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ABSTRACT: Off-lattice Monte Carlo simulations on semiflexible polymer chains with and without
excluded volume interactions have been performed. The model used in the simulations is a discrete
representation of the worm-like chain model of Kratky and Porod applied in the pseudocontinuous limit.
The ratio between the cross-section radius R of the chain and the statistical segment length b was chosen
to be R/b ) 0.1 which corresponds to the value found for polymer-like micelles. The ratio R/b is equivalent
to a reduced binary cluster integral of B ) 0.30, which is in accordance with the value for polystyrene in
a good solvent. The scattering functions of the semiflexible chains have been determined with a precision
of 1-2% for L/b ) 0.3-640, where L is the contour length of the chain. Numerical approximations to
these functions have been determined which interpolate between the simulated functions, and these can
be used in the analysis of experimental scattering data. The approximations have been used in least-
squares fitting of experimental small-angle neutron scattering data from polystyrene in a good solvent.

1. Introduction

Scattering experiments on polymers and polymer-like
micelles covering a broad range of scattering vectors,
q, reveal a series of different regions with behaviors
characteristic of the various length scales of the chains.
At low q, the Guinier region associated with the overall
size of the chain is observed. At slightly higher q the
scattering crosses over to a power-law behavior with an
exponent of -2 in Θ solvents and about -5/3 in good
solvents. These exponents are characteristic of the (self-
avoiding) random walk configuration of the chain. At
higher q, one probes shorter length scales and the local
stiffness of the chain shows up as a crossover to a q-1

behavior. At even higher q the local cross-section
structure of the chains gives rise to a cross-section
Guinier behavior and a strong decrease in the scattering
intensity. The experimental observation of all these
regions is, for most systems, only possible through the
combination of static light scattering and X-ray or
neutron small-angle scattering.1-5

Frequently the analysis of scattering data from
polymers or polymer-like micelles is done in terms of
asymptotic expressions which are valid in the different
characteristic regions, and by considering the cross-over
regions. Such analysis can only be considered to be
semiquantitative, and it does not usually provide ac-
curate results. In order to take full advantage of the
information content in the data, it is desirable to
perform a least-squares analysis employing a model
cross section. This is important, for example, for
determining the statistical segment (Kuhn) length, b,
which describes the local stiffness of the chain. The
Kuhn length is determined from the scattering curve
around qb ) 1; however, this region is also influenced
by the power law at low q and by the cross-section
Guinier region at high q.
The performance of least-squares fits to the measured

data requires that analytical or numerical expressions
for the scattering function are available.5,6 Such ex-

pressions are available for semiflexible chain without
excluded volume effects6 and have also been applied in
the analysis of experimental data.7

Polymer-like micelles are typically composed of thou-
sands of amphiphilic molecules and are thus, for all
practical considerations, continuous in nature. It can
therefore be expected that the worm-like chain model
of Kratky and Porod, modified to include excluded
volume effects, can provide a good description of the
micelles. For conventional polymers, the discrete atomic
structure and the bonding configurations play important
roles in determining the polymer chain configurations.
However, due to the low scattering intensity at high
scattering vectors, it is usually not possible to observe
the local atomic structure and it is therefore not
necessary to apply a model with such fine resolution.
In addition, most polymers have several monomers per
statistical segment length, b, and thus the worm-like
chain model provides a sufficiently accurate description
on length scales beyond b. However, the actual value
of the statistical segment length is of course determined
by the local molecular structure.8

Numerous studies of scattering functions for semi-
flexible (persistence) chains9 without excluded volume
effect can be found in the literature. Heine, Kratky and
Roppert10 performed Monte Carlo simulations on the
discrete representation of the Kratky-Porod model9
which has fixed valence angles and free rotation around
the bonds. Simulations were done for two values of the
valence angle. Similar studies were performed by
Kirste,11 who also considered chains with persistence
of curvature. Sharp and Bloomfield12 calculated the
scattering function for semi-flexible chains valid for
scattering vectors up to qb < 3.1 and for contour length
L > 10b using the Daniels approximation.13,17 The same
calculation was done by Burchard and Kajiwara,14 who
also performed calculations for a discrete chain with
fixed valence angle using the Daniels approximation.
In addition, they suggested an extrapolation procedure
for obtaining the scattering function for arbitrarily large
scattering vectors. However, our comparisons with
more accurate determinations6 and with the Monte
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Carlo results described in the present paper have shown
rather large discrepancies for these expressions around
qb ) 3.5. Koyama15 has used a different approach and
obtained an approximate expression for the scattering
function, which involves an integral which can only be
calculated numerically. Our comparisons with ref 6 and
the Monte Carlo results show that the scattering
functions agree for qb , 1 and qb . 1, but have large
discrepancies for intermediate q values (qb ≈ 1).
An exact calculation for infinitely long chains has

been done by des Cloizeaux,16 whereas Yamakawa and
Fujii17 have determined the scattering functions by
numerical methods for L ) 0.5 - 15b and for qb < 15
using a Hermitian polynomial expansion. The scatter-
ing functions of Yamakawa and Fujii were given in
tables and therefore only for discrete values of L and q.
This work was extended by Yoshizaki and Yamakawa6
also using numerical methods. Results were obtained
for chains with and without persistence of curvature,
and the results were parametrized in the range qb <
10 employing an empirical procedure. As mentioned
previously, these can be used in model fitting of experi-
mental data. However, we have found some irregular
behavior of the expressions for chains without persis-
tence of curvature for L/b around one in the region of
qb values close to 10. Finally, Ragnetti and Oberthür5
have given expressions for semi-flexible chains obtained
by combining the results by Sharp and Bloomfield12 and
by des Cloizeaux.16 However, the actual expressions
given in their paper contain several errors and give
functions which are discontinuous, for example, at qb
) 9.4. With a trivial correction of the prefactor of eq
15 in their article,5 which should be multiplied by the
mass M, one obtains continuous functions up to qb )
9.4. As the results are based on the Sharp and Bloom-
field scattering function, they can only be expected to
be valid for L > 10b. However, one finds for qb > 5
relative large deviations between the scattering func-
tions obtained by these expressions and those calculated
by the numerical expressions given by Yoshizaki and
Yamakawa6 as well as with those determined by Monte
Carlo simulations in the present work.
Excluded volume effects were not considered in any

