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On the Swelling of Polymer Network Strands

Michael Lang* and Reinhard Scholz

Large scale computer simulations are employed to analyze the conformations
of network strands in polymer networks at preparation conditions
(characterized by a polymer volume fraction of ϕ0) and when swollen to
equilibrium (characterized by a polymer volume fraction ϕ < ϕ0). Network
strands in end-linked model networks are weakly stretched and partially
swollen at preparation conditions as compared to linear polymers in the same
solvent at ϕ0. Equilibrium swelling causes non-ideal chain conformations
characterized by an effective scaling exponent approaching 7/10 on
intermediate length scales for increasing overlap of the chains. The chain size
in a network consists of a fluctuating and a time average “elastic”
contribution. The elastic contribution swells essentially affinely ∝(ϕ0/ϕ)2/3,
whereas the swelling of the fluctuating part lies between the expected swelling
of the entanglement constraints and the swelling of non-cross-linked chains
in a comparable semi-dilute solution. The total swelling of chain size results
from the changes of both fluctuating and non-fluctuating contributions.

1. Introduction

Polymer networks and gels are frequently used in our every day
life in materials like contact lenses,[1] gelatine,[2] car tyres,[3] or
diapers,[4] to provide just some examples. Despite of this broad
range of applications, we understand only little of how they func-
tion. A modeling of these complex materials starts with a massive
simplification of the problem: instead of considering zillions of
overlapping and entangled molecules glued together randomly
to a chunk of material, we boil down the problem to consider-
ing only a single chain subject to some representative interac-
tions entering at the chain ends (like external deformation or the
connections to the surrounding network) or along the chain con-
tour (like entanglements and interactions with the surrounding
chains).[5] Afterwards, we consider an isotropic ensemble of iden-
tical chains with the hope that this procedure results in reliable
predictions on the macroscopic scale.
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Along this line of arguments, we rely
strongly on assumptions regarding the
properties of the individual chains. Up to
recently, the accepted point of view con-
cerning the equilibrium conformation of
a polymer chain in a network was that
it resembles the chain conformation in
a polymer solution at the same polymer
concentration.[6] This was first challenged
by computer simulations where the time av-
erage size of the network strands was re-
lated to the embedding of these strands into
the surrounding network structure:[7] elas-
tic strands establishing short cyclic struc-
tures in the network turned out to re-
main more compact than those participat-
ing only in large cyclic structures. Fur-
thermore, assembling chains together at
cross-links leads to additional bond–bond
correlations[8,9] which are not screened in a

melt or in a network. The resulting swelling of the chain con-
formations in the network causes additional deviations from the
conformations of linear chains in a polymer solution,[10] renor-
malizing the equilibrium strand size in the network. In effect,
this process may even lead to slightly deswollen average chain
conformations at preparation conditions, although no solvent is
removed from the reaction bath. Moreover, it was proposed that
toward the final stage of e.g., an end-linking process, the chains
must stretch in order to access the remaining reactive sites at the
cross-links.[11] On top of this, loop closure leads to a frustrated
system where adjusting the equilibrium loop size for one loop
may stretch the surrounding chains.[7] Since these corrections
are related to the cross-linking process, we expect a different de-
gree of enlargement of the chain conformations depending both
on the polymer architecture prior to the cross-linking and on the
process of network formation.

Very recently,[12] it was shown by scattering experiments in the
low concentration limit that elastic network strands should be
larger than in solution by 2–23% when considering the impact of
pending loops for end-linked model networks. Such corrections
were not known from older work where networks were prepared
at large overlap numbers: a topology blind average over pending
loops and elastic chains did not show significant changes in the
size of the chains upon cross-linking.[13,14] Such a comparison is
bedeviled by the substantial error of the old data appearing to be
larger than the measurable effect, see Figure 4 of ref. [12]. The
simulation data in the literature remains inconclusive due to vol-
ume changes or when a large capture radius is assumed in the
cross-linking procedure.[15,16] Therefore, to date it is not clear to
which extent the conformations of the network chains comply
with those in a solution at preparation conditions.
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The situation becomes even more complex when the networks
swell to equilibrium. To date, the Flory-Rehner hypothesis[17]

forms the basis of our understanding: the osmotic pressure is
counterbalanced by the elastic “pressure” of the network. In the
language of the blob model, this means that the network must
have as many tension blobs as correlation volumes, since any of
these contributes ≈kT to either modulus or osmotic pressure of
the system.[6,18] However, in several experiments and simulations
on the arrested swelling of entangled globules or the swelling
of networks,[19–21] it was observed that the effective exponent de-
scribing the conformations of the network chains is close to 𝜈

≈ 0.7 or even larger. This challenges the blob picture assum-
ing chain conformations to follow the statistics of non-cross-
linked chains in the corresponding solution. Several attempts
to explain this behavior[19,22,23] used a scaling hypothesis, which
was criticized later.[18] Older work suggested an exponent of 𝜈 ≈

5/8[24] based upon an analogy with diluted percolation clusters
and supported by scattering measurements in agreement with
𝜈 ≈ 2/3. More recently, a cross-over was proposed, interpolat-
ing from excluded volume scaling below blob size to a stretched
linear arrangement of blobs up to the affine length scale of the
deformations.[18] This would lead to a short range scaling R∝N0.6

followed by R∝N that might appear as an intermediate exponent
close to 0.7 or similar on length scales just above the size of a
correlation volume. However, the available data on the swelling
of individual network strands is still quite limited[12–14,21,25–27] and
suffers from the accuracy of the employed methods where rather
small changes in the exponent 𝜈 and the chain size are difficult
to track.

