
Rheology of Ring Copolymers in Dilute Solutions
Sumit Kumar and Parbati Biswas*

Cite This: J. Phys. Chem. B 2025, 129, 496−505 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: We investigate the rheology of ring copolymers theoretically within the framework of the optimized Rouse−Zimm
theory in dilute solutions. The ring copolymer is composed of two type of monomers (A and B) of different sizes (A < B), which is
represented by unequal-sized beads connected via harmonic springs with different spring constants. The hydrodynamic interactions
(HI) between the monomers is modeled using the preaveraged HI tensor. These interactions accelerate the collective relaxation
modes and impede the local relaxation modes. In the presence of HI, the storage modulus shows a quasi-plateau regime,
demonstrating a viscoelastic solid-like response of the polymer, while the loss modulus exhibits a bimodal pattern due to the
difference in the mobilities of the monomers. The inverse of the crossover frequency represents the overall characteristic relaxation
time, which is higher for the ring copolymers than for the Rouse rings, suggesting a slower relaxation of the ring copolymers due to
the presence of relatively large sized monomers. The quasi-plateau in the storage modulus and the bimodality in the loss modulus are
enhanced with an increase in the size and number fraction of B-type monomers. An increase in the size of the B-type monomers
increases both storage and loss moduli, resulting in an overall decrease in the dynamics of the ring copolymers.

1. INTRODUCTION
Ring polymers represent a distinct class of macromolecules
characterized by their compact closed-loop architecture,
devoid of free terminal ends, unlike linear polymers. This
circular topology has a profound effect on the structure and
dynamics of ring polymers both in melts and in solutions,
making them distinctly different from their respective linear
analogues. However, the presence of free chain ends plays a
key role in understanding the dynamics of linear polymers.
These free chain ends enable stress relaxation in melts and in
concentrated solutions of linear polymers by reptation, unlike
that of the ring polymers. Therefore, the rings are expected to
exhibit a completely different dynamics.1 The rheology of ring
polymers is challenging not only from the point of view of
developing new physics to elucidate the dynamics but also as a
promising precursor to novel materials. Ring polymers are
commonly prevalent in nature as bacterial DNA in
mitochondria and plasmids and as circular prokaryotic
genomes. Recent experimental methods have enabled the
synthesis and characterization of ring polymers with precisely
controlled size and topology,2−5 thus permitting a detailed

investigation of their conformation and dynamics, while
various theoretical, simulation, and experimental studies have
probed the conformation and dynamics of ring polymers in
both solutions and melts,6−11 and the properties of ring
copolymers remain largely unexplored.
Ring copolymers are a unique class of polymers that

comprise two or more different types of monomers connected
in a ring. Such composite polymers incorporate multifunctional
units within a single polymer and are expected to possess novel
physical and chemical properties. The material properties of
such hybrid polymers may be appropriately tuned by
modulating the ratio or number fraction of the constituent
monomers, which may be consequently tailored for specific
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applications. However, these systems have not been inves-
tigated either experimentally or theoretically till date. The
characterization and processability of the ring copolymers in
dilute solutions rely on their small amplitude oscillatory shear
material functions, such as the frequency(ω)-dependent
storage modulus G′(ω), loss modulus G″(ω), and the
time(t)-dependent stress relaxation spectrum G(t).
This study reports the viscoelastic properties of the ring

copolymers in dilute solutions within the tenets of the
optimized Rouse−Zimm formalism. The ring copolymer is
represented by a multiresolution bead−spring model where
different-sized monomers are denoted as beads connected via
harmonic springs with different spring constants. The solvent-
mediated hydrodynamic interactions (HI) between the pair of
monomers are incorporated through the preaveraged HI
tensors. The viscoelastic properties of ring copolymers are
measured in terms of the relaxation moduli, i.e., the storage
modulus, G′(ω) and the loss modulus, G″(ω). The relaxation
moduli are investigated as a function of the different sizes and
number fractions of the two different monomers with and
without HI. The characteristic relaxation time of a ring
copolymer of a particular size with a specific number fraction is
calculated from the frequency of crossover of the storage and
loss moduli.
The review may be organized into the following sections:

Section 2 of this paper outlines the theoretical formalism for
the multiresolution bead−spring model of ring copolymers
comprising unequal sized beads that are connected to each
other through different harmonic springs. Section 3 describes
the intramolecular relaxation dynamics of these copolymeric
rings as a function of the size and number fraction of two
different monomers with and without HI. Section 4 concludes
by summarizing the major findings of this work.