of the studies described in the previous paragraph, and
to our knowledge very few studies of scattering functions
of semi-flexible chains with excluded volume effects have
been done. The only analytical study to our knowledge
is the one by Sharp and Bloomfield.12 The calculations
were based on the Daniels approximation modified to
include excluded volume effects. However, the present
work has shown that the expression for the radius of
gyration is not valid. Due to the approximation used,
one must expect, as for the calculations without ex-
cluded volume effects, that the range of parameters (q
and L/b) for which the expressions can be used is
limited.
Some approximate expressions are available for flex-

ible chains with excluded volume interactions.18-21 The
most general ones are those of Utiyama, Tsunashima,
and Kurata,21 which are based on the distribution
functions for the end-to-end distance obtained from
lattice Monte Carlo simulations and from direct enu-
meration studies.22,23 In the calculation of the structure
factor, the same distribution function is used for all
inter-point distances, and this allows the scattering
function to be obtained as series expansions. However,
more recent Monte Carlo simulations24,25 and re-
normalization group calculations26 have shown that the

distribution functions and the expansions factors depend
on the actual position of the points on the chain contour.
The scattering functions determined by Utiyama et al.
can give an approximate description of chains with
excluded volume effects if effective parameters for the
distributions and the expansions are determined.25
However, the scattering functions can at best be valid
for qb < 1, as the local stiffness of the chain is neglected.
Furthermore, the exponents and the influence of ex-
cluded volume effects on the radius of gyration have to
be determined by other methods.
Reed and Reed27 have carried out Monte Carlo

simulations on the rotational isomeric state model and
have determined the scattering function of semi-flexible
chains with excluded volume effects. Unfortunately, the
functions were not given in a form which can be used
for analysis of scattering data. In a very recent Monte
Carlo study, Destrée, Lyulin, and Ryckaert28 have
determined scattering functions for a model which
describes polyethylene in good and Θ conditions. Scat-
tering functions have only been obtained for L/b ) 86
in a good solvent and L/b ) 346 in a Θ solvent, and these
functions display the expected exponent for power-law
regions as well as the expected cross-over to the 1/q
behavior at large q.
In the present paper we describe the results of a

Monte Carlo simulation study of semiflexible chains
with and without excluded volume effects. The primary
goal has been to obtain results with excluded volume
effects and to parametrize them in such a way that they
can be used for model fitting of experimental scattering
data on polymer-like micelles. Static light scattering
experiments have shown that excluded volume effects
are important in such systems.29 The statistical seg-
ment length of the micelles is typically 300 Å, and the
cross-section radius is typically 30 Å. We have therefore
used a fixed ratio of R/b ) 0.1 in the present study. Due
to the inconsistency of existing scattering functions for
chains without excluded volume effects, as mentioned
above, simulations have also been carried out for chains
without excluded volume effects. The results have been
parametrized using various methods. The most ac-
curate (and general) method used is the one by Yoshiza-
ki and Yamakawa.6 In addition, we have used a new
and simpler method based on power-law continuations,
and we have parametrized the results for chains without
excluded volume effects using a method based on the
approach suggested by Burchard and Kajiwara.14

The derived approximations have been used for least-
squares fitting of experimental small-angle neutron
scattering data from polystyrene (PS) in a good sol-
vent.30 The expressions for chains with excluded vol-
ume effects fit the experimental data very well, and
various results for the structure of the chains have been
obtained. The good agreement with the scattering data
for PS cooperates with the results of the analysis in ref
25 of the expansion factors determined by the Monte
Carlo simulations on the model with R/b ) 0.1. In this
analysis, it was found that R/b ) 0.1 corresponds to a
reduced binary cluster integral of B ) 0.3, which is
similar to the value found for polystyrene31,32 in good
solvents.

2. Monte Carlo Simulations

The model and the procedure for Monte Carlo simula-
tions have been described previously by Pedersen, Laso,
and Schurtenberger.25 The model is a discrete repre-
sentation of the worm-like chain model of Kratky and
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Porod.9,4 The parameters of a chain are L, the contour
length, and b, the statistical segment length which is a
measure of the flexibility of the chain. In practice, the
chain is represented by N points along the contour, so
that L ) Nl0, where l0 is the point separation. The
statistical segment length is given by b ) l0(1 + cos θ)/
(1 - cos θ), where θ is the valence angle. The continu-
ous chain is obtained by letting N f ∞, l0 f 0, and θ f
0 in such a way that L/b is constant.
For the excluded volume effects the finite cross-section

radius of the micelle was taken into account by placing
hard spheres of radius R ) 0.1b at each point along the
chain. Check for sphere overlap was done for points
separated by more than b/3 along the contour, which is
reasonable for R/b ) 0.1.25 Our previous study of the
model25 has shown that at least 1000 points on the chain
are required in order to reduce the effects of finite N to
less than 0.3% for the ensemble averages of the radius
of gyration, Rg, and of the end-to-end distance, Dee.
Monte Carlo simulations were performed by the

methods described by Stellman and Gans.33 The method
uses pivot moves and a coordinate correction algorithm.
The zippering method described by Stellman, Froimow-
itz, and Gans34 was used for checking for chain overlap.
The aim was to obtain scattering functions with an
accuracy of about 1% in the range up to qb ) 10. This
requires that the influence of finite N is reduced below
this value. Our simulations showed that this was
obtained for chains with more than 32 points per
segment length b.
Simulations were performed for chains with contour