With the present paper, we wish to improve our understand-
ing of single chain conformations in polymer networks at both
preparation conditions and at swelling equilibrium. For this pur-
pose, in Section 2 we analyze the samples of recent simulation
studies[10,28] in more depth. Afterwards, in Section 3 we focus on
the preparation state, and in Section 4 on the swelling equilib-
rium. In the latter section, we show that the chain size at swelling
equilibrium emerges from the combination of an enlarged mo-
bility of the network junctions and a nearly affine swelling of the
non-fluctuating elastic part of the network strands. Throughout
the analysis, these results are put into the context of existing lit-
erature. Finally, we present our conclusions in Section 5.

2. Simulation Data and Analysis

For analyzing the preparation state, we focus on the end-linked
model networks simulated in ref. [10] with the Bond Fluctuation
Model (BFM)[29,30] as these simulations rely on the same synthe-
sis scheme as recent experimental data.[12] These networks cover
a range of polymerization degrees N = 8, 16, 32, 64 and different
junction functionalities (maximum number of strands that are
joined in a junction) f = 3, 4, 6. We analyze the size of the square
internal distances between monomers j and k > j of all chains in
real space. Such a computation relies on all N − s pairs along a
chain with s = k − j, using

R2(s) = 1
Z(N − s)

∑
Z

N−s∑
j=1

(
rj − rj+s

)2
(1)

where rj is the position vector of monomer j, and the first sum
runs over all Z chains. Improved averaging is obtained by con-
sidering five independent replicas of each network. Moreover, we
compute the square end-to-end distance,

R2
e =

1
Z

∑
Z

(
r1 − rN

)2
(2)

and the square radius of gyration,

R2
g =

1
ZN2

∑
Z

N∑
j=1

N∑
k=j

(
rj − rk

)2
(3)

This analysis in real space is complemented by a computation
of the scattering intensity of the individual chains

I(q) = 1
ZN

Z∑
k=1

| N∑
j=1

eiq⋅rj |2 (4)

as a function of the scattering vector q. Here, we choose a scat-
tering amplitude of unity for all N monomers along each chain,
resulting in a normalization I(0) = 1. Moreover, we perform an
istropic averaging of the scattering vectors leading to q → |q| and
present all data as a function of q. Similar to the experiment,[12]

we fit the scattered intensity I(q) to a Debye function for a Gaus-
sian coil,

ID(q) = I(0)
( 2

Y2

)
(exp (−Y) + Y − 1) (5)

with Y = (qRD)2, where RD refers to the radius of gyration as es-
timated from from the Debye function. Additionially, we use the
Guinier approximation

IG(q) = I(0) exp

(
−

q2R2
G

3

)
(6)

to extract the corresponding Guinier estimate for the square ra-
dius of gyration,

R2
G ≅ −3 ln(I(q))∕q2 (7)

from the data with qRG ≲ 1. A comparison of scattering data with
an analysis in real space allows to check for the impact of devi-
ations from perfectly ideal chain conformations and finite N ef-
fects.

In ref. [12], the authors had to estimate the portion of pend-
ing loops in order to extrapolate towards the estimated size of
the chains connecting different junctions and not forming pend-
ing loops. In the simulations, we can determine the elastically
active material (see refs. [31, 32] for a definition), and we restrict
the analysis to all chains that are elastically active. This ensures
that a) no pending loops are considered, b) we analyze only those
chains that contribute to the modulus of the network, and c) all
analyzed chains are connected to network junctions on both ends
for collecting the full effect of the expected changes[10] in confor-
mations. Thus, on top of removing pending loops from the anal-
ysis, we disregard also all other structures that play no role for
network elasticity.
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Figure 1. Normalized square size R2(s)/s of chain sections containing s
segments along the chain contour in the melt, and when end-linking the
melt chains by f = 3, 4, and 6-functional junctions. Two sets of data are
shown for N = 16 (continuous lines) and N = 64 (dashed lines).

For analyzing the swelling process in Section 4, we build on
the series of samples discussed in ref. [28]. These were prepared
from two batches of hetero-complementary coupled star poly-
mers providing network strands containing N = 23, 43, and 82
segments, respectively. For these samples, the coupling scheme
suppresses the formation of pending loops.[33,34] Networks were
prepared from equilibrated star polymer solutions over a large
range of different polymer volume fractions at preparation, ϕ0.
Boundary effects are corrected by replacing the nominal volume
fraction ϕ0 by an effective volume fraction, ϕ1. The set of all 38
available networks taken from our preceding paper is described
in Table 1 of ref. [28]. The conversions of all samples are iden-
tical, p = 0.95, eliminating additional dependencies of p on the
polymer volume fraction ϕ in the samples. For a total number of
M star polymers, this leads to a number of Z = pfM/2 network
chains formed by the bonds connecting pairs of stars. For all of
these chains, we perform the analysis described above. Moreover,
we use the data on the cross-link motion and on the time average
strand size published in our preceding work[28] for a more de-
tailed analysis of the swelling process.

