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We combine computer simulations and scaling arguments to develop a unified view of polymer
entanglement based on the primitive path analysis of the microscopic topological state. Our results
agree with experimentally measured plateau moduli for three different polymer classes over a wide
range of reduced polymer densities: �i� semidilute theta solutions of synthetic polymers, �ii� the
corresponding dense melts above the glass transition or crystallization temperature, and �iii�
solutions of semiflexible �bio�polymers such as F-actin or suspensions of rodlike viruses. Together,
these systems cover the entire range from loosely to tightly entangled polymers. In particular, we
argue that the primitive path analysis renormalizes a loosely to a tightly entangled system and
provide a new explanation of the successful Lin-Noolandi packing conjecture for polymer melts.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2825597�

I. INTRODUCTION

The relation between the complex viscoelastic properties
of polymer liquids and their microscopic structure and dy-
namics is a key issue in materials science and biophysics.1–5

On a microscopic scale, chains can slide past each other, but
their backbones cannot cross; the Brownian motion of these
macromolecules is hence subject to transient topological
constraints,6 an effect which is familiar from the manipula-
tion of knotted strings. In slowing down the chain equilibra-
tion after a deformation, these constraints or entanglements
dominate the viscoelastic behavior of high molecular weight
polymeric liquids. Entanglement effects are universal, i.e.,
one observes the same behavior for polymers with similar
overall chain architecture �linear, ring, branched� indepen-
dently of details of the molecular structure. Modern theories
of polymer dynamics and rheology1,2 describe the universal
aspects of the viscoelastic behavior based on the idea that
molecular entanglements confine individual filaments to a
one-dimensional, diffusive dynamics �reptation� in tubelike
regions in space. Material specific parameters are determined
through comparison with the experiment. Here, we are con-
cerned with the question, if these parameters and related ex-
perimental observables can be inferred from the molecular
structure of polymeric liquids.

How strongly linear polymers entangle with each other
depends on their stiffness and on the contour length density
of the polymer melt or solution.7 The microscopic structure
is best discussed in terms of the Kuhn length lK and the

number density of Kuhn segments �K. The Kuhn length is
defined as the contour length L, where thermal fluctuations
start to bend the chains and mark the crossover from rigid
rod to random coil behavior. In “loosely”8 entangled systems
with �KlK

3 �1, the mean-free chain length between collisions
is larger than the Kuhn length, leading to a random coil
behavior between entanglement points. In contrast, for �KlK

3

�1, filaments are “tightly”8 entangled and exhibit only small
bending fluctuations between entanglement points. As a con-
sequence, the chains in tightly entangled F-actin solutions
and in loosely entangled polyethylene melts behave differ-
ently on the tube scale. The former are essentially stiff and
resist macroscopic shear due to an increase of their bending
energy. The latter are flexible and lose entropy when
stretched locally.

The differences between these two situations become ap-
parent when one considers the relation between the micro-
scopic solution structure and the height of the characteristic
rubberlike plateau in the shear relaxation modulus GN

0 . In
Fig. 1, we show a Graessley-Edwards plot7 of experimentally
measured9–14 dimensionless plateau moduli GN

0 lK
3 /kBT as a

function of the dimensionless number density of Kuhn seg-
ments �KlK

3 . For comparison, the unscaled plateau moduli are
shown in the inset as a function of polymer concentration.
The data we have compiled represent the behavior of several
prototypical classes of entangled polymers: �i� tightly en-
tangled solutions of semiflexible biopolymers such as F-actin
and suspension of fd-phages with �KlK

3 �10, lK�10−6 m, and
GN

0 �10−1 Pa, and �ii� loosely entangled melts of commer-
cially important, synthetic polymers with �KlK

3 �10, lK

�10−9 m, and plateau moduli of the order of GN
0 �106 Pa.a�Electronic mail: uchida@cmpt.phys.tohoku.ac.jp.
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Typical synthetic polymers are sufficiently flexible to be in
the isotropic phase in the melt state with a volume fraction
�=�KlKd2=O�1�. In contrast, tightly entangled chains have
to have a sufficiently small diameter d to fulfill the Onsager
criterion ��lK /d��5 for the isotropic-to-nematic transition.
We note that the crossover between the two regimes in Fig. 1
is located close to the threshold for the isotropic-nematic
transition in dense polymer melts.15 Furthermore, Fig. 1 con-
tains data for �iii� loosely entangled semidilute solutions of
synthetic polymers in the so-called theta solvents. While
these systems are supposed to preserve the chain conforma-
tional statistics from the undiluted melt, the observed re-
duced plateau moduli are larger than those for dense systems
and exhibit a qualitatively different density dependence.