lengths of L/b ) 0.3, 0.6, 1.25, 2.5, 5, 10, 20, 40, 80, 160,
320, and 640. The simulations were started by generat-
ing a random (but biased) self-avoiding chain. For each
length the run started with a certain number of MC
steps for equilibrating the chain. The number of at-
tempted MC steps before sampling were chosen equal
to the number of points on the chain. For the calcula-
tion of the scattering function S(q) stroboscopic sampling
was used. The total number of generated samples were
50 000, and sampling was done for each 50 samples
giving a total of 1000 samples. This does not give
completely independent samples. The accuracy of S(q)
was estimated to be better than 1-2% for L/b e 160
and 2-3% for L/b ) 320 and 640.
The scattering function is given by:

where N is the number of points on the chain and rij is
the distance between the points with indices i and j. In
order to speed up the calculation, a histogram p(ri) of
distances was calculated11 so that the scattering func-
tion could be obtained as

with a proper normalization of p(r) (to give S(q ) 0) )
1).
After the simulations, the scattering functions were

calculated in the range from qb ) 0.001 to qb ) 20. Only
the range up to qb ) 10 was used for the numerical
parametrization. The scattering functions with ex-
cluded volume effects (see Figure 1) behave qualitatively
similar to those of chains without excluded volume

effects.6,9 At low q values the scattering exhibits a
Guinier-type behavior. For longer chains an intermedi-
ate power-law behavior is observed with q ∝ q-1/ν, where
ν ) 1/2 for chains without excluded volume and ν ) (1
+ ε)/2 ) (1 + 0.176)/2 ) 0.588 for chains with excluded
volume. At short length scales the local stiffness of the
chain influences the chain conformation, and it behaves
more like a stiff rod. At large q where the local
structure of the chain is observed, one therefore finds a
q-1 behavior as for rods.

3. Numerical Approximations

3.1. Method 1. Without Excluded Volume Ef-
fects. The approach for the numerical parametrization
described in this section is similar to the one described
by Yoshizaki and Yamakawa.6 It is empirical and to a
certain extent general, but also rather involved. The
scattering function is approximated by that of a Gauss-
ian chain at low q which crosses over, quite abruptly,
to that of a rod at higher q. The crossover region is
corrected by a linear combination of functions which
depend on the relative contour length L/b.
We thus obtain the following expression for the

scattering function:

where Schain(q,L,b) is the scattering function of a flexible
chain without excluded volume effects and Srod(q,L) is
the scattering function of a rod. Furthermore, ø(q,L,b)
is a crossover function, and the function Γ(q,L,b) corrects
the crossover region.
The function Schain(q,L,b) is given by the Debye

function:35

with u ) 〈Rg
2〉0q2, where 〈Rg

2〉0 is the ensemble average
of the square of the radius of gyration. It is given by36

S(q) )
1

N2
∑
i,j

sin qrij

qrij
(1)

S(q) ) ∑
i

p(ri)
sin qri

qri
(2)

Figure 1. Scattering functions for semiflexible polymer chains
in a double logarithmic representation. Monte Carlo simula-
tions results for chains without excluded volume effects (full
curve) and for chains with excluded volume effects (broken,
dotted, and dashed-dotted curves). From bottom to top L/b )
1.25, 10, 80, and 640, respectively.

Swc(q,L,b) ) [(1 - ø(q,L,b))Schain(q,L,b) +
ø(q,L,b)Srod(q,L)]Γ(q,L,b) (3)

SDebye(q,L,b) ) 2[exp(-u) + u - 1]/u2 (4)

7604 Pedersen and Schurtenberger Macromolecules, Vol. 29, No. 23, 1996



where nb ) L/b is the number of statistical segments of
the chain.
The function Srod(q,L) in (3) is the scattering function

of an infinitely thin rod:37

where

Explicit expressions for ø(q,L,b) and Γ(q,L,b) are given
in eqs 19-23 in the paper of Yoshizaki and Yamakawa6
(ν in eq 22 in ref 6 is zero). For completeness they will
also be given here with the notation and modifications
used in the present work. We have:

The parameter ê is given by

where 〈Rg
2〉0 is given by (5).

The function Γ(q,L,b) is given by:

where

and

where a1(i,j), a2(i,j) b1(i,j), and b2(i,j) are coefficients
independent of L and b. There are in total 35 coef-
ficients in the parametrization (eqs 11 and 12).
The 35 parameters in the numerical parametrization

were obtained by a weighted least-squares optimization.
The errors on the S(q) functions were set to 1%. For
the chains without excluded volume effects the root-
mean-square (RMS) deviation of the final fit was 0.91%
and the maximum deviation between the simulated
scattering functions and the numerical expressions was
2.7%. The larger discrepancies for the longest chains
are probably due to the lower accuracy of the simula-
tions for this length. The final parameters are given
in Table 1.
Figure 2 show the simulated and fitted scattering

functions. The good agreement is required in order to
make it possible to determine the Kuhn length b from
scattering data by least-squares fits. The agreement
between the parametrizations and the Monte Carlo
results is best displayed by residual plots. Figure 3(a)

shows the residual for the original parametrization of
Yoshizaki and Yamakawa.6 Large deviations are seen
for L ≈ b around qb ) 10. The residuals for the present
parametrization are shown in Figure 3(b). They are in
general of similar size as those of the original param-
etrization; however, the maximum deviations are con-
siderably smaller for the present parametrization.
With Excluded Volume Effects. In Figure 1 one

sees large differences between the scattering curves
with and without excluded volume effects, in particular
for the relatively long chains. The deviations are seen
mainly at low q but also in the crossover region close to
qb ) 1. Therefore, several modifications are required
in order to parametrize the scattering functions with
excluded volume effects. In particular, one has to
determine a scattering function for replacing the Debye
function (eq 4) for a Gaussian chain, and one has to
determine the appropriate values of the parameters in
eqs 11 and 12.