3. Preparation Conditions

As discussed in the introduction, both the polymer architecture
and the assembly process play a role in the enlargement of the
strand size in the networks. Hence, we compare the data of
ref. [12] on end-linked model networks with the simulations
in our recent study[10] on the same class of networks. Chain
conformations in monodisperse polymer melts were taken from
a preceding study.[9] In Figure 1, we analyze the square size of
chain sections, R2(s), containing s segments inside a single net-
work strand of the elastically active material of the networks or
inside a chain in the corresponding melt. As shown in Figure 1,
the network chains are extended with respect to R2(s)∝s and with
respect to the corresponding melt. The extension grows as a
function of s, whereby the difference is most pronounced next to

the chain ends bound to a junction. Here, the additional contacts
to the connected network strands across the network junction
have a major impact.[10] For small s, this effect is averaged out by
considering all chain sections containing s segments, see Equa-
tion (1). For s= 1, the data show the mean square size of a bond in
the simulation model, which is close to seven for the BFM at melt
conditions.[8]

When analyzing chains by scattering techniques, the inter-
nal distances are averaged according to their frequency of occur-
rence. Therefore, the less frequent sections over the full contour
length enter with a lower weight into the average. Thus, only a
part of the total enlargement of the full end-to-end vector of the
network strands is accessible from the scattering data. Moreover,
Figure 1 shows that the chain conformations are significantly
non-ideal as R2(s)/s is not constant. Therefore, it is also instruc-
tive to see how accurately the true strand size can be captured
by the scattering data of the labeled chains when analyzing these
by standard methods like the Debye or the Guinier approxima-
tion. This latter test is performed in the Appendix, showing that
the Debye approximation leads to a more accurate estimate of the
chain size.

In order to evaluate the impact of the cross-linking reaction
on the chain conformations in a similar manner as in the experi-
ment, we compute the single chain scattering function of strands
in networks and in the corresponding melts. We use the Debye
function, Equation (5), to estimate the squared radius of gyration
from the scattering data. In order to reduce the impact of non-
ideal chain conformations on this estimate, we consider only data
with qRD < 1 corresponding to I(q) > 0.736, see the Appendix for
more details. Finally, from the Debye estimates for the radii of gy-
ration of chains in networks and melt, we compute the enlarge-
ment factor

𝛼 =
R2

D,net

R2
D,melt

(8)

as in ref. [12], which is the ratio of the squared radius of gyration
of the network strands, R2

D,net, and the squared radius of gyra-
tion of melt chains, R2

D,melt. Regarding network elasticity, we actu-
ally require 𝛼 as determined from Re. As shown in the Appendix,
there are different coefficients connecting RD and Re when com-
paring chains in melts and chains in networks. Thus, in order
to estimate the impact on the elastic behavior, we alternatively
compute 𝛼 based upon the corresponding ratios of the Re data.

For placing the data for 𝛼 onto the same concentration scale
as in ref. [12], we estimate R2

e ≈ 6R2
D,melt, and we use the con-

centration of chains per volume, c = ϕ/(v0N), where ϕ = 0.5
is the average occupation of monomers on the lattice, v0 = 8u3

the volume of a monomer in unit volumes of the lattice, and N
the degree of polymerization of the chains. For consistency rea-
sons, when calculating cR3

e , we rely either on RD as measured
from the scattering data, or on Re as computed in real space.
The apparent shift between both sets of data along the horizontal
axis in Figure 2 results from systematic corrections of the esti-
mate R2

e ≈ 6R2
D,melt arising from different bond–bond correlation

corrections[8] and from mathematical corrections (of order 1/N)
when computing Rg and Re from a finite set of discrete coordi-
nates, see also Figure A3 and the discussion in the Appendix.
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Figure 2. Enlargement factors according to Equation (8) as computed
from radii of gyration RD derived from scattering data (hollow symbols)
and from an analogue ratio relying on end-to-end vectors (full symbols),
together with SANS data taken from Table 1 of Beech et al.[12] (asterisks:
Debye prestrain data). Error bars of our scattering data refer to the numer-
ical error of the data fit. The statistical error of the data of the present study
(due to the limited number of chain conformations) is below 2‰ and not
indicated in the Figure.

In Figure 2, our scattering analogue estimate of 𝛼 based upon
RD produces data continuing the trend found by Beech et al.[12]

toward larger cR3
e . The comparison between the RD based scatter-

ing data and a direct evaluation of Re indicates that most of the
chain enlargement is missed in scattering experiments. Thus, we
expect that the data of ref. [12] provide only a lower bound for the
true enlargement factor of the end-to-end distances of the chains.
The latter, however, control the limit of very large deformations
and the elasticity of the network. For the limit of cR3

e → ∞, a
convergence of 𝛼 → 1 can be expected,[10] as indicated by the
trend of the data with the largest cR3

e . For networks prepared
from melts as in our simulation study, the limit cR3

e → 1 is
equivalent to N → 1 where the chains loose their ability to stretch
(see also the limit s → 1 in Figure 1). For networks prepared
from long chains at low concentrations around cR3

e ≈ 1, this re-
striction does not hold, as evident from the experimental data of
ref. [12].