For tightly entangled systems, the relation between the
entanglement density �e and �KlK

3 was determined by
Semenov16 from a geometrical argument: the area swept out
via transverse fluctuations by a filament between two en-
tanglement points is on average traversed by one other fila-
ment serving as an obstacle. In loosely entangled systems, it
is impossible to determine �e by scaling arguments alone.16,23

A promising tool to solve this problem from first principles is
the primitive path analysis �PPA�.12,24–28 Primitive paths
were originally introduced in a thought experiment to deter-
mine the tubes confining individual polymers in an entangled
polymer melt or network. The idea is to identify the random
walklike tube axis with the shortest �“primitive”� paths be-
tween the end points of the original chains into which the
chain contours can be contracted without crossing each
other.29,30 As we have shown,12,24 the numerical implemen-
tation of this idea allows us to make quantitative predictions
of melt viscoelastic properties on the basis of a topological
analysis. Here, we �i� argue that the PPA can be understood
as a way of renormalizing a loosely to a tightly entangled
system, �ii� derive a modified relation between the primitive
path mesh characterizing an entangled polymer liquid and its

macroscopic properties �Sec. II�, �iii� apply the PPA to a
much wider range of loosely and tightly entangled model
polymer structures �Sec. III�, �iv� validate our results by a
comparison to the experimental data displayed in Fig. 1, and
�v� discuss the relation between the characteristic length
scales of the primitive path mesh and the packing length
�Sec. IV�. We conclude with a brief summary in Sec. V.

II. THEORY

The result of the PPA is a mesh of mutually entangled,
piecewise straight primitive paths �see, e.g., Fig. 3 in Ref.
24�. The structure can be characterized by the contour length
Lpp the mesh size �pp=1 /��chainLpp, and the Kuhn length app

of the primitive paths.12,24 Furthermore, it is useful to intro-
duce the average contour length le of the primitive paths
between entanglement points as well as the corresponding
chain contour length Le. On a scaling level, the latter is de-
fined implicitly by the relation

le
2 = �R2��Le,lK� , �1�

where �R2��L , lK� denotes the mean-square spatial distance of
two points separated by a length L along the contour. The
chain and primitive path statistics agree asymptotically,1

limL→��R2�= lKL	appLpp=limLpp→�
�R2�pp so that the Kuhn

length

app

lK
=

1

�le/Le�
�2�

of the primitive paths increases by the inverse of the shrink-
ing factor of the contour length. Similarly the primitive path
mesh size is given by

�pp

lK
=

1

��KlK
3 �1/2�le/Le�1/2 . �3�

In the following, we assume �i� that all information nec-
essary to calculate the plateau modulus of a sample can be
deduced from the primitive path mesh characterizing its mi-
croscopic topological state and �ii� that the primitive path
structure—viscoelastic property relation—is system indepen-
dent, i.e., after carrying out the PPA, it is no longer necessary
to distinguish between different polymer classes. Moreover,
we note that by construction, primitive path meshes resemble
tightly entangled solutions of semiflexible chains and that the
latter are invariant under the PPA.