Figure 2. Scattering functions for semiflexible polymer chains
in a double logarithmic representation. The dotted curves are
from Monte Carlo simulations, and the full curves are the
numerical approximations. The simulation data and the fits
are almost indistinguishable. The curves from bottom to top
are for L/b ) 0.3, 0.6, 1.25, 2.5, 5, 10, 20, 40, 80, 160, 320, and
640, respectively. (a) Chains without excluded volume effects
and (b) chains with excluded volume effects. The normaliza-
tion L/bS(qb ) 0) is used.

〈Rg
2)0 ) Lb

6 [1 - 3
2nb

+ 3
2nb

2
- 3
4nb

3
[1 - exp(-2nb)]]

(5)

Srod(q,L) ) 2Si(qL)/(qL) - 4 sin2(qL/2)/(q2L2) (6)

Si(x) ) ∫0xt-1 sin t dt (7)

ø(q,L,b) ) exp(-ê-5) (8)

ê ) q π
2L

〈Rg
2〉0 (9)

Γ(q,L,b) ) 1 + (1 - ø)∑
i)2

5

Aiê
i + ø∑

i)0

2

Biê
-i (10)

Ai ) ∑
i)0

2

a1(i,j)(L/b)
-j exp(-10b/L) +

∑
i)1

2

a2(i,j)(L/b)
j exp(-2L/b) (11)

Bi ) ∑
i)0

2

b1(i,j)(L/b)
-j + ∑

i)1

2

b2(i,j)(L/b)
j exp(-2L/b) (12)
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The function Schain(q,L,b) with excluded volume sta-
tistics was determined by fitting the expressions given
by Utiyama et al.21 to the low-q part (qb < 1) of the
scattering functions for the longest chains deter-
mined by Monte Carlo simulations. The functions of
Utiyama et al. depend on the two parameters t and s
which enter the distribution function for the inter-point
distances. The parameter t ) 1/(1 - ν) ) 2/(1 - ε) (see
ref 38) was fixed at t ) 2.410 as calculated for the
effective exponent ε ) 0.170 in the large-L/b limit.25 By
least-squares fit an average value of s ) 2.90 was

determined. We note that this in only an effective value
due to the nonuniform expansion of the chain and the
dependence of s on which points on the chain are
considered.25
The expression given for the scattering function by

Utiyama et al.21 consists of a low-q and a large-q
expansion. In order to get good agreement at interme-
diate q, a large number of terms is included in the
high-q expansion and this makes the numerical calcula-
tions rather slow. An approximate expression has
therefore been constructed using:

Table 1. Values for the Parameters in the Numerical Expressions for the Scattering Function for Worm-like Chains
without Excluded Volume Effects Using an Approach Similar to That of Yoshizaki and Yamakawa6

a1(2,0) 0.3054 a2(2,1) -0.4963 b1(0,0) -0.0162 b2(0,1) -0.3946
a1(3,0) 0.05777 a2(3,1) 0.03688 b1(1,0) 0.09046 b2(1,1) -0.2231
a1(4,0) -0.00604 a2(4,1) 0.30570 b1(2,0) 0.1213 b2(2,1) -0.2546
a1(5,0) -0.03902 a2(5,1) 0.39013 b1(0,1) -0.3565 b2(0,2) 1.1361
a1(2,1) 0.2316 a2(2,2) -0.4678 b1(1,1) 0.1909 b2(1,2) -0.01615
a1(3,1) 2.6531 a2(3,2) 0.3365 b1(2,1) 0.15634 b2(2,2) -0.07606
a1(4,1) 0.3706 a2(4,2) 0.4290 b1(0,2) -0.3078
a1(5,1) -1.0081 a2(5,2) 0.3737 b1(1,2) 0.05176
a1(2,2) -22.779 b1(2,2) 0.01568
a1(3,2) 23.2457
a1(4,2) 8.1092
a1(5,2) -3.3603

Figure 3. Residual plots for the parametrization for the chains without excluded volume effects. The curves from bottom to top
are for L/b ) 0.3, 0.6, 1.25, 2.5, 5, 10, 20, 40, 80, 160, 320, and 640, respectively. The curves are displaced by 0%, 10%, 20%, ...,
100%, and 110%, respectively. (a) The original parametrization of Yoshizaki and Yamakawa6 (method 1). (b) The present
parametrization using method 1. (c) Method 2. (d) Method 3: continuous extrapolations.

7606 Pedersen and Schurtenberger Macromolecules, Vol. 29, No. 23, 1996



where SDebye(q,L,b) is given by eq 4 with u ) Rg
2q2. Rg

) 〈Rg
2〉1/2 is the radius of gyration with excluded volume

effects, and it is given by25

where R(L/b) is the expansion factor which follows the
following empirical expression:25

with an effective ε ) 0.170. Note that for L/b > 10 the
expansion factor can also be described by the generally
accepted value ε ) 0.176, when corrections to scaling
are taken into account.25 However, eq 10 fits the
expansion factors in the full range of the simulations,
0.3 < L/b < 16 384,25 and has a root-mean-square
deviation of only 0.13% for L/b > 10 from the power-
law fit with corrections to scaling. The function w(qRg)
is an empirical crossover function chosen as:

A least-squares fit gave C1 ) 1.220, C2 ) 0.4288, C3 )
-1.651, C4 ) 1.523, and C5 ) 0.1477.
The parameter ê in the crossover function ø(q,L,b) (eq

8) was chosen as:

where 〈Rg
2〉 is given by eq 14.