It is important to emphasize that the total chain enlargement,
𝛼, consists of a swelling and a stretching contribution as dis-
cussed in ref. [10]. The swelling contribution arises from ad-
ditional bond–bond correlations across the network junctions.
These affect mainly the conformations near the chain ends and
lead in first approximation to a renormalization of the chain size.
The stretching contribution causes a further enlargement of the
chain size with respect to this reference size. Only the stretch-
ing contribution leads to an enlargement of the shear modulus.
Therefore, our Re data serve as an upper bound of the true im-
pact on the elasticity of the networks, and more accurate pre-
dictions for the reference chain size are required. In this re-
spect, Figure S2 (Supporting Information) of ref. [10] is useful,
as it allows for a rough estimate of the contributions of swelling
and stretching to R2

e . According to this Figure, swelling becomes
more relevant for smaller N and larger f, suppressing in part the
stretching contribution of the enlarged chain size.

Figure 3. Square size R2(s) of internal chain sections containing s seg-
ments for the N = 82 samples of Figure 4 and one additional data set
for N = 43 at 1/Q = 0.065 (black dashed line). The black dashed line at
the bottom refers to the melt limit at ϕ = 0.5 (Equation (10) of ref. [8]).
The continuous black lines show power law fits to the increase of R2(s) at
preparation conditions (ϕ1 = 0.029, 𝜈 = 0.594 ± 0.001 around s = 45) and
to the steepest increase at swelling equilibrium (1/Q = 0.064, 𝜈 = 0.694 ±
0.001 around s = 17).

4. Swelling Equilibrium

As summarized in the introduction, to date the swelling process
of individual network strands is still not fully understood. Several
competing concepts have been proposed, leading to similar pre-
dictions. Moreover, the limited accuracy of the available scatter-
ing data in literature does not allow for a clear distinction between
the model predictions. In order to shed more light into this prob-
lem, we computed R2(s) for all star networks of our recent study,
and in Figure 3, we present data for the largest chain length be-
tween connected star centers, N = 82, at three effective polymer
volume fractions at preparation, ϕ1, see ref. [28] for more details.
The data in Figure 3 refer to the largest polymer volume fraction
of this series of samples (ϕ1 = 0.377), a sample close to the overlap
volume fraction of the star polymers (ϕ1 = 0.029), and one data
set at an intermediate ϕ1, indicating the transition between these
limits. The data at the highest ϕ1 largely follow the reference for
the melt limit at ϕ = 0.5.[8] A substantial deviation occurs around
s = 1, since the root mean square bond length b = R(1) changes
significantly for large ϕ, whereas in Figure 3, it becomes merely
constant for the lower ϕ1 at preparation and ϕ = 1/Q in swelling
equilibrium, see also Figure 3 of ref. [35]. Changes toward s → N
are related to modified chain conformations, undergoing a transi-
tion from the concentrated regime towards the semi-dilute limit
in the preparation state. At the largest polymer volume fraction
(ϕ1 = 0.377), the large s behavior approaches a constant, indicat-
ing random walk statistics for large s. In contrast, the data close
to overlap volume fraction (ϕ1 = 0.029) fits better to a power law
growth R(s)∝s𝜈 , with 𝜈 = 0.594 ± 0.001 for s ⩾ 10, not far from
the expected value 𝜈 ≈ 0.587597(7).[36]

Samples at a polymer volume fraction of ϕ = 1/Q refer to net-
works at swelling equilibrium, as indicated by the equilibrium
degree of swelling, Q. For these samples, we see a cross-over
from the good solvent limit with 𝜈 ≈ 0.62 at low polymer volume
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Figure 4. Single chain form factors in star networks with N = 82 and dif-
ferent effective ϕ1 at preparation conditions (continuous lines) or ϕ = 1/Q
at swelling equilibrium (dashed lines). The same color is used for data of
the same networks at preparation and swelling equilibrium, see ref. [28]
for more details on the samples.

fraction (1/Q = 0.021) toward an exponent 𝜈 = 0.694 ± 0.001 at
the highest polymer volume fraction (1/Q = 0.064) for the N =
82 data with the steepest increase in R(s). This latter exponent
reproduces the result 𝜈 ≈ 0.7 of the arrested swelling of single
chain globules.[19,20] We do not observe an explicit scaling R∝N
as proposed in ref. [21]. It appears that the effective scaling is
solely a function of ϕ at swelling equilibrium, since networks
made of shorter chains locking in at the same Q develop sim-
ilar chain conformations at intermediate s, see Figure 3 for an
example (the uppermost two sets of data). The transition point
from swollen conformations at small s to more extended confor-
mations at intermediate s shifts toward larger s for decreasing
ϕ = 1/Q at swelling equilibrium, in qualitative agreement with
the expected growth of the blob size (compare e.g., data at 1/Q
= 0.04 and 1/Q = 0.064). In ref. [22], it was hypothesized that
the appearance of such a transition indicates the possiblity of a
local strand separation upon swelling, which would lead to the ap-
pearance of the two scaling regimes proposed by Panyukov and
Rubinstein.[18] Our data are in agreement with this picture, once
a sufficiently large volume change from the preparation state oc-
curs.