Regarding the primitive path analysis as a means to
renormalize a loosely to a tightly entangled system, allows
us to adapt two results from the theory of tightly entangled
solutions of semiflexible chains16 to the present situation:

�pp
2 = c�le � �le

3/app�1/2, �4�

GN
0 lK

3

kBT
= cG
 lK

�pp
�2 lK

le
,

=cGc�
2/5��KlK

3 �7/5�le/Le�8/5. �5�

Equation �4� expresses the idea that the area swept out via
transverse fluctuations by a primitive path between two en-
tanglement points is on average traversed by one other primi-

FIG. 1. �Color online� Dimensionless plateau moduli GN
0 lK

3 /kBT as a func-
tion of the dimensionless number density of Kuhn segments �KlK

3 : Experi-
mental data vs scaling predictions. Symbols indicate experimental data for
�i� tightly entangled F-actin �blue �� �Ref. 9� and fd-phage �blue �� �Ref.
10� solutions, �ii� various loosely entangled polydiene, polyolefine, and
polyacrylate melts �green �� �Refs. 11 and 12�, and loosely entangled theta-
solutions of polystyrene �red �� �Ref. 13� and polybutadiene�red �� �Ref.
14�. Lines represent theoretically derived power laws GN

0 	 ��KlK
3 �
 for

tightly �Ref. 16� and loosely �Ref. 22� entangled systems.
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tive path serving as an obstacle. Equation �5� states that the
plateau modulus is proportional to kBT times the density of
entanglement points.

For given chain statistics, it is possible to determine le

self-consistently from Eqs. �1�–�4�. For tightly entangled
systems, our approach reduces by construction to the stan-
dard results for semidilute solutions of semiflexible
chains:16,31 app / lK=1, �pp / lK=1 / ��KlK

3 �1/2, le / lK	1 / ��KlK
3 �2/5,

and GN
0 lK

3 / �kBT�	 ��KlK
3 �7/5. In the opposite limit, we find

app / lK	�pp / lK	1 / ��KlK
3 � and GN

0 lK
3 / �kBT�	 ��KlK

3 �3, i.e., we
have presented a derivation of the Lin-Noolandi
conjecture.19,20 In the general case of solutions, where the
individual polymers exhibit wormlike chain statistics on all
length scales, a reasonable approximation �indicated by solid
lines in all figures� is given by

le

Le
� 
1 +

Le

lK
�−1/2

, �6�

Le

lK
� 
 1

c���KlK
3 ��

2/5
+ 
 1

c���KlK
3 ��

2

. �7�

By inserting Eqs. �6� and �7� into Eqs. �2�, �3�, and �5�, we
thus arrive at a prediction for the dependence of the proper-
ties of the primitive path mesh on the dimensionless Kuhn
length density �KlK

3 of the original polymer melt or solution.
Choosing c�=0.06 and cG=0.6, we find excellent agree-

ment between our theory and the experimental data for
tightly entangled solutions and loosely entangled dense melts
�Fig. 2�. However, the Lin-Noolandi conjecture �and hence
also our ansatz� fail for loosely entangled theta solutions
which seem to be better described by the theory of Colby and
Rubinstein.21,22 An important oversimplification was recently
pointed out by Milner:23 by accounting only for the mean
segment density, one implicitly treats the solvent as provid-
ing a “coating” which increases the effective chain diameter
to d /��. As consequence, one neglects the increased prob-
ability of entanglement formation between closely approach-
ing chain sections.

III. PRIMITIVE PATH ANALYSIS

Are these effects preserved in an explicit primitive path
analysis? To answer this question, we have generated and
analyzed model polymer liquids corresponding to the experi-
mental data: �i� tightly entangled solutions of zero-diameter
wormlike chains �WLCs� with 10��KlK

3 �105, �ii� dense
melts of flexible bead-spring chains with �=O�1� and
1��KlK

3 �40, and �iii� model theta solutions generated by
eliminating a fraction 0.1���0.925 of the chains from
equilibrated32 conformations of dense bead-spring chain
melts.