The parameters in eqs 11 and 12 of the numerical
parametrization were obtained by a weighted least-
squares optimization as described in the previous sec-
tion. The RMS deviation of the final fit was 0.88%, and
the maximum deviation between the simulated scat-
tering functions and the numerical expressions was
2.2% for L/b e 160, 3.1% for L/b ) 320, and 3.4% for
L/b ) 640. The larger discrepancies for the longest
chains are probably again due to the lower accuracy of
the simulations for this length. The final parameters
are given in Table 2. The fits to the simulation data
are shown in Figure 2, and the residuals are shown in
Figure 4(a).
3.2. Method 2. Without Excluded Volume Ef-

fects. The method for parametrizing the scattering
functions presented in the previous sections is quite
involved, and the same can be said about the computer
implementation of this method. We have therefore
looked for alternative and simpler approaches. It is
important to have numerically simple expressions, when
analyzing experimental data for which polydispersity
and instrumental resolution have to be taken into
account (see also section 5). Part of the methods
presented in the present section is based on the expres-
sions used by Burchard and Kajiwara14 in which the
scattering function calculated by Sharp and Bloomfield12
is used at low q. A crossover to the asymptotic scat-
tering of a rod at high q by means of a simple empirical
crossover function is used. However, it turns out that
this method can only be used for chains with L/b > 2.
We have therefore designed another approach for the

shortest chains, which is presented at the end of this
section.
First, the parametrization for the longest chains is

described. The scattering function calculated for the
Daniels approximation13 by Sharp and Bloomfield12 is

where u ) q2Rg
2 and Rg

2 ) Lb/6 is used in the Debye
function. This scattering function agrees with the
correct function for L/b > 10 and qb < 3.1 (see ref 17)
to about 1%. At high q Burchard and Kajiwara14
suggested to approximate the scattering function by:

where the subscript indicates that the equation should
reproduce the local rod-like structure. It was further
suggested to use the following interpolation expression:

S(q,L,b) ) SSB(q,L,b) exp[-((qb)/q1)
p1] +

Sloc(q,L)(1 - exp[-((qb)/q1)
p1]) (20)

where q1 and p1 are empirical constants. Our investiga-
tions have shown that this expression can be used for
L/b > 2.
For L/b e 2, function 18 cannot be used at low q. We

have therefore introduced the following expression:

S(q,L,b) ) SDebye(q,L,b) exp[-((qb)/q2)
p2] +

( a1
Lbq2

+ π
Lq)(1 - exp[-((qb)/q2)

p2]) (21)

where Rg in the Debye function is given by eq 5. The
use of this expression for the radius of gyration gives
the correct behavior of this function at low q. For the
Sharp and Bloomfield scattering function, the local
stiffness is taken into account through the second term
in eq 18. It was furthermore necessary to include a
dependence of the crossover point q2 on L/b. We have
used q2 ) a2b/L.
We have optimized the values of the parameters q1,

p1, p2, a1, and a2 by a least-squares fit of eqs 20 and
21 to the simulated scattering functions assuming a 1%
error on the data. For q1 ) 5.53, p1 ) 5.33, a1 ) 0.0625,
p2 ) 3.95, and a2 ) 11.7, the RMS deviation is 0.92%
and the maximum deviations are 3.4% for L ) 40b in
the range qb < 10. Figure 3(c) contains a plot of
residuals of the parametrization.
The expressions given in this section are considerably

simpler than those given by Yoshizaki and Yamakawa6
and used in the previous section. The agreement of the
expressions with the simulated scattering functions is
only slightly worse. Unfortunately, we were not able
to modify the equations so that they could be applied
in the case of excluded volume interactions. Therefore,
we implemented the method described in the next
section.
3.3. Method 3. Without Excluded Volume Ef-

fects. The method presented in this section is also
simpler than the method by Yoshizaki and Yamakawa
(ref 6 and method 1, section 3.1). The low-q part of the
scattering is described by polymer scattering functions
in a similar way as done in the previous section. These
functions are extrapolated by power laws which ap-

SSB(q,L,b) ) SDebye(q,L,b) + [ 415 + 7
15u

-

(1115 + 7
15u) exp(-u)]b/L (18)

Sloc(q,L) ) 1
Lbq2

+ π
Lq

(19)

Sexv(q) ) w(qRg)SDebye(q,L,b) +

[1 - w(qRg)][C1(qRg)
-1/ν + C2(qRg)

-2/ν + C3(qRg)
-3/ν]
(13)

〈Rg
2〉 ) R(L/b)2〈Rg

2〉0 (14)

R(x)2 ) [1 + (x/3.12)2 + (x/8.67)3]ε/3 (15)

w(x) ) [1 + tanh((x - C4)/C5)]/2 (16)

ê ) qb( πb
1.103L)

3/2
[〈Rg

2〉/b2]1.282 (17)
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proach the scattering of a rod at high q. The extrapola-
tion is done such that the functions and their first
derivative are continuous. For the shortest chains the
position of the crossover depends on the length of the
chains.
For L > 4b and qb < 3.1 we used the results of Sharp

and Bloomfield12 with Rg
2 ) Lb/6. For qb g 3.1 we made

the continuous extrapolation using:

which approaches the scattering of a rod when qb f ∞.
The parameters p1 and p2 are empirical constants, and
a1 and a2 are determined from the requirement of
continuity of S ) S(q,L,b) and of its first derivative S′
) dS(q,L,b)/dq at qb ) 3.1 ) q0. The latter can be
calculated analytically or numerically. The parameters
a1 and a2 are given by:

and

For the shorter chains the Sharp and Bloomfield
expression cannot be used. We have therefore, for L/b
e 4, used SDebye(q,L,b) with Rg given by eq 5 for qb e
q0(L,b), where