In Figure 4, we present the single chain form factors for the
samples of Figure 3 with the largest N. These form factors qual-
itatively reproduce the behavior observed in real space: near the
overlap threshold, there is almost no change between equilib-
rium swelling and preparation conditions, whereas preparation
at larger overlap of the polymers leads to an increased deforma-
tion of the chains upon swelling. For a rough quantitative ori-
entation, one can consider that a chain section of s monomers
produces roughly a scattering intensity of s/N for the normalized
data in Figure 4. We use this estimate to analyze sections of the
scattering function complying with a specific range of s analyzed
in real space. One should also note that scattering data at a cer-
tain q arise from real space data over a significant range of s, with
an average size on the corresponding length scale. Vice versa,
length information for a particular s is smeared out over a broad

Figure 5. Swelling of individual chains, (R/R0)3, normalized by the volume
change upon swelling from the preparation state, ϕ1Q. Data taken from
ref. [28]. The black continuous line is the phantom model prediction, Equa-
tion (10), for f = 4. The black dashed line is the model prediction for all
N considering only enlarged cross-link fluctuations due to swelling but no
entanglement contributions. The colored lines are the model predictions
for entangled chains, Equation (16), using the parameters of preceding
work.[28]

range of wavevectors. Moreover, the cross-over from I(q) ≈ 1 at
small q toward I(q)∝q1/𝜈 impacts significantly the data for I(q) ≳

0.2. Therefore, we restrict the analysis of the asymptotic exponent
1/𝜈 of the data in Figure 4 to the intensity range 0.02 < I(q) < 0.2.

From the scattering data for the sample with 1/Q = 0.064, we
obtain an exponent of 𝜈 ≈ 0.655 ± 0.002 from a power law fit,
I(q)∝q1/𝜈 , about 6% below the steepest slope of 𝜈 = 0.694 ± 0.001
derived from the real space extension R(s), indicating that the
scattering intensity arises from a broader range of chain stretches
s with a somewhat smaller exponent governing the dependence
of R(s). For a polymer volume fraction at preparation of ϕ1 = 0.029
close to overlap conditions, our analysis of the scattering data pro-
duces 𝜈 ≈ 0.602 ± 0.001, that turns into an apparent 𝜈 ≈ 0.608 ±
0.001 at swelling equilibrium, again somewhat below the steepest
region of the real space data. Altogether, the true steepest increase
of R(s) at swelling equilibrium is systematically underestimated
by an analysis of the scattering data due to the different sampling
of the data in real and reciprocal space. Finally, we have to men-
tion that an Ornstein Zernike function generalized to a fractal
dimension 1/𝜈[37] fitted to the same range of I(q) does not pro-
duce a more accurate estimate of 𝜈 than the simple power law fit
employed above.

As compared to the change of volume upon swelling, ϕ0Q,
the swelling of individual chains is less than predicted by the
affine model, (R3∕R3

0)∕(𝜙0Q) = 1, once significant swelling sets
in, see Figure 5. Note that we used the effective polymer volume
fraction at preparation conditions ϕ1 (replacing ϕ0, see ref. [28]
for details) for the Figure in order to remove boundary effects.
A sub-affine deformation of network strands was observed first
in ref. [38] and corroborated by a study on labeled paths in ran-
domly cross-linked networks.[39] In both cases, only a part of the
samples showed agreement with estimates[40] based upon the
phantom model similar to Figure 5. In general, only the time
average extension of the network strands deforms affinely,[41–43]
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which holds in a reasonable approximation for our model net-
works, see Figure 1 of ref. [28]. This point was missed in sev-
eral studies,[44–46] causing some confusion about the degree of
affinity of the swelling process. NMR data referring to time aver-
age extensions also supports an affine swelling process for larger
degrees of swelling.[47,48] Similar to these findings, a constant
level of (R3∕R3

0)∕(𝜙0Q) in Figure 5 indicates an enforced affine
swelling process beyond a threshold swelling, hinting simulta-
neously toward a possible incomplete conformational averaging
of the NMR data as observed in ref. [49] for low solvent content.
The fluctuating part of the strand size is related to the motion
of the cross-links, and thus, it is restricted by all constraints act-
ing on them.[50] Upon swelling, these constraints are partially
released,[28,51] leading to a complex sub-affine change of the ex-
tension of the network strands.