2. THEORY
The ring copolymer is represented by a multiresolution bead−
spring model, where the size of two different monomers, A and
B, is denoted by beads of unequal sizes. The size of the B-type
monomers is chosen to be greater than that of the A-type
monomers. Both A- and B-type monomers are connected to
each other by simple harmonic springs with different spring
constants. A key parameter for determining the relative
composition of B-type monomers in our system is the number
fraction, which is the ratio of the number of B-type monomers
NB to the total number of A- and B-type monomers Ntotal. This
number fraction ρ of the B-type monomers is expressed as ρ =
NB/Ntotal. For systems with ρ = 0.5, A- and B-type monomers
are alternately connected and represent alternating ring
copolymers (ABAB...). The systems with ρ ≠ 0.5 represent
the block ring copolymers (AxByAxBy... with (x, y) = (3,2) for ρ
= 0.4, (2,3) for ρ = 0.6, etc.), which are illustrated in Figure 1.
Here, A- and B-type monomers are modeled as small and large
sized beads. The friction coefficient of the monomers is
proportional to their respective sizes as ζB = nζA, where ζA and
ζB are the friction coefficients of the A- and B-type monomers,
respectively, and n > 1. For alternating ring copolymers, all
bonds are considered to be of equal mean square length, with a
spring constant given by K = 3kBT/l2, where kB and T are the
Boltzmann constant and temperature, respectively, and l2 is the
mean square length of the unstretched spring. The structure of
the ring copolymer is represented by the N × N connectivity
matrix, [A], which accounts for the connectivity of the
monomers with different entropic springs. For i ≠ j, element Aij

equals the number of entropic springs between i-th and j-th
beads, if the i-th and j-th beads are connected and Aij = 0
otherwise. For i = j, the diagonal elements of connectivity
matrix, Aii, are equal to the number of entropic springs
connected to the i-th bead.12−14

The time evolution of the position coordinate of the i-th
monomer of the ring copolymer, Ri(t), follows the overdamped
Langevin equation, which may be expressed in the matrix form
as15,16

= [ ] +
= =

R
H A R H f

t
t

K t
( )

. ( )A
i

j

N

ij j
j

N

ij j
1 1 (1)

Each monomer has a friction coefficient, ζj = 6πηsaj, where aj
is the radius of the j-th monomer. These monomers are
connected to each other via harmonic springs with the spring
constant K = 3kBT/l2. The characteristic bond rate constant is
given as σ0 = K/ζA. Here, f j(t) represents the random force
that accounts for the random thermal fluctuations with zero
mean and de l ta cor re la t ion , i . e . , ⟨ f j( t)⟩ = 0,

= [ ]f f Ht t k T t t( ) ( ) 2 ( )i j ij ijB
1 , where [H−1] is the

inverse of the HI matrix, [H]. This HI matrix, [H], takes into
account the interaction between the monomers in dilute
solutions. The elements of the matrix [H], [Hij], describes the
HI between the i-th and j-th monomers. The Oseen tensor and
Rotne−Prager−Yamakawa (RPY) tensor are commonly used
for approximating the HI. The Oseen tensor represents the HI
between two point-like particles, which may be expressed
as15,16

Figure 1. Ring copolymers with different number fractions (a) ρ =
0.5, (b) ρ = 0.4, and (c) ρ = 0.6.
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where I is the identity matrix and a is the radius of the bead.
The distance between beads is given by Rij = Ri − Rj and ηs
representing the viscosity coefficient of the solvent. Addition-
ally, R ij is the unit vector in the direction of Rij and denoted by

= | |R
R R

Rij
i j

ij
.