For qb > q0(L,b) we used a continuous extrapolation as
given by eq 22. We denote the parameters in the
extrapolation for L/b e 4 by primed parameters as p′1
and p′2, respectively. Least-squares optimization of the
parameters p1, p2, a3, p′1, and p′2 gave a RMS deviation
of 0.76% and a maximum deviation of 3.3% for L ) 40b.
The values of the optimized parameter are p1 ) 4.95,
p2 ) 5.29, p′1 ) 5.13, p′2 ) 7.47, and a3 ) 2.02. The
residuals of the parametrization are shown in Figure
3(d).
With Excluded Volume Effects. The approach

used for excluded volume effects is similar to that
described in the previous section. As the Sharp and
Bloomfield expression is not valid for chains with
excluded volume effects, it was therefore modified. We
have exchanged the Debye function in expression 18 by
that of a flexible chain with excluded volume effects.
However, our investigations have shown that the second
term in eq 18, which takes into account the local
stiffness of the chains, has to be reduced by a factor
which depends on L/b.
For L > 4b and qb < 3.1 the function is:

where Sexv(q,L,b) is given by eq 13 with 〈Rg
2〉 )

Table 2. Values for the Parameters in the Numerical Expressions for the Scattering Function for Worm-like Chains
with Excluded Volume Effects Using an Approach Similar to That of Yoshizaki and Yamakawa6

a1(2,0) -0.1222 a2(2,1) 0.1212 b1(0,0) -0.0699 b2(0,1) -0.5171
a1(3,0) 0.3051 a2(3,1) -0.4169 b1(1,0) -0.0900 b2(1,1) -0.2028
a1(4,0) -0.0711 a2(4,1) 0.1988 b1(2,0) 0.2677 b2(2,1) -0.3112
a1(5,0) 0.0584 a2(5,1) 0.3435 b1(0,1) 0.1342 b2(0,2) 0.6950
a1(2,1) 1.761 a2(2,2) 0.0170 b1(1,1) 0.0138 b2(1,2) -0.3238
a1(3,1) 2.252 a2(3,2) -0.4731 b1(2,1) 0.1898 b2(2,2) -0.5403
a1(4,1) -1.291 a2(4,2) 0.1869 b1(0,2) -0.2020
a1(5,1) 0.6994 a2(5,2) 0.3350 b1(1,2) -0.0114
a1(2,2) -26.04 b1(2,2) 0.0123
a1(3,2) 20.00
a1(4,2) 4.382
a1(5,2) 1.594

Figure 4. Residual plots for the parametrization for the
chains with excluded volume effects. The curves from bottom
to top are for L/b ) 0.3, 0.6, 1.25, 2.5, 5, 10, 20, 40, 80, 160,
320, and 640, respectively. The curves are displaced by 0%,
10%, 20%, ..., 100%, and 110%, respectively. (a) The param-
etrization using method 1. (b) Method 3: continuous extrapo-
lations.

S(q,L,b) )
a1

(qb)p1
+

a2
(qb)p2

+ π
qL

(22)

a2 ) [(S + S′q0/p1) - πb
q0L

(1 - 1/p1)] p1q0
p2

p1 - p2
(23)

a1 ) Sq0
p1 - a2q0

p1-p2 +
πbq0

p1-1

L
(24)

q0(L,b) ) max{a3b/〈Rg
2〉0

1/2,4} (25)

SSB(q,L,b) ) Sexv(q,L,b) +

C(L/b)[ 415 + 7
15u

- (1115 + 7
15u) exp(-u)]b/L (26)
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R(L/b)2bL/6, with R(x) given by eq 15. The parameter u
) 〈Rg

2〉q2 ) R(L/l)2q2bL/6 and C(L/b) ) a4/(L/b)p3 for L
> 10b and C(L/b) ) 1 for L e 10b. For qb g 3.1 we
made a continuous extrapolation as done in the previous
section for chains without excluded volume effects. The
empirical parameters are p1, p2, a4, and p3.
For L e 4bwe do not expect the Sharp and Bloomfield

type expression (eq 26) to be valid. However, for such
short chains the influence of the excluded volume effects
is quite small and one can therefore use an approach
similar to the one described in the previous section for
the short chains. We have used SDebye(q,L,b) with Rg
given by eq 14 for qb e q0(L,b), where q0(L,b) is given
as

For qb g q0(L,b) we used continuous extrapolations as
in the previous section involving the parameters p′1 and
p′2 as the powers of the two power-law corrections.
The parameters were determined by a least-squares

optimization as described in the previous sections. The
resulting values are p1 ) 4.12, p2 ) 4.42, a4 ) 3.06, p3
) 0.44, a3 ) 1.9, p′1 ) 5.36, and p′2 ) 5.62. The RMS
deviation for these values is 1.05% with a maximum
deviation of 3.6% for L ) 640b and 3.4% for L ) 320b.
The residuals are shown in Figure 4(b).

4. Examples: Polystyrene
The expressions determined in the previous section

make it possible to perform a quantitative analysis of
experimental scattering data for polymers in a good
solvent as well as in a Θ solvent. In order to demon-
strate the importance of the new results for chains with
excluded volume, we have used data from the literature
for polystyrene (PS) in a good solvent.
The scattering functions of atactic PS in carbon

disulfide (CS2) with different selective deuteration of the
polymer have been determined by Rawiso, Duplessix,
and Picot30 using small-angle neutron scattering. CS2
is a good solvent for PS, and this is also reflected in the
scattering functions which show a q-1.7 behavior at
intermediate q values. In the original paper of Rawiso
et al. the data were not fitted in the full q range as the
appropriate scattering functions were not available. In
the following it will be demonstrated that the param-
etrized scattering functions for the chains with excluded
volume effects can be used for fitting the data and
obtaining results for the Kuhn length b and the cross-
section radii. For the shorter chains the contour length
can also be determined.
The Monte Carlo simulations on the semi-flexible

chain model were carried out for R/b ) 0.1. The
analysis (see ref 25) of the expansion factors for the
model have shown that this corresponds to a reduced
binary cluster integral of B ) 0.3 which is similar to
the value found for polystyrene31,32 in good solvents. It
can therefore be expected that the scattering functions
are applicable to the scattering data for PS measured
by Rawiso et al.
The polymers30 were available with three different

selective deuterations: (i) fully deuterated, (ii) deuter-
ated in the phenyl ring, and (iii) deuterated in the
backbone. CS2 has a low scattering length density, and
C and D have relatively large scattering length, whereas
H has a negative scattering length. Therefore, it is
mainly the deuterated parts of PS which contribute to
the scattering.