For the limit of small ϕ0Q, we expect a negligible effect of en-
tanglements. Let us assume an ideal network of monodisperse
Gaussian strands connected by f = 4 functional junctions for
which we employ the phantom model[52,53] for a first rough es-
timate. In the phantom model, the square chain size, R2, is split
into a fluctuating and a time average contribution:[7,51,53]

R2 = 2𝛿R2 + ⟨R⟩2 (9)

Since each network chain has a network junction at each end,
the fluctuating contribution is twice the mean square displace-
ment 𝛿R2 of a network junction analyzed in preceding work.
Let us introduce an index “0” to denote the preparation state.
For the ideal network of Gaussian chains, the fluctuating part is
2𝛿R2∕R2 = 2𝛿R2

0∕R2
0 ≈ 2∕f and remains independent of the de-

gree of swelling. For Gaussian chains, the root mean square size
of a Kuhn segment does not change during swelling, b0 = b. The
time average part of the square chain size is ⟨R0⟩2∕R2

0 = (f − 2)∕f
at preparation conditions. Upon swelling, this time average con-
tribution expands affinely, i.e., by a factor of (ϕ0Q)2/3. Thus, we
expect

1
𝜙0Q

R3

R3
0

= 1
𝜙0Q

(
2𝛿R2 + ⟨R⟩2

2𝛿R2
0 + ⟨R0⟩2

)3∕2

(10)

= 1
𝜙0Q

(
2 +

(
f − 2

)(
𝜙0Q

)2∕3

f

)3∕2

at small ϕ0Q ≈ 1. In Figure 5, the respective line for f = 4 demon-
strates that this estimate agrees well with the simulation data at
small ϕ0Q. Recall that the co-complementary coupling of our star
model networks leads to comparatively small changes in the con-
nectivity of the samples within the overlap regime, ϕ > ϕ*, see
Figure 2 of ref. [28]. Other network architectures are more sus-
ceptible to defects as a function of ϕ0, enlarging the fluctuating
part of the chain size. At small ϕ0Q ≳ 1 this may cause a faster
decay than predicted.

For ϕ0Q ≳ 2, the data in Figure 5 increasingly deviate from
the prediction according to Equation (10) toward a more affine
behavior for increasing N. Here, entanglements significantly im-
pact the behavior, and we generalize the above estimate regarding
entangled systems. For simplicity, we discuss only the a-thermal
limit of the simulation data. Generalization toward theta or good

solvents is straightforward, requiring only that all expressions re-
lated to size or fluctuating size are replaced by the corresponding
textbook expressions. We drop corrections arising from a possi-
ble dependence of the Kuhn segment size on polymer volume
fraction. Furthermore, we use the confinement degree of poly-
merization, Nc, to describe the width of the confining tube, see
ref. [54] for more details. In Equation (10) of ref. [28], we derived
an expression for 𝛿R2

0 that was tested with simulation data for N
= 82. Inserting the scaling predictions for the exponents of ϕ0,
this equation can be rearranged into

𝛿R2
0 ≈

b2
0N𝜙

−(2𝜈−1)∕(3𝜈−1)
0

f (f −2)

f −1
+ fN

2Nc
𝜙

(2−2𝜈)∕(3𝜈−1)
0

(11)

here, the first term in the denominator models the confinement
due to the network connectivity acting on the cross-links, the sec-
ond part of the denominator containing Nc describes the entan-
glement contribution to these constraints, while the enumera-
tor is the chain size in the corresponding solution as reference
state. Entanglement constraints are removed by setting Nc = ∞,
allowing for a separation of both contributions. Furthermore, in
Figure 4 of ref. [28], we showed that cross-link mean displace-
ments change upon swelling according to

𝛿R2

𝛿R2
0

∝
(
𝜙0Q

)𝛽
(12)

with 𝛽 = 0.25 ± 0.01.[28,55] The time average contribution to chain
size is estimated from Equation (9) through a fit to the a-thermal
limit of the scaling model[6,56] for the instantaneous size of a poly-
mer in a semi-dilute solution, R0. This provides

⟨R0⟩2 = R2
0 − 2𝛿R2

0 (13)

≈ zb2
0N𝜙

−(2𝜈−1)∕(3𝜈−1)
0 − 2𝛿R2

0

for an excluded volume of v ≈ b3 as in our simulations. In prac-
tice, one can determine R2

0 from single chain scattering in the
preparation state. The data of ref. [28] for the three different N fit
to a coefficient of z = 1.62 ± 0.02. The time-average part of chain
size deforms in an almost perfectly affine fashion upon swelling,

⟨R⟩2

⟨R0⟩2
≈ X

(
𝜙0Q

)2∕3
(14)

as can be seen from the coefficient X ≈ 0.94 that we determined
as a best fit to the N = 82 data of Figure 1 of ref. [28] at high
overlap of the star polymers. Let us use the ratio

Z(𝜙0) =
⟨R0⟩2

2𝛿R2
0

(15)

=
zf
2

(
f − 2
f − 1

+ N
2Nc

𝜙
(2−2𝜈)∕(3𝜈−1)
0

)
− 1

for a compact notation of the model prediction for entangled net-
works:

1
𝜙0Q

R3

R3
0

= 1
𝜙0Q

((
𝜙0Q

)𝛽 + X
(
𝜙0Q

)2∕3
Z(𝜙0)

1 + Z(𝜙0)