A. Bead-spring polymer solutions and melts

For the loosely entangled regime, we used the model and
procedure described in Refs. 12 and 24. Monomers are mod-
eled as spheres of diameter � interacting through a purely
repulsive 6-12 Lennard-Jones �LJ� potential, which is short
ranged and purely repulsive. The polymers are formed by
connecting beads via finitely extensible nonlinear elastic
springs. The average bond length is b=0.97�. The parameter
choice ensures that two chains cannot cross each other in
dynamic simulations. Monodisperse polymer melts of
M =80–500 chains of length 50�N�700 at a bead density
of �=0.85�−3 are studied. By introducing a small intrinsic
bond bending potential, lk is varied between 1.82� and
3.34�, for details see Ref. 32. For dense systems, we ex-
tended the data from Ref. 24 by one additional data point for
larger intrinsic bending stiffness close to the isotropic nem-
atic transition. Furthermore, we equilibrated two Kremer-
Grest theta solutions M =200 chains of length N=700 at bead
densities of �=0.25�−3 and �=0.4�−3. In this case, the LJ
cutoff is set to rc=2.5� and simulations are carried out at
kBT=3.0LJ. To obtain a large number of model theta solu-
tions whose intra- and interchain correlations are identical to
those of the dense systems, we randomly eliminate a fraction
0.1���0.925 of the chains from equilibrated32 conforma-
tions of dense bead-spring chain melts with N=7000. The
PPA is implemented into a standard molecular dynamics
code:12,24 Chain ends are fixed in space, intrachain excluded
volume as well as bending interactions are disabled, and
chain contraction is induced by cooling the system toward
T=0.

B. Entangled solutions of zero-diameter WLCs

Data covering the crossover to the tightly entangled
regime were mainly obtained using Monte Carlo techniques.
We have generated and analyzed semidilute solutions of in-
finitely thin wormlike chains with 1��KlK

3 �105. Bending
of the chain was penalized by the Hamiltonian
H /kBT=−�lp /b��i=1

L−1ui ·ui+1, where b denotes the segment
length, lp=� /kBT is the persistence length of the continuum
wormlike chain with the bending modulus �, and ui the unit
vector along the axis of the ith cylinder. Chains of this type
have a Kuhn length of lK

�0� /b=2 / �1+b / lP−coth lP /b�−1 and
can be efficiently generated by simple sampling. In the ab-
sence of interchain correlations for zero chain diameter, fully

FIG. 2. �Color online� Dimensionless plateau moduli GN
0 lK

3 /kBT as a func-
tion of the dimensionless number density of Kuhn segments �KlK

3 : Theory vs
experimental and scaling results as in Fig. 1. The black solid line indicates
the combination of our Eqs. �5� and �6� with c�=0.06 and cG=0.6.
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equilibrated semidilute solutions are obtained by placing N
randomly generated chains into a cubic box of size Lbox

3 with
periodic boundary conditions. As a general rule, the chains
were chosen to be long enough to be multiply entangled and
the linear dimension of the simulation box exceeds the typi-
cal chain extensions. For the PPA, we used a brownian
dynamics/force-biased Monte Carlo simulation code for en-
tangled wormlike chains, which rejects moves leading to
chain crossing. Starting from the solution conformations, the
positions of the chain ends are fixed. Chain contraction is
induced by setting chain stiffness as well as the equilibrium
extension of the segments to zero and reducing the tempera-
ture.

C. Estimating plateau moduli from the PPA

Following again Refs. 12 and 24, we measure mean-
square internal distances �rpp

2 �i− j�� as a function of chemi-
cal distance i− j to determine the Kuhn length app and the
contour length Lpp of the primitive paths.

For flexible polymers, the standard relation between the
plateau modulus and the length scales characterizing the
primitive path mesh is1

GN
0 lK

3

kBT
	 ��KlK

3 �
 lk

app
�2

. �8�

Here, we have instead used Eq. �5� which can be written as

GN
0 lK

3

kBT
= cGc�

2/5��KlK
3 �7/5
 lk

app
�8/5

. �9�

Equations �8� and �9� are equivalent, if app / lK	�pp / lK

	1 / ��KlK
3 �, i.e., for the dense, loosely entangled melts where

Eq. �8� was used in Ref. PPA. However, Eq. �8� clearly fails
in the tightly entangled regime and we also found less good
agreement with experimental data for estimates of plateau
moduli for theta solutions �data not shown�.