The scattering data in Figures 2, 8(a), and 9 of the
paper by Rawiso et al.30 have been digitized. These data
are for PS with molecular weights of Mw ≈ 50 000 and
Mw > 106 corresponding to degrees of polymerization of
n ≈ 500 and n > 10 000, respectively. Data sets free of
concentration effects were obtained by combining the
low-q data in Figures 8(a) and 9 with the high-q data
in Figure 2. Note, that all the data sets are recorded
for concentrations below the overlap concentration c*
and therefore the concentration effects are negligible at
high q. The combined data sets are shown in Figure 5.
For Mw ≈ 50 000 a Guinier region with a crossover to
constant intensity is found at low q. The radius of
gyration is Rg ≈ 85 Å. For Mw > 106, Rg > 540 Å and
the Guinier region falls outside the measured q range,
and the power-law behavior is observed down to the
smallest q values for which the scattering functions
have been measured.
The data sets have been fitted by the parametrized

scattering functions. The finite cross sections of the PS
chains were approximated by a locally cylindrical shape
using:30,7,40,41

where

in which J1(x) is the first order Bessel function and R
is the cross-section radius.
In order to reduce the number of fitting parameters,

the six data sets were fitted simultaneously using the
same Kuhn length for all six data sets and the same
cross-section radius for the data sets with similar types
of deuterations (fully/phenyl/backbone, respectively).
Furthermore, the contour length forMw > 106 was fixed
at L ) 30 000 Å for all three data sets as it does not
influence the data in the measured q range. ForMw ≈
50 000 the contour lengths for the different deuterations
were fitting parameters.45 This approach was chosen
due to the rather large polydispersity index of the PS
(Mw/Mn ) 1.15-1.3) as well as some expected inaccuracy
of the procedure used for the extrapolation to zero
concentration.30 Additional fitting parameters were six
overall scale factors and six parameters for describing
residual background in the individual data sets.
The model scattering functions including excluded

volume effects give almost perfect fits to the data
(Figures 5(a) and -(b)). The Kuhn length is determined
to b ) 24.8 Å, in good agreement with previous
determinations from small-angle scattering data (b )
22-27 Å) and in reasonable agreement with the value
obtained from the plateau modulus of a melt (b ) 17
Å).39 The contour lengths of the Mw ≈ 50 000 polymer
are L ) 1270, L ) 1310, and L ) 1590 Å for the three
different deuterations (i), (ii), and (iii), respectively.
These are in good agreement with the values which can
be calculated directly from molecular weights and the
structure taking into account the polydispersity: Lz )
Lw(1 + 2U)/(1 + U), where Lw is the contour length for
a polymer of massMw and U ) Mw/Mn - 1. The values
for Lz are 1360, 1360, and 1810 Å for the three
deuterations, respectively.
Combining the value for the Kuhn length b with the

values for the contour L, one obtains the number of
statistical segments in the chains. It is L/b ≈ 50 for
Mw ≈ 50 000 and L/b > 1200 for Mw > 106. It is quite
clear that the excluded volume effects are important and

S(q) ) Schain(q) Scs(q) (28)

Scs(q) ) [2J1(Rq)/(Rq)]
2 (29)

q0 ) max{a3b/〈Rg
2〉1/2,3} (27)
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that they are particularly important for the chains with
Mw > 106. This is also reflected in the expansion factors
for Rg which are about 1.2 and 1.5, respectively.
The cross-section radii of the chains are R ) 6.0 Å

for the fully deuterated chain, R ) 4.8 Å for the phenyl-
deuterated chain, and R < 1.0 Å for the backbone-
deuterated chain. These are quite reasonable consid-
ering the molecular structure of the PS chain. The
values also agree with those determined by Rawiso et
al.30 from the high-q part of the data, and with the value
R ) 8.1 Å estimated by small-angle X-ray scattering.4

In Figures 5(c) and -(d) we show the scattering
functions for chains without excluded volume effects
with the same values for the contour length, Kuhn
length, and cross-section radii. These model functions
do not agree with the measured data. It is clear that
excluded volume effects are very important for q < 0.1
Å-1. In this region the experimental data display a

slope in the log-log plots which is quite different from
the model functions, even for Mw ≈ 50 000. If the
contour lengths are fixed and the data are fitted in the
range q > 0.03 Å-1, one obtains reasonable fits in this
region, however, with clear systematic deviations. The
fit gives a Kuhn length of 37 Å which is 50% larger than
the one determined from the fit with the functions which
includes excluded volume effects. This clearly shows
the importance of having appropriate expressions for
the scattering function of polymers with excluded
volume effects, when attempting to experimentally
determine an important structural parameter like the
Kuhn length from the small-angle scattering data. It
demonstrates that excluded volume effects not only
influence the scattering data in the power-law regime,
but also modify the scattering function on a much more
local length scale. Therefore, one cannot use an ap-
proach in which one applies expressions valid for worm-

Figure 5. Scattering functions for PS in CS2.30 The lower data are for fully deuterated PS, the middle data are for the phenyl
ring deuterated, and the upper data are for the backbone deuterated. (a)Mw ≈ 50 000. The curves are the fits for model scattering
functions including excluded volume effects. (b)Mw > 106. The curves are the fits for model scattering functions including excluded
volume effects. (c) Mw ≈ 50 000. The curves are for model scattering functions without excluded volume effects. (d) Mw > 106.
The curves are the model scattering functions without excluded volume effects.
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like chains without excluded volume effects at high q
in order to estimate b from the crossover region around
bq ) 1. Such an approach leads to a systematic
overestimation of b.