)3∕2

(16)
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This expression is tested with the simulation data by using Nc
≈ 19.4 and the effective f ≈ 3.68 provided in ref. [28]. Note that
these parameters were fit to the N = 82 data only, but allowed a
reasonable description of all data at large ϕ0. We apply the same
strategy and fit the effective ϕ1 in Table 1 of ref. [28] for N = 82 as
a function of ϕ1Q to express the theoretical ϕ0 in Equation (15) as
a function of ϕ1Q for the plot. The agreement between the data
in Figure 5 and Equation (16) demonstrates the consistency of
our analysis as no additional fit parameter is needed to approxi-
mate the data. The trend of the simulation data as a function of N
is supported by our derivation above: Z(ϕ0) becomes more con-
centration dependent and larger for increasing N, pushing the
data closer to the affine limit of (R3∕R3

0)∕(𝜙0Q) = 1, which is the
expected asymptotic limit for N → ∞. In Figure 5, the dashed
line according to Equations (15) and (16) in the limit of Nc → ∞

reveals the contribution of the enlarged cross-link fluctuations
upon swelling when comparing with the phantom limit. This
contribution is independent of N for constant f, similar to the
phantom model predictionk, since all dependencies on N can-
cel out once the entanglement contribution is removed. The re-
maining difference to the simulation data shows the effect of the
entanglements. Finally, we have to remark that f ≈ 3.68 refers
to an average over the range of volume fractions fit for the N =
82 data in ref. [28]. A more detailed analysis shows that f decays
weakly as a function of ϕ for the volume fractions of interest. The
corresponding correction for large ϕ1Q is comparable to the size
of the data symbols for our network architecture due to the sup-
pression of pending loops. However, for conventional end-linked
model networks, a more detailed analysis of this point could be-
come necessary.

Equation (16) and the above discussion show that a combina-
tion of NMR and scattering techniques could be used to gain a
deeper insight into the swelling behavior of the network strands.
Time average extensions in the non-affine limit[28] are available
in proton multiple quantum NMR techniques,[57] while instan-
taneous sizes can be measured by scattering, providing access
to the constraints acting on the network junctions, 𝛿R2. How-
ever, obtaining sufficiently accurate data is highly challenging. In
Figure 6, we plot the only available data set in literature where the
size of individual strands was determined in both the preparation
state and at swelling equilibrium.[14,38] The error is quite large,
so that conclusions from the data are difficult. Moreover, the ex-
perimental data seem to drop below the phantom model predic-
tion. The latter is an indication that the true degree of branching,
f, could be significantly below the expected f that was used for
plotting the theoretical lines. Such a reduction could result from
a large portion of pending loops, which are suppressed in our
hetero-complementary coupled model networks[33,34] but not in
the end-linked model networks of refs. [14, 38].

Altogether, the above analysis contributes to our understand-
ing of the chain conformations and the constraints acting on the
network junctions during swelling. Our results demonstrate that
the chain size in networks swollen to equilibrium emerges from
the preparation conditions along two mechanisms: first, the en-
larged mobility of the network junctions allowing for larger fluc-
tuations in chain size, and second, a nearly affine deformation of
the time-average component of the chain extension. A descrip-
tion of the time-average and the fluctuating component of the
conformations of the network strands is the basis to understand

Figure 6. Experimental data of refs. [14, 38] for the subaffine swelling of
network strands. Data points refer to f= 6 (green) and f= 4 (red), and lines
correspond to Equation (10) for f = 6 (green) and f = 4 (red) The molar
mass of the deuterated chains was Mn ≈ 23 kDa (squares), Mn ≈ 10.5
kDa (spheres), Mn ≈ 6.5 kDa (triangles), Mn ≈ 3.1 kDa (triangles upside
down), respectively. The error of the measurement was provided only for
some samples in the second work.[38] A similar accuracy was assumed for
the first measurement[14] to estimate the total error of these data.

the deformation behavior of networks and gels at swelling equi-
librium. Even though our networks were designed for the non-
entangled limit, a significant impact of entanglements is already
visible, see Figure 5. Thus, a modeling of swollen networks and
gels including both contributions from entanglements and the
cross-linked network structure (phantom contribution) appears
to be necessary for understanding the properties at the swelling
equilibrium. A more detailed test of the theory in the entangled
regime has to be postponed until data for a broader range of N
becomes available.

5. Conclusion

In this work, we have used large scale computer simulations
to explore the conformations of network strands in end-linked
model networks and to analyze the swelling of the network
strands in model networks built from star polymers. Our data
on the end-linked model networks corroborate the finding of ref.
[12], claiming that the chain conformations inside a network do
not entirely agree with the reference conformations of the cor-
responding polymer melt prior to cross-linking. Instead, there
are measurable changes in the equilibrium size of the network
strands. These contain stretching and swelling contributions,
where the former control the change in modulus, whereas the lat-
ter dominate the renormalization of the equilibrium strand size
due to the cross-linking process. Hence, the measured enlarge-
ment of the chain size results in an overestimate of the corre-
sponding increase in modulus. This increase is best analyzed in
computer simulations because experimental chain sizes derived
from scattering data reveal only a part of the true chain enlarge-
ment. More precise predictions for estimating the true reference
chain at preparation conditions size are still lacking, which ham-
pers a more detailed analysis of the impact on network modulus
at preparation conditions.