IV. RESULTS AND DISCUSSION

In Fig. 3, we show our PPA results for the plateau
moduli in comparison with the experimental data. The PPA
identifies the location of the crossovers from the theta solu-
tion to the dense melts and from the loosely to the tightly
entangled regime with no adjustable parameters. In particu-
lar, we obtain quantitative agreement with the experimen-
tally measured moduli by adjusting a single parameter �equal
to cGc�

2/5=0.2� for the strength of the elastic response. Before
we take a closer look at the results for loosely entangled
theta solutions, we discuss the microscopic length scales
characterizing the primitive path mesh.

In Fig. 4, we show the Kuhn lengths app and mesh sizes
�pp which we extracted for the various model systems. As for
the predicted moduli, the results for tightly entangled WLC
solutions and for dense melts of flexible bead-spring chains
are in excellent agreement with our theoretical results. Note
that there are no adjustable parameters in addition to the
values of c�=0.06 and cG=0.6 derived from the above ex-
perimentally measured plateau moduli.

Interestingly, the primitive path �PP� mesh size �pp is
essentially given by the packing length p. This length scale
was introduced33 as the characteristic spatial distance where
different polymers start to interpenetrate, i.e., the length scale

FIG. 3. �Color online� Dimensionless plateau moduli GN
0 lK

3 /kBT as a func-
tion of the dimensionless number density of Kuhn segments �KlK

3 : PPA vs
experimental and scaling results as in Fig. 1. Additional symbols indicate
PPA results for �i� tightly entangled, zero-diameter wormlike chains �blue
��, �ii� Kremer-Grest melts and theta solutions �red and green filled sym-
bols� for bead-spring polymers with intrinsic stiffness ���������.
Furthermore, we have included PPA results for model theta solutions �open
red symbols� created by eliminating chains from the corresponding melts.

FIG. 4. �Color online� Kuhn length app / lK and mesh size �pp / lK for the
primitive path mesh as a function of the dimensionless number density of
Kuhn segments �KlK

3 . The solid lines indicate the combination of Eq. �6�
with Eqs. �2� and �3�, respectively, with c�=0.06 and cG=0.6. The dashed
line represents the packing length Eq. �12�. Symbols indicate PPA results for
zero-diameter wormlike chains �blue�, dense bead-spring melts �green�, and
model theta solutions �red�.
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where the intra- and interchain monomer pair correlation
functions coincide: gintra�p�	ginter�p�. In the systems we in-
vestigate that interchain correlations are small, so that we use
ginter�p�	1 or �L�p , lK� /�p	 p2�KlK to calculate the packing
length. Using

�R2��L,lK� � L2/�1 + L/lK� , �10�

L�r,lK� � r�1 + r/lK� , �11�

the result is

p

lK
�

1 + �1 + ��KlK
3 �

��KlK
3 �

. �12�

The limiting cases are again simple to understand. For p
� lK, the chain contour length L contained in a volume p3 is
much longer than the Kuhn length lK. The chains follow a
random walk statistics with �R2�= lKL. In this case, the pack-
ing length is given by p= ��chain�R2��−1,33 and with p / lK

	app / lK	�pp / lK	1 / ��KlK
3 �, the packing length turns out to

be the only relevant length scale in loosely entangled
systems.11,24 In the opposite limit, when p� lK, the single
chain statistics corresponds to a rigid rod with �R2�=L2. In
this case, p= ��chain�R2�1/2�−1/2=1 / ��KlK�1/2, i.e., p is identical
to the mesh size of the solution as well as the primitive path
mesh. In contrast to the previous case, the Kuhn length
app= lK of both chains and primitive paths remains as a sec-
ond, independent length scale.