The RPY tensor accounts for the HI between the finite size
beads. The elements of the HI matrix, [Hij], are given by17−19
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Equation 1 cannot be solved in the closed form by
substituting the HI matrices defined by eq 2 or eq 3. For a
tractable form of the HI tensor, a preaveraging approximation
was introduced by Zimm,20 where the elements of the HI
matrix Hij are replaced by its equilibrium average Hij . The
preaveraged hydrodynamic matrix, Hij , is a constant where
the fluctuations are neglected and may be solved using
theoretical approaches similar to those developed for the free-
draining limit of a polymer. The preaveraged form of both
Oseen and RPY tensors have the same expression as given
below18,21,22
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Therefore, the HI of the ring copolymer with unequal sized
beads can be calculated through the preaveraged HI tensor as

[ ] = +H R Il( / / (1 ))ij ij j r
ij

ij ij (5)

where ζj is expressed in units of ζA. The HI between different
segments depends upon their respective sizes and hence their
friction coefficients (ζ), as given by ζrij = ζr(αi + αj)/2, where αi
and αj depend on the hydrodynamically interacting beads and
are considered 1 for the A-type monomer and greater than 1
for the B-type monomer in units of l.13 The reduced monomer
friction coefficient, ζr = ζ/6πηsl, measures the strength of HI in
units of l and ηs. The value of ζr = 0.25 ensures the positive
definiteness of the matrix [H].23,24 The average intermonomer
distances in eq 5 are assumed to be Gaussian distributed at
equilibrium, and the averaged reciprocal intermonomer
distances,

R
1

ij
, are approximated in terms of the mean square

intermonomer distances, R ij
2 , as = i

k
jjj y

{
zzzR

Rij
1 6

1/2

ij
2 . The

mean square intermonomer distances are given as

= =R
Q Q

ij k
N2

1
1 ( )ik kj

k

2

, where Q represents the eigenvectors

of matrix [H.A] and μk are the diagonal elements of the
diagonal matrix, QT[H.A]Q, in the partial draining limit. In the
absence of HI, the N × N matrix [H] is a diagonal matrix that
accounts for the different sized beads with [Hij] = δij/ζj.
Therefore, it may be observed that the matrices [H] and [A]
incorporate the effects of unequal sized beads connected by
harmonic springs with different spring constants.13,14

Equation 1 is solved by decoupling into independent normal
modes by numerically diagonalizing the matrix product [H.A]
using the QR algorithm.25 This diagonalization yields N
linearly independent eigenvectors [Qk] such that Q−1[H.A]Q =
Λ, where Λ is a diagonal matrix with elements λk. The
elements, λk, are the eigenvalues of the [H.A] matrix and are
directly proportional to the relaxation rates, 1/τk, of the normal
relaxation modes. This same set of eigenvectors may also
diagonalize the matrix [A] such that QT[A]Q = Γ, where Γ is a
diagonal matrix with elements λk0.26 The eigenvalues λk and λk0
are real and nonnegative. The formalism of this theory is built
from the generalized matrix [H.A], which accounts for the
unequal sized beads connected by different harmonic springs.
When all friction coefficients and spring constants are equal, eq
1 reduces to that of a ring homopolymer.27,28

The rheology of the ring copolymers is typically charac-
terized by the small amplitude oscillatory shear material
functions that are evaluated from the complex shear relaxation
modulus, G*(ω) = G′(ω) + ιG″(ω), which measures the
response of any polymer to the applied harmonic strain as a
function of the normalized frequency. The complex modulus is
obtained from the Fourier transform of the relaxation modulus
G(t) as G*(ω) = ∫ 0

∞G(t)e−iωtdt. The complex modulus has
two components, real and imaginary, which comprise the
storage (G′(ω)) and loss (G″(ω)) modulus, respectively.
G′(ω) and G″(ω) represent the frequency-dependent moduli
that account for the relaxation dynamics of the polymer. These
moduli may be expressed as dimensionless quantities as29−32

[ ] = =
+=
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k
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2 2
(7)

where N is the number of monomers and ν represents the
number of monomers per unit volume in the solution and σ =
3kBT/ζl2. λk are the nonzero eigenvalues of matrix [H.A],
which are directly proportional to the relaxation rates as (1/τk
= 2σλk) and inversely proportional