provides ξ. Figure 3 reveals that this
procedure reduces significant deviations between Idyn(q) and
the fit with IF(q) to the excluded intermediate range 0.05/u ≤
q ≤ 0.6/u where the form factor of the stars produces the
expected hump in the numerical scattering data, see also Figure
4 of ref 93 or Figure 5 of ref 95.
Please note that a fit of the total scattering data in Figure 2

with a global shape IF(q) seems to be quite precise over all
wave vectors, but as this analysis does not distinguish between
static and dynamic contributions to scattering, we consider the
resulting correlation length ξall to be less trustworthy than the
correlation length ξ0 derived from an appropriate analysis of
the dynamic part of the scattering intensity alone.
For polymer solutions, a power law dependence ξsol ∝

ϕ0
−ν/(3ν−1) ∝ ϕ0

−α with α ≈ 0.77 is expected in the good
solvent regime,96,97 whereas this turns into ξsol ∝ ϕ0

−1 for theta
solvents. Both regimes are well supported by experimental data
for linear chains.98,99 We have tested this dependence for our
star polymer solutions, leading to a somewhat larger α, see
Figure 4 for the plot and Table 1 for the exponents determined

Figure 2. Scattering intensity Iall(q) for periodic networks (dots in
darker colors), aperiodic samples (dots in lighter colors), and star
solutions (open circles) with star size NA = 73 and NB = 97 in a
simulation box L = 512u, corresponding to polymers with N = 43
segments connecting adjacent star centers. The data of the periodic
networks were fit with the model function IF(q) for fractal dimension
Df = 1/ν with ν = 0.587680 according to eq 11, for q < 1/u (black
lines), revealing the correlation length ξall. Data averaging was
performed as described in the Supporting Information.
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from the entire series of samples. In the fit of ξsol in Figure 4,
we have excluded both the data at the lowest ϕ as it refers to
ϕ0 < ϕ* and the data point at the largest ϕ because of the low
dynamic range of the scattering data, leading to a correlation
length comparable to half the size of a monomer.
For small polymer volume fraction ϕ0, in networks with

periodic boundaries, we observe a slight enhancement in ξ as
compared to ξsol determined from a star solution, see Figure 4.
The trend of a stronger concentration dependence in networks
for some ranges of ϕ is also found in refs 100 and 101 where a
measured dependence of ξ ∝ ϕ0

−0.74 ± 0.01 for polymer
solutions turns into ξ ∝ ϕ0

−1.01 ± 0.07 for the corresponding
networks. In the experiments on end-linked model networks,
this increase carries an additional contribution from inserting
the cross-links. In our simulations, we attribute this difference
to averaging Idyn over regions with a varying time average
density. In contrast to these results for the dynamic correlation
length ξ, we obtain a significantly larger exponent α for ξall in
the range of α ≈ 1.3 for N = 43, decreasing significantly with
increasing N. Exponents α in a similar range and with the same
trend as a function of N were found in experimental studies of
star polymer model networks with the same architecture as in
our work.93,102 A simulation study59 with similar parameters as

our data for N = 43 arrives at ξall ∝ ϕ0
−1.3, closely resembling

our results. Experimental data directly demonstrate that ξall
grows during cross-linking, see, e.g., Figure 4 of ref 92. This
underlines the fact that ξall incorporates an increasing static
contribution (for increasing extent of reaction or for decreasing
ϕ) perturbing a quantitative analysis, as evidenced in Figure 3.
Already at ϕ0 = ϕ*, Istat(q) and Idyn(q) are of similar magnitude
for q → 0, whereas for larger ϕ0, the relevance of the static
contribution fades out. This particular behavior is discussed in
more detail in Section 5. Based upon this comparison, we

Figure 3. Scattering data from networks with star size NA = 73 and NB
= 97 in the preparation state, simulated with periodic boundary
conditions in a box L = 512u. Symbols with color according to legend:
Iall(q) (full dots connected by a line), Istat(q) (crosses), and Idyn(q)
(open squares). The corresponding scattering intensity Iall(q) from
solution is given for comparison [open circles, brighter colors than in
the legend). Fits to Idyn(q) (dashed-dotted) are performed with IF(q),
eq 11, with ν = 0.5876,80 providing ξ0. Fits to Istat(q) (solid lines] are
performed with IG(q) + IF(q)/X with X = 100, relying on eq 20 and
the rescaled fit to Idyn(q) (dashed-dotted), with IG(q) (dashed) shown
separately. The solid lines accompanying Iall(q) represent the sum
IG(q) + IF(q).

Figure 4. Scaling of correlation length as a function of polymer
volume fraction at preparation, ϕ0, for a solution consisting of NA =
73 and NB = 97 polymer stars and for the resulting networks in
samples with periodic boundaries. The data were fit with power laws
∝ ϕ0

−α, and the resulting exponents α are summarized in Table 1.
The static correlation length Ξ is included for comparison. The data
points at the lowest ϕ0 < ϕ* and at the highest ϕ0 with ξ ≈ 1 were
excluded for fitting the scaling of ξall and of ξsol, and reasons for
restricting the fit interval are given in the text.