As a last point, we come back to the case of loosely
entangled �model� theta solutions. Both experimental and
PPA results for plateau moduli show clear deviations from
our theory �respectively the packing conjecture�
GN

0 lK
3 / �kBT�	 ��KlK

3 �3 and the corresponding extrapolation of
the behavior of loosely entangled dense melts �Fig. 3�. Quali-
tatively, sufficiently dilute systems behave in accordance
with a power law GN

0 lK
3 / �kBT�	 ��KlK

3 �
, where the exponent

 is in the range of the predictions22 of the binary contact
model �
=2� �Refs. 17 and 18� and the Colby-Rubinstein
model �
=7 /3�.21,23 However, for the relatively dense model
theta solutions which we analyzed using the PPA, we see no
evidence for immediate departures from the packing line of
the form GN

0 ���=GN
0 ��=1��
, i.e., for a family of curves

with identical slope but different prefactors essentially deter-
mined by the plateau moduli of the undiluted melt. Rather,
data obtained for model theta solutions map fairly well onto
each other and continue to map onto the melt results as long
as �KlK

3 �1. Deviations only occur for lower concentrations.
The comparison can be extended to the length scales

characterizing the primitive path meshes. Inserting the pre-
dictions for Ne	Le / lK of the binary contact and the Colby-
Rubinstein model into Eqs. �2� and �3� �which follow di-
rectly from the definitions and hold independently of the
applicability of the Semenov theory to the primitive path
mesh� yields app / lK	 ��KlK

3 �−1/2, �pp / lK	 ��KlK
3 �−3/4 and

app / lK	 ��KlK
3 �−2/3, �pp / lK	 ��KlK

3 �−5/6, respectively. In par-
ticular, one obtains for the ratio app /�pp	 ��KlK

3 �1/4 and
app /�pp	 ��KlK

3 �1/6, respectively. Thus, in the limit in question
where ��KlK

3 � can become arbitrarily small, these models pre-
dict that the area app

2 mapped out by two subsequent Kuhn

segments of a primitive path is on average traversed by less
than one other primitive path which could serve as an ob-
stacle. The results of the actual PPA shown in Fig. 4 allow no
definite conclusion. Naive extrapolation would indeed lead
to app��pp in the limit ��KlK

3 �→0. However, we note that we
have never observed this inversion. Interestingly, the devia-
tions from our theory occur once p exceeds lK and the results
of the explicit PPA for theta-solutions are compatible with a
crossover to a pure packing scenario with p / lK=app / lK

=�pp / lK	1 / ��KlK
3 �, where the PP directions before and after

an entanglement point become completely uncorrelated.

V. SUMMARY AND CONCLUSION

There is a wide spectrum of entangled polymer liquids
whose single chain structure is characterized by a single mi-
croscopic length scale, the Kuhn, or persistence length. Our
starting point was a compilation of experimentally measured
plateau moduli for semidilute theta solutions of synthetic
polymers, the corresponding dense melts above the glass
transition or crystallization temperature, and solutions of
semiflexible �bio�polymers such as F-actin or suspensions of
rodlike viruses. Together, these systems cover the entire
range from loosely to tightly entangled polymers. In this ar-
ticle, we have demonstrated excellent agreement between the
experimentally measured plateau moduli and our results de-
rived from a primitive path analysis24 of corresponding
model polymer liquids. This is a strong evidence supporting
our working hypothesis that the PPA may be regarded as a
tool to renormalize a loosely to a tightly entangled system:
while the relation between the microscopic structure and the
viscoelastic properties is different for the three classes of
entangled polymer liquids included in the present study,
these differences vanish in the course of the PPA. In particu-
lar, experimental properties can be calculated by applying
relations for tightly entangled systems to the primitive path
mesh independently of the character of the original system
�note that Eq. �5� for the plateau modulus reduces to the
standard expression1 Eq. �8� in the case of loosely entangled
melts; however, the latter fails in the tightly entangled
regime�. This ansatz provided a new explanation of the
Lin-Noolandi packing conjecture19,20 and allowed us to de-
rive simple analytical expressions for macroscopic �Fig. 1�
and microscopic �Fig. 4� entanglement properties which are
in excellent agreement with the experimental and simulation
data over a wide range of reduced polymer densities. Future
work has to show whether the Colby and Rubinstein
scaling21 in theta solutions is a cross over effect or valid
asymptotically and whether it is possible to account for den-
sity fluctuations by combining the arguments and methods
presented in this paper with the scaling analysis of loosely
entangled solutions presented in Ref. 23. Judging from the
available experimental and PPA results, this might be neces-
sary to “disentangle” the influence of the various crossovers
in the experimentally relevant parameter range.
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