Macromol. Rapid Commun. 2024, 2400025 2400025 (7 of 10) © 2024 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH
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The swelling of chain size is weakly sub-affine, and it is larger
than predicted by the phantom model. This behavior arises from
a partial suppression of the cross-link fluctuations by entangle-
ments in the preparation state and from the subsequent growth
of these fluctuations with the swelling of the samples, in contrast
to the fluctuations of Gaussian chains remaining independent of
the state of strain.

The elastic contribution to the chain size swells nearly affinely.
In combination, this leads to a chain size in the swollen net-
work that lies in between the phantom model prediction and
the affine limit. Predictions for the swollen chain size can be
made after considering the change in the cross-link motion upon
swelling. These latter predictions are relevant for testing and de-
veloping more precise models describing the deformation behav-
ior of swollen networks.

Appendix A
Figure A1shows the swelling of the internal distances along the chain con-
tour, R2

e (s) and the enlargement factors of square chain size, 𝛼, when an-
alyzed from a topology blind average over all chains. We observe a signifi-

Figure A1. “Topology blind” analysis of chain conformations considering
all chains in the system (no distinction between pending chains, pending
loops, or active chains in contrast to the main text). Upper part: same
analysis as in Figure 1 for all chains; lower part: same analysis as in Figure 2
for all chains.

Table A1. Data for the average size of the network strands. RD: fit of the
scattering data I(q) with the Debye function, Equation (5), over interval
qRD < 1 corresponding to I(q) > 0.736; RG: fit of the scattering data with
the Guinier approximation according to Equation (7) over interval qRG <

1 corresponding to I(q) > 0.717. Rg and Re are directly computed from the
coordinates of the chain monomers.

sample RD [u] RG [u] Rg [u] Re [u]

melt, N=8 3.272(2) 3.184(3) 3.247 7.679

f=3, N=8 3.323(1) 3.230(2) 3.552 8.062

f=4, N=8 3.334(1) 3.240(2) 3.579 8.187

f=6, N=8 3.344(1) 3.249(2) 3.619 8.378

melt, N=16 4.836(2) 4.696(5) 4.799 11.61

f=3, N=16 4.906(1) 4.765(3) 5.069 12.22

f=4, N=16 4.927(1) 4.785(3) 5.111 12.43

f=6, N=16 4.944(1) 4.806(3) 5.159 12.72

melt, N=32 7.041(2) 6.845(7) 6.994 17.06

f=3, N=32 7.165(1) 6.960(5) 7.284 17.99

f=4, N=32 7.173(1) 6.967(5) 7.314 18.22

f=6, N=32 7.198(1) 6.989(5) 7.375 18.58

melt, N=64 10.168(2) 9.88(2) 10.111 24.75

f=3, N=64 10.321(1) 10.023(7) 10.418 25.91

f=4, N=64 10.332(1) 10.032(7) 10.447 26.14

f=6, N=64 10.389(1) 10.085(7) 10.531 26.60

Figure A2. Comparison of different estimates for the radius of gyration
from scattering data, RG (hollow symbols) and RD (filled symbols) with
the direct computation of Rg.

cant reduction of chain swelling as compared to the analysis focusing on
the elastically active material alone, see Figures 1 and 2.

In Table A1, we present the estimates of the radius of gyration as ob-
tained by analyzing the scattering functions computed from the coor-
dinates of the network strands. Here, either the Debye function, Equa-
tion (5), was used for a fit over the interval qRD < 1 corresponding to
I(q) > 0.736, or the Guinier approximation according to Equation (7) over
the interval qRG < 1 corresponding to I(q) > 0.717. Moreover, Table A1
also contains the results from a direct computation of the radius of gy-
ration, Rg, or the end-to-end vector, Re, from the coordinates of the chain
monomers. The Guinier fit seems to have a precision better than 0.1%, but
the wrong asymptotics of Equation (6) produces systematic deviations RG
< RD from the Debye fit, similar to the trends of the data reported in pre-
vious work.[12] The comparison of both estimates with the “true” Rg in
Figure A2 shows that RD is closer to the true Rg for all samples of our

Macromol. Rapid Commun. 2024, 2400025 2400025 (8 of 10) © 2024 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH
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Figure A3. Comparison of different estimates for the radius of gyration
from scattering data, RG (hollow symbols) and RD (filled symbols) with
the end-to-end distances measurement in real space, Re.

study. Moreover, both estimates based upon the scattering data lead to a
systematically increasing underestimate for decreasing N and increasing
f. The former is related to 1/N corrections when comparing these different
approaches (scattering vs direct computation) for determining the radius
of gyration. The latter is related to the different statistical weights for large
chain sections in both methods. The 1/N corrections are mainly compen-
sated when estimating Re based upon the scattering data, see Figure A3,
while most of the f-dependent correction survives. In general, we observe
that the Debye function provides the more accurate estimate for Re for all
network data, while only the melt data at small N could be analyzed more
accurately by using the Guinier approximation. Altogether, we conclude
that RD is the more appropriate measure of chain size. This is reflected in
the main text by focusing on the RD data.
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