Table 1. Scaling Exponents α of Power Laws ∝ ϕ−α, ϕ0
−α, or

ϕ1
−α, Fitted to the Various Correlation Lengths, for

Networks with Different Chain Lengths N Connecting
Adjacent Star Centersa

sample type N ξall ξ ξsol
periodic 23 1.46(3) 0.94(3) 0.77(5)
ϕ0 43 1.31(3) 0.93(3) 0.90(5)

82 1.19(3) 0.92(3) 0.85(3)
as prepared 23 1.59(4) 1.01(2)
ϕ0 43 1.30(2) 0.96(3)

82 1.16(1) 0.90(3)
as prepared 23 1.97(5) 1.35(4)
ϕ1 43 1.41(4) 1.22(4)

82 1.29(5) 1.08(2)
swollen 23 1.8(2) 1.52(5)
Φ 43 1.56(7) 1.29(2)

82 1.3(1) 1.23(4)
aThe “periodic” samples were simulated using periodic boundary
conditions; all other samples were run in a box with solid walls. For
ξsol and ξall, the analysis was performed using Iall(q) of either the star
polymer solutions or of the networks, at preparation conditions at ϕ0
or ϕ1. In swelling equilibrium, this analysis was performed with IF(q)
+ IDB(q). For determining ξ, the static contribution, Istat(q), was
subtracted from the total signal to provide access to the dynamic
contribution, Idyn(q), following the procedure described in the text.
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conclude that ξ0 as determined from Idyn provides the correct
estimate of the solution-like correlation length inside the
sample, as opposed to ξall determined from the entire
scattering intensity, even though the full scattering signal at
preparation conditions Iall in Figure 2 appears to be well
approximated by IF.
For the static correlation length Ξ related to the

heterogeneous time average density, at preparation conditions,
we find that all data are slightly curved as a function of ϕ1 and
that they do not follow a single scaling law. Therefore, we have
not attempted to determine an apparent exponent α. Slices
through the corresponding time average density profiles of the
networks are shown in the bottom right part of Figures S2, S4,
and S6 for the preparation conditions at ϕ*, 2ϕ*, and 4ϕ*,
respectively. For the lowest concentration, these density
profiles follow essentially the positions of the star centers.
For larger concentrations, the high density around the star
centers becomes less visible as the average ϕ increases. We
return to this point in Section 5 when discussing the physics
behind the correlation length Ξ in more detail.
Finally, we have also analyzed the scaling relations based

upon the effective ϕ1 in aperiodic samples, which is required to
correctly test scaling relations between the as-prepared state
and swelling equilibrium, see ref 25 for more details. The role
of ϕ1 is to compensate for the impact of boundary effects on
the effective size of the sample by virtually cutting off all parts
in the periphery of the system falling significantly below the
effective density in the middle. For computing the scattering
data, we have avoided such cuts as sharp boundaries produce
strong additional scattering signals (the following subsection
provides an example for this effect). This discrepancy and the
systematic shift of ϕ1 with respect to ϕ0 lead to slightly
enhanced exponents α for the preparation state. We expect a
similar enhancement for the swelling equilibrium that cancels
out (similar to the analysis of the preceding work25) when
relating the polymer volume fraction ϕ at swelling equilibrium
with the ϕ0 in the preparation state.

4.2. Scattering Data at Swelling Equilibrium. In
aperiodic networks prepared in a box size of L = 512u and
swollen to equilibrium in a larger box L = 800u, the presence of
a fuzzy sample surface further complicates the data analysis.
Now, the static part of the scattering intensity Istat(q) has to
account both for the inhomogeneous density inside the sample
and for a surface term arising from the shape of the finite
network sample. As the shape of each swollen polymer sample
corresponds to a somewhat irregular rounded cube, compare
Figures S3, S5, and S7, an overall form factor cannot easily be
parametrized, so that an approximation like a HS according to
eq 16 comes to its limits. For simplicity, we approach the
surface term by the Debye−Bueche function according to eq
18, and we consider it as a second contribution to the static
scattering intensity

I q I q I q( ) ( ) ( )stat G DB= + (23)

Following the same strategy as in Section 4.1, we first fit IF(q)
from eq 11 to the dynamic part of scattering, Idyn(q), again
with an amplitude determined in the range 0.01/u ≤ q ≤ 0.05/
u and a correlation length in the range 0.6/u ≤ q ≤ 1/u, and in
a second step, we assign IG(q) + IDB(q) + IF(q)/X with X =
100 to Istat(q). An example for the data at swelling equilibrium
(sample prepared at ϕ0 = 2ϕ*) is given in Figure 5. Residual
deviations arising from the star hump contributing to Idyn(q)
occur in the region 0.1/u ≤ q ≤ 0.25/u, but they are

significantly reduced with respect to the same sample at
preparation. As expected, at large wave vectors, the static
scattering intensity Istat(q) follows the same shape as Iall(q) or
Idyn(q), scaled down by a factor 1/X. For a small q, the surface
term IDB(q) dominates, but over an intermediate range 0.06/u
< q < 0.25/u, frozen density inhomogeneities with their
Gaussian shape IG(q) exceed the surface term. Hence, the bulk
part of the static intensity Istat(q) according to IG(q) + IF(q)/X
and the bulk part of the total intensity Iall(q) following IG(q) +
IF(q) can clearly be discerned, revealing that toward q → 0,
contributions to Iall(q) arising from static disorder para-
metrized as IG(q) are only slightly smaller than the dynamic
part fitted with IF(q).
Figure 6 presents scattering data from samples swollen to

equilibrium, over a broad range of polymer volume fractions at
preparation. For all data, the same analysis was performed,
allowing us to split the data into contributions IG(q), IDB(q),
and IF(q). The model functions provide a good description of
the simulation data. In particular, at small polymer volume
fractions ϕ0 ≤ ϕ*, around q = 0.15/u, the hump in the star
form factor results in clearly visible residual deviations between
model functions and simulation data. On average, the ratio

Figure 5. Scattering data from a network with N = 43, prepared at ϕ0
= 2ϕ* in a box of L = 512u and swollen to equilibrium in a larger box
L = 800u. The total scattering intensity Iall(q) (black dots) is split into
the static part Istat(q) (red dots) and the dynamic part Idyn(q) (green
dots). Lines visualize fit functions: fit of Idyn(q) for q < 1/u excluding
the region of the star hump with IF(q) (cyan dashed-dotted); fit of
Istat(q) over the range q < 1/u with IG(q) + IDB(q) + IF(q)/X (gray
solid), IG(q) (magenta dashed), IDB(q) (red dotted), and IF(q)/X
(red dashed-dotted). The blue curve shows the sum of model
functions excluding the surface term, i.e., IG(q) + IF(q). The curve
superimposed to Iall(q) (gray) shows the sum of the model functions,
IG(q) + IDB(q) + IF(q). Averages are calculated over X = 100 frames.
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IG(q)/IF(q) extrapolated toward q → 0 is slightly below unity,
with little variations from sample to sample (see the following
sections for more details).
In Figure 7, we show representative fit results for the

correlation lengths of the swollen networks after splitting the
data into a dynamic and a static contribution. These data are
compared with an analysis of Iall(q) using a sum of eqs 11 and
18, with parameters of the surface term IDB(q) determined in a
fit of the static part Istat(q). Power law fits of the correlation
lengths as a function of polymer volume fraction might exclude
the data at the largest or lowest volume fraction, respectively, if
deviating from the trend of all other data, see Table S1 for
further details. With this restriction, the data for ξ and ξall are
well reproduced by a single power law. The results of all power
law fits are summarized in Table 1. Similar to the preparation
state, we observe that all estimates for ξall significantly exceed
the results for ξ after splitting the data into a static and a
dynamic contribution. Moreover, all exponents for fitting the
ξall data exceed the corresponding estimates for ξ in Table 1,
whereby the latter are clearly closer to the theoretical
prediction for polymer solutions.
The correlation lengths ξ of the networks at swelling

equilibrium and at preparation conditions fall on top of each
other for networks with the same N, if these are analyzed at the
same polymer volume fraction, see Figure 8. This coincidence

encodes the fact that ξ is a unique function of the polymer
volume fraction, supporting the fact that our approach provides
a reliable analysis of the scattering data. Differences between
sets of data with different N are systematic and must result
from the different cross-link concentration in the samples. A
larger cross-link concentration leads to a larger contribution of
the star hump for smaller N at the same ϕ. This enlarges the
apparent ξ for smaller N. This is exactly what is observed in
Figure 8 for low ϕ. As mentioned above, this effect plays no
role for the largest ϕ as the star hump is then located at a too
low q to interfere with a determination of ξ.
In comparison with ξall, we conclude that the correlation

length ξ provides a correct analysis of the solution-like
correlation length inside the network, however under the
constraint that the impact of the star hump on the
determination of ξ has to be minimized by the procedure
applied in our data analysis. The fact that the entire scattering

Figure 6. Scattering data from star networks prepared in a box L =
512u and swollen to equilibrium in a box L = 800u, denoted according
to the polymer volume fraction ϕ0 at preparation: scattering intensity
Iall(q) (colored dots), dynamic part of scattering intensity Idyn(q)
(colored open squares), total model curve IG(q) + IDB(q) + IF(q)
(gray dashed), fit to Idyn(q) with IF(q) (colored dashed-dotted), and
model curves without surface term IG(q) + IF(q) (solid lines), where
IG(q) was derived from fitting the static intensity Istat(q) with the
model function IG(q) + IDB(q) + IF(q)/X as shown in Figure 5 for ϕ0
= 2ϕ*.

Figure 7. Correlation lengths in units of u, for N = 43. The correlation
length ξ (green) is derived from the dynamic part of the scattering
intensity Idyn(q); the correlation length ξall (red) is obtained from the
total scattering intensity Iall(q). The static correlation length Ξ derived
from Istat(q) (blue) is included for completeness. The exponents
obtained from power law fits ∝ ϕ−α are summarized in Table 1.

Figure 8. Comparison of the correlation length ξ at swelling
equilibrium (open symbols) and under preparation conditions (closed
symbols). The solid line visualizes the expected scaling relation ξsol ∝
ϕ−ν/(3ν−1) ∝ ϕ−α for a polymer in a good solvent, with α ≈ 0.77.
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intensity Iall(q) can be interpolated smoothly with a single
fractal model function based upon a correlation length ξall is
not a sufficient indication for the absence of static
contributions to the scattering intensity. Since Ξ is described
by a different model function, see eq 20, this can lead to an
interpretation of the scattering data through a single
correlation length ξall, significantly exceeding even the true
static correlation length Ξ at a low polymer volume fraction,
see Figures 4 and 7. Hence, a quantitative discussion of the gels
based upon ξall is likely to produce inconsistent results.
Therefore, we omit a broader comparison with preceding
experimental data based upon ξall, and we recommend to split
the data into a “static” and a “dynamic” contribution, providing
Ξ and ξ, respectively.

5. WHAT IS THE ORIGIN OF THE STATIC
CORRELATION LENGTH?

The bottom right part of Figures S2−S7 of the Supporting
Information shows the time average density of the networks
carrying all the information about the static correlation length.
According to these figures, the time average density mainly
follows the positions of the star centers at low ϕ, whereas this
effect becomes increasingly invisible for ϕ → 1 as the average
polymer density increases. A larger polymer density around the
star centers leading to a larger central blob was discussed some
time ago for solutions of star polymers.103 At swelling
equilibrium, each correlation volume stores about kT of elastic
energy for balancing the osmotic pressure. Thus, at swelling
equilibrium, the larger blobs around the cross-links can be
considered as being localized within their own diameter, such
that Ξ provides an estimate of the size of these cross-link blobs
(up to a numerical coefficient of order unity). The localization
of the cross-link blobs can be modeled by a harmonic confining
potential, often expressed in the form of ideal virtual chains,
see, e.g., refs 104−106. The shape of the harmonic confining
potential implies a Gaussian density distribution of the cross-
link positions, leading in a first approximation to a Gaussian
contribution to the scattering intensity arising from the cross-
link blobs. This explains the good agreement of the Gaussian
term with the simulated scattering data. The role of cross-link
dynamics was first proposed in ref 101. According to the above
reasoning, dynamics cannot be separated from the scaling of
the size of the cross-link blob at swelling equilibrium as the
blobs are held in space within a distance proportional to their
own size. This condition is not satisfied under preparation
conditions or during deswelling of the networks, allowing for a
fundamental test of the above ideas.
The above idea of the denser cross-link blobs and the split of

the scattering signal into a static and a dynamic component is
illustrated in Figure 9. The landscape shows a slightly
smoothened version of the time average density profile in a
thin slice through the network shown in the sky. The glassy
spheres on top sketch cross-link blobs moving around their
time average positions indicated by the white anchors. Domain
size and displacement have roughly the same size, and both
establish the diameter of a typical mountain, as measured
through the static correlation length Ξ. For the labeled anchor
in the foreground, the displacement is quite large but still
within the blob size shown by the shadow of the blob on the
ground. The effective diameter of a mountain top is a
combination of cross-link blob size and motion, where a partial
superposition of adjacent blobs might play an additional role.

A rough estimate for the size of a larger “cross-link blob” can
be obtained by equating the local monomer volume fraction
around the star center with the total volume fraction ϕ. For
our simulation model, each monomer occupies 8 lattice units,
v0 = 8u3. In the following, we use Na to count the monomers
along the star arms so that the first monomer next to the star
center is Na = 1. Then, we can estimate the polymer volume
fraction around the star center as a function of Na by
considering a spherical volume with a radius reflecting the
average star size up to monomer Na

N
v fN

b N
( )

3 ( 1)
4a
0 a

3
a
3

+
=

(24)

For simplification, we approximate π ≈ 3 and f Na + 1 ≈ f Na,
giving a simplified scaling law for Na

Figure 9. Time average density landscape (bottom) of a thin slice (20
lattice units thick) through a network (snapshot shown on top)
including the denser cross-link blobs (glass spheres) around the cross-
links (large black monomers). The top end of the white cylinders
visualizes the random motion of the cross-links around their time
average position (bottom end), establishing the mountains of the
density landscape. Cross-links and blobs were selected for the plot
according to the position in the snapshot and not according to the
time average position (some may have moved in or out of the slice
temporarily). For better visibility, one anchor in the foreground is
shown in yellow, and the corresponding cross-link blob has a reduced
transparency. The length unit of the density landscape refers to the
length unit of the lattice. Monomer size is reduced by a factor of 2 to
allow a better view into the structure; cross-links are enlarged to
improve visibility. For visualization, the noise of the density landscape
was damped out by averaging over neighboring points within a
distance of 5 lattice units. The slice is taken from the network at 2ϕ*
with N = 43 at equilibrium swelling.
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The size of the cross-link blob (neglecting cross-link motion) is
then estimated through the radius of gyration of a self-avoiding
star with Na segments per arm. In the limit of small f = 4, we
keep the branching coefficient of ideal stars and adapt only the
scaling of the star arms in a first approximation, as proposed in
a preceding work.107 This leads to
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The dependence on polymer volume fraction is ∝ ϕ−0.77 in the
a-thermal limit (ν ≈ 0.5876) and crosses over to ∝ ϕ−1 in the
concentrated regime (ν = 1/2) for theta solvents. For f = 4 and
b ≈ 2.73u at low ϕ, we obtain Ξ ≈ 0.86uϕ−0.77 as a rough
quantitative estimate. In the top part of Figure 10, a fit to the Ξ
data of all swollen samples leads to Ξ ≈ (1.1 ± 0.2)uϕ−0.80±0.03,
in almost quantitative agreement with the expected scaling. To
further corroborate our analysis, in Figure 10, we also include
the root-mean-square distance of the cross-link motion in
space, δR. All data on cross-link dynamics are perfectly aligned
with Ξ, providing a strong argument that the static correlation
length reveals the fluctuating position of the cross-link domains
and that the cross-link motion remains confined to a volume
comparable to the size of the cross-link blob. Remarkably, even
the outliers in both sets of data, Ξ and δR, show the same
trend. A quantitative comparison reveals Ξ ≲ δR, whereas one
might expect roughly Ξ2 ≈ 2δR2, as both blob size and blob
motion should contribute to the apparent Ξ. However, this
simple expectation ignores a possible partial screening of the
visible size and position of the cross-link blob by the
surrounding blobs.
This latter point becomes more apparent at preparation

conditions, where we expect that the contribution of the cross-
link motion to Ξ becomes more prominent. To elucidate this
point, in the bottom part of Figure 10, we compare our results
for Ξ with the root man square distance of the cross-link
motion in space, δR0. We observe that for sufficiently large ϕ >
ϕ*, the cross-link motion runs parallel to the measured
correlation length Ξ, where Ξ remains clearly below the cross-
link motion. Therefore, we conclude that Ξ encodes a
combination of the cross-link motion (as proposed in ref
101) enlarged by the cross-link blob size, whereas the apparent
Ξ is screened in part by the surrounding correlation volumes of
the network. This statement holds at least for the model
networks of the present study, but it will require further tests
for other network architectures.
This hypothesis can be corroborated by analyzing the

scattering intensities in the limit of q → 0, in particular, the
ratio IG(0)/IF(0). At swelling equilibrium and under
preparation conditions of ϕ0 ≈ ϕ*, for our network
architecture, we expect that nearly all monomers are in the
cross-link blobs, and thus, all of them contribute to IG. Because
all monomers have a share in the solution-like scattering
accounting for the form factor in the semidilute solution, at
swelling equilibrium and for preparation at ϕ ≲ ϕ*, we
estimate that

I I(0) (0)G F (27)

For preparation states with ϕ0 > ϕ*, we assume that the
cross-link blobs are dilute and cover only a portion of all
monomers, decreasing as Na ∝ ϕ0

−1/(3ν−1) for increasing ϕ0. If
these denser blobs are smeared out over a larger volume by the
motion of the blob, the correlation length will increase
accordingly, but the time average excess density (as compared
to the time average density of the solution) will be reduced
inversely to the volume change, keeping the excess polymer
content time invariant. Recall that the scattering intensity in
dilute solutions (for the dilute cross-link blobs) is proportional
to the molar mass of the scattering objects and to their
concentration. Therefore, the ratio of the scattering intensities
IG(0) and IF(0) is expected to decay as
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reflecting the concentration-dependent change of the excess
polymer per cross-link blob for all samples prepared at ϕ0 >

Figure 10. Top: static correlation length Ξ as a function of polymer
volume fraction ϕ = 1/Q at swelling equilibrium (filled symbols)
compared with the length δR describing the root-mean-square
displacements of the cross-links (open symbols). The continuous
line is a power law fit to all Ξ data at swelling equilibrium ∝ (1/
Q)−0.80±0.03, the dashed line is a similar fit to the δR data ∝ (1/
Q)−0.80±0.05. Bottom: same analysis as in the top part under
preparation conditions, using the same colors and symbols as above
for the same sets of networks. The continuous line is the fit to the data
at swelling equilibrium taken from the top part. Data for δR and δR0
were taken from Table 1 of ref 25.
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ϕ*. This dependence agrees with other theoretical predictions,
see, e.g., eq 5.43 of ref 108.
Both predictions for swelling equilibrium and preparation

state are tested in Figure 11. The exponent describing the

scaling of the intensity ratio at preparation conditions is close
to the exponent of −1.31 for ν = 0.5876 predicted in eq 28.
This is another indication that the cross-link blobs are the
origin of the excess scattering at preparation conditions.
Moreover, the data at swelling equilibrium are well described
by a constant slightly below unity. Here, ref 108 predicts in eq
5.44 that I I(0)/ (0) ( / ) 1G F 0

5/16* , which is not
supported by our data. With respect to polymer gels of a
different network architecture, our analysis benefits from the
nearly constant amount of network defects, see Figure 2 of ref
25. Increasing weight fractions of network defects will reduce
the above ratios because defects are less localized than network
junctions and do not contribute to IG(0) in a first
approximation. If the volume fraction of the defects develops
a significant dependence on ϕ0, this will result in further
corrections of the observed ratio of IG(0)/IF(0) on top of
additional corrections for swelling equilibrium.109 Altogether,
the static scattering data of model networks at swelling
equilibrium could also provide a quantitative estimate for the
amount of network defects. This hypothesis will be tested in
future work.
Experimental data for end-linked model networks or model

networks based upon a heterocomplementary coupling of star
polymers are not abundant, in particular, when seeking for
scattering data analyzed by a combination of a Gaussian and an
Ornstein−Zernike function or its equivalent for fractal
dimension as in our analysis. Moreover, in order to test the
scaling relations proposed above, a sufficiently broad regime of
ϕ and ϕ0 needs to be covered. We found only two works in the
literature101,110 satisfying most of these conditions. In ref 110,
an average concentration dependence of Ξ ∝ ϕ−0.63 was
reported for equilibrium swelling, in good agreement with the
general trend of our data, see Figure 10. The scattering
intensities scale as IG(0) ∝ ϕ−1.43 and IF(0) ∝ ϕ−0.51,110

providing a scaling of the ratio IG(0)/IF(0) ∝ ϕ−0.92, clearly
weaker than in our samples. The data in ref 110 were obtained
from end-linked model networks, where pending loops are not
suppressed by the network architecture. This decreases the
growth of the static contribution toward smaller ϕ, leading to a
weaker concentration dependence than expected. Figure 3 of
ref 101 reports a much weaker apparent concentration
dependence of Ξ ∝ ϕ−0.12±0.06 for end-linked model networks.
Here, three samples reached rather similar equilibrium degrees
of swelling and a nearly constant intensity ratio varying
between 0.41 and 0.52. We take the lower intensity ratio at
swelling equilibrium as an indication of a larger defect fraction
in the experiments as compared to our model systems. The rest
of the data in Figure 3 of ref 101 refer to the deswelling of the
third sample. The authors of ref 101 expected a concentration
dependence of Ξ ∝ ϕ−1/3 for this process by assuming that the
correlation length shrinks with the sample size upon
deswelling, and they correlated the weaker dependence with
the swelling of chain size in solution. This discussion, however,
is partially misleading, as the average chain size is expected to
shrink ∝ ϕ−1/3 upon deswelling.111 During swelling, the cross-
link motion changes in good approximation like the reference
size97 of the polymer chains in the corresponding polymer
solution ∝ ϕ−(ν−1/2)/(3ν−1) ∝ ϕ−0.11, see also Figure 3 of ref 25.
Thus, the observed scaling during deswelling is another
indication that the cross-link dynamics dominate the apparent
size of Ξ for volume fractions above the swelling equilibrium.
Altogether, preceding observations are in accord with our data,
our discussion, and the model proposed above.

6. DISCUSSION
We have analyzed a large set of scattering data from computer
simulations of star networks by decomposing the scattering
intensity into a time average “static” part and a “dynamic”
component. This decomposition is mandatory to extract a
reliable estimate for the liquid-like correlation length ξ. This
correlation length can carry information about the star hump
in an appropriate range of concentrations around the overlap
polymer volume fraction of the solution of star polymers, ϕ*.93
This leads to a stronger apparent concentration dependence of
the correlation length when analyzed in the standard way based
upon the Ornstein−Zernike function or its fractal general-
ization. As compared to end-linked model systems, the star
polymer solution already carries the star hump correction,
leading to a low excess scattering of a star polymer network
compared to the corresponding star solution. This observation
is supported by experimental data,31,93 but in preceding works,
it has been interpreted in a different manner. For increasing
concentrations clearly above the overlap concentration, the star
hump becomes suppressed by a decreasing ξ so that it
becomes nearly invisible, as also supported by experimental
scattering data.31,33 However, this observation is not
necessarily an indication of a more homogeneous network
structure, because the comparison with the precursor solution
relies on different reference systems when investigating
different network architectures, like, e.g., end-linked model
networks or networks made by a cross-linking copolymeriza-
tion process of stars. If the molecular structure of the reference
system is closer to the final network structure, certainly, a
better agreement between both can be expected.
In the literature, the emergence of a static correlation length

has been associated with a large number of different structural
units or processes. For instance, Ξ was associated with the size

Figure 11. Intensity ratio IG(0)/IF(0) related to the respective
correlation lengths Ξ and ξ under preparation conditions (filled
symbols) and at swelling equilibrium (open symbols). The
continuous line ∝ ϕ1

−1.39 ± 0.05 is a fit to the data with ϕ1N3ν−1 >
0.5 under preparation conditions. The dashed line is a fit with a
constant c = 0.89 ± 0.03 to all data at swelling equilibrium.
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of a network coil in refs 79 and 112 based upon a set of model
equations differing from ours. If such an idea is correct, a
scaling of the static correlation length proportional to the coil
size ∝ ϕ−(ν−1/2)/(3ν−1) ≈ ϕ−0.11 can be anticipated. We observe
such a scaling for the real space data of the network chains,
however, the scaling of the data in Figures 4 and 7 does not
follow this trend.
In other work, cyclic structures in the networks58,113,114 were

suspected to cause the static correlation length. Similar to
network coils, the obvious argument is that the static
correlation length must be related in some form to network
elasticity because the static contribution is absent for the
solutions. Network elasticity emerges through the network
cycles.115 However, the scaling of the size of characteristic
cycles in the network, i.e., the peak of the shortest cycles, varies
only a little for ϕ0 > ϕ*, see, e.g., Figure 3 of ref 116. We have
checked this point explicitly, even though it can be anticipated
from the slow change in the network connectivity as a function
of ϕ, see Figure 2 of ref 25. Altogether, the scaling of the size of
the characteristic loops is not much different from the scaling
of chain size and does not fit to the scaling of Ξ under
preparation conditions.
Another idea to explain the emergence of a static correlation

length Ξ is the formation of more densely linked regions in the
network117,118 (qualitatively similar is the discussion in ref 108
when approaching the cross-link saturation threshold). Our
networks are not close to the cross-link saturation threshold,
and there are no larger densely linked regions in space, except
for some domains with nonreactive groups (see below for
more details). Therefore, our simulation data provide no
conclusions in this direction. However, there are works in the
literature allowing us to sharpen the conditions for the “more
densely linked regions”. Random fluctuations in the cross-link
concentration far from the cross-link saturation threshold seem
to remain insufficient for a qualitatively different picture: the
simulations of ref 58 and experimental data119 show no
significant difference between the scattering data of end-linked
and randomly cross-linked model networks if these have a
comparable degree of swelling, a comparable weight fraction of
network defects, and a comparable average degree of
polymerization of the network strands. This observation is
also supported by theoretical work showing that the molar
mass distribution of network strands does not affect the
phantom modulus.120 One systematic difference is that the
cross-links in the randomly linked sample develop a somewhat
stronger localization,17,120 i.e., a smaller Ξ, roughly compensat-
ing for the increase of the apparent weight-average molar mass
per cross-link because of polydisperse arms.121 Therefore, a
more heterogeneous network than expected from a compar-
ison with near ideal end-linked model networks58,119 or
irradiation cross-linked samples122 is more likely an indication
of mixing issues related to the dispersion of the cross-links if
the cross-link density does not approach the cross-link
saturation threshold.
Mixing problems always occur when more than one

component establishes the network structure. For our perfectly
mixed and stoichiometrically balanced systems, the statistical
positioning of A and B stars creates a local stoichiometric
imbalance freezing during the cross-linking process. Then,
spatial domains of nonreacted arm ends of one particular type
of star can form. This scenario is visualized with our simulation
data in the bottom left of Figures S2−S7 in the Supporting
Information. Here, the time average positions of the non-

reacted groups in a thin slice of the network are superimposed
to a density map, showing which of the two types of stars
dominates the polymer density in a particular region in space.
The overlay demonstrates that larger spatial regions with a
dominance of either type of polymer can cause the formation
of domains accumulating nonreacted groups. The underlying
composition fluctuations are known to dominate the long time
reaction kinetics123 for a stoichiometrically balanced system,
producing similar domains and patterns for end-linked model
networks, see Figure 1 of ref 124. Poor mixing, on the other
hand, may even cause a shift of the expected gel point or a
stronger slowdown of reaction kinetics toward high con-
version,125 which could be tracked by analyzing reaction
kinetics. Remarkably, computer simulations55 and more recent
experiments on stoichiometrically mixed end-linked model
networks44,126 reach conversions p in the range of 98−99%.
For these systems, we expect only a minute effect of the few
missing bonds in the system. For the particular case of our
model systems with p = 0.95, we find an increasing number of
2−4 domains in one direction across the sample with
increasing ϕ, compare Figures S2−S7. In any case, this
would be related to a Ξ of about 100 lattice units or larger. Our
results for Ξ do not reach such length scales. Moreover, the
accessible q range is not large enough to completely exclude
the relevance of these domains. Thus, we can only comment
that statistical mixing could become a possible correction that
will set in on length scales clearly beyond Ξ for our network
architecture. It remains an open problem for future research to
understand the excess scattering resulting from a controlled
degree of imperfection in mixing the network components. If
that can be achieved, scattering data at low q could be used as a
quantitative tool for quality control.
It has been proposed that network defects or topological

inhomogeneities might contribute to excess scattering.36,127

Network defects in the classical sense are characterized by the
property that they are attached to the network only through
one single point.115 Such defects do not contribute to elasticity
because they can freely reorient inside the network. If the
network structure is heterogeneous, producing local polymer
density gradients, defects will orient (on a time average basis)
down the gradient, similar to the orientation of the chains in a
polymer brush.128,129 This latter effect was observed in a
simulation study where networks with a controlled hetero-
geneity were prepared and swollen to equilibrium:125 in the
preparation state, the concentration of the elastically active
material of sample C1 of this study formed a big hole, reaching
zero concentration in the middle. At swelling equilibrium, the
polymer content in the hole was not zero, but instead, it
remained above 50% of the peak polymer content because of
network defects that were oriented toward the hole. In total,
because of network defects, the local density fluctuations of the
network were smaller than the density fluctuations of the
elastic network. This partially contradicts the role attributed to
network defects in the literature, see, e.g., Section 2 of ref 36.
The problematic point in preceding discussions is that often a
regular network is taken as a reference, where single chains are
cut randomly to create defects. Such a situation is never
realized in real networks, and the degree of randomness of the
network will hardly change upon cutting or connecting single
bonds. Nevertheless, we have checked our star networks for
pending arms or other less ideal local structures. These are
shown in the top right part of Figures S2−S7, but we could not
identify a correlation between their location and an increase of
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the time average concentration beyond what can be expected
from the network architecture and connectivity (e.g., pending
arms are still tied to the junction, and they contribute roughly
the same way to the cross-link blobs as nonpending arms). In
fact, the common point of these less ideal structures is that the
corresponding chains are less localized inside the network.
Therefore, these structures are more susceptible for equilibrat-
ing local time average concentration gradients. This, in effect,
reduces existing time average density gradients instead of
creating them.

7. CONCLUSIONS
Our analysis supports the fact that the static correlation length
Ξ is related to a superposition of the root-mean-square
distance a cross-link can move, δR, and the size of the denser
cross-link blob ∝ ξ. At swelling equilibrium, the root-mean-
square displacement of the cross-links locks in at a length ∝ ξ,
leading to Ξ ∝ ξ at swelling equilibrium. For the nearly perfect
networks in the nonentangled limit of our study, the scattering
intensities at swelling equilibrium related to the dynamic
contribution, IF(q), and to the static contribution, IG(q), are
nearly identical in the limit of q → 0. Thus, the network
essentially only consists of cross-link blobs at swelling
equilibrium. While this observation is well supported by our
simulation data for the nonentangled limit, it must not extend
toward the entangled limit or to networks containing a large
volume fraction of defects. At preparation conditions, it
becomes evident that both δR and the cross-link blob size
contribute to Ξ because the scaling of Ξ crosses over from a
dependence close to ∝ ξ (for preparation volume fractions ϕ0
close to the swelling equilibrium) toward a dependence
following mainly δR (in the limit of large ϕ0). The ratio of the
scattering intensities IG/IF for q → 0 decays by a power law
following the polymer fraction that can be associated with the
cross-link blobs. On a quantitative basis, the apparent Ξ is
always lower than δR (under preparation conditions) or
comparable to δR (at swelling equilibrium). Because the size of
the cross-link blob must be contained in Ξ, this indicates that a
part of the true domain size is screened by the surrounding
correlation volumes. Qualitatively, the experimental data
available in literature101,110 are in good agreement with our
observations, as detailed in the preceding sections. Our results
agree in part with the scenario proposed for the limiting case of
low cross-link density (“far away from the cross-link saturation
threshold”) in ref 108. One interesting difference is the
intensity ratio at swelling equilibrium, whereas the expectation
of a pronounced maximum or a shoulder in the fluctuating
intensity at intermediate wave vectors q turns out to
correspond to Benoit’s star hump, reducing to a small shoulder
in the scattering intensity for small f.
Our work provides a new perspective for analyzing scattering

data of polymer networks at least for computer simulations.
We also expect that our results will find application for
analyzing experimental data, as our work identifies a Gaussian
decay as the correct model function to extract the contribution
of the cross-link blobs. For the current work, we have focused
on heterocomplementary coupled model networks made of
star polymers to understand the generic contributions that
must be present in any kind of polymeric network and gel. In
future work, we intend to apply this knowledge along two
different routes of investigations. First, we want to explore
additional possibilities to label parts of a network56,57 to
deepen our understanding of what structural information can

be extracted by scattering experiments. Second, we will step by
step relax the model character of the networks toward more
complex systems based upon vulcanization, cross-linking
copolymerization, etc., for understanding known or expected
differences between these classes of networks.130,131 It is our
hope that we can decode characteristic features of these
network classes for an improved analysis of the network
structure.
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