5. Discussion and Conclusions
We have performed Monte Carlo simulations on semi-

flexible chains with and without excluded volume effects
in the pseudocontinuous limit. The scattering functions
were obtained with an accuracy of 1-2%. The functions
have been parametrized by different numerical expres-
sions which can be used in an analysis of experimental
scattering data. Method 1, following Yoshizaki and
Yamakawa,6 is the most general one and also the most
accurate. However, it only gives slightly more accurate
parametrizations than methods 2 and 3. This is dem-
onstrated by the residuals shown in Figures 3 and 4.
An overview of the quality of the fits is given in Table
3, which contains the root-mean-square and maximum
deviations for the three parametrizations.
As a test of the applicability of the expressions for

determining L and b, we have used the final expressions
for analyzing the scattering functions determined by
Monte Carlo simulations by means of least-squares
methods. In general, it is possible to determine L and
b for L/b > 2.5. For shorter length the scattering
functions do not contain enough information for sepa-
rating the two parameters. For chains without excluded
volume effects, L and b can be determined with an
accuracy of 1% and 2%, respectively, for all three
different types of parametrizations. The RMS devia-
tions are always less than 1%. For chains with excluded
volume effects, method 1 gives b with an accuracy of
about 2%, except for L/b ) 320 and 640, where the
accuracy is 3.5% and 5%, respectively. For method 3,
b is accurate to about 4-5%. For both methods 1 and
3, L is determined with an accuracy of about 1%. The
RMS deviations are less than 1% for both methods
except for L/b ) 640, where it is about 1.3% and 1.8%
for methods 1 and 3, respectively. The overall conclu-
sion from these tests is that the parametrizations can
be used for determining L and b with an accuracy which
in most cases is considerably better than 5%.
In an analysis of experimental data the duration of

the calculation is an important issue. It is particular
important for polydisperse systems25,29 and when in-
strumental smearing effects have to be considered. The
polydispersity is quite large for micellar equilibrium
structures,29 and it has to be included in the data
analysis by convoluting the scattering function by the
size distribution. For small-angle neutron scattering
experiments the instrumental smearing has to be
included in the data analysis, and this also involves at
least one numerical integral.42,43
Due to the large number of terms required in the

function Γ(q,L,b), method I is relatively slow. For chains
without excluded volume effects the numerical calcula-
tion in method 1 is, in our implementation, about 7

times slower than methods 2 and 3. For chains with
excluded volume effects, method 1 is about 3-4 times
slower than method 3. The smaller difference in this
case is due to the fact that a larger part of the time is
used for calculating Schain(q,L,b) ) Sexv(q,L,b).
The expressions given in the present paper in section

3 for the scattering function do not include a finite size
of the cross section of the (locally) cylindrical shape. For
cross-section profiles with local cylindrical symmetry
this can be included as described in the previous
section30,7,40,41 by multiplying the scattering function of
the chain S(q) by the cross-section scattering function.
In some cases the cross-section scattering length density
distribution is not constant. In this case Scs(q) is given
by the absolute square of the Hankel transform of the
cross-section scattering length density profile ∆F(r):

where B0(x) is the zeroth order Bessel function. For
analysis of scattering data from polymer-like micelles,
the finite size of the cross section has to be included for
accurate modeling of SANS data up to scattering vectors
larger than about 0.05-0.1 Å-1.7,40,44 In a future paper44
we will present the results of an extensive application
of the expressions for the scattering function given in
the present paper. The studied systems are water-in-
oil microemulsions of lecithin in cyclohexane and iso-
octane with trace amounts of water. The application
requires the inclusion of polydispersity and instrumen-
tal smearing, as well as a two-step profile for the cross-
section structure.
Examples with application to experimental data have

been given in section 4. The derived approximations
have been used for least-squares fitting experimental
small-angle neutron scattering data from polystyrene
(PS) in a good solvent.30 Scattering functions for chains
with excluded volume effects gave good fit to the data,
and results for contour length, Kuhn length, and cross-
section radii have been obtained. The contour lengths
agree with those calculated from the molecular mass
and polydispersity indices, and the determined Kuhn
length of b ) 24.9 Å is in good agreement with values
found in the literature. The scattering functions for
chains without excluded volume effects are not able to
fit the data for PS, and even if the fitted q range is
restricted to qb > 1, this will result in incorrect values
for the Kuhn length. This demonstrates the importance
of having parametrized scattering functions for chains
with excluded volume effects.
The parametrized scattering functions have also been

used for fitting the scattering functions for polyethylene
determined by Destrée et al.28 by Monte Carlo simula-
tions. An excellent fit was obtained for the chain with
1025 monomers in good solvent conditions for q < 1 Å-1

using the expression for chains with excluded volume
effects. The fit to the scattering function for chains with
4097 monomers in Θ conditions for q < 1 Å-1 using the
expressions for chains without excluded volume effects
is slightly worse. The exponent of the power law in the
intermediate q range of the simulation data is higher
than the model functions, which probably indicates that
the simulations were done for conditions which were
slightly within the poor solvent region. This is also in
agreement with the fact that the radius is slightly
smaller than expected at the Θ point.28 The average
Kuhn length for the two fits is b ) 14.7 Å, in almost
perfect agreement with the estimate of b ) 14.9 Å given

Table 3. Summary of the Accuracy of the
Approximations in Section 3a

without excluded vol with excluded vol

RMS (%) max dev (%) RMS (%) max dev (%)

method 1 0.91 2.7 0.88 3.4
method 2 0.92 3.4
method 3 0.76 3.3 1.05 3.6

a “RMS” is root-mean-square deviation and “max dev” is the
maximum deviation.

Scs(q) ) |2π∫∆F(r) B0(q,r)r dr|2 (30)
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by Destrée et al.28 These examples once more show the
applicability of the parametrized functions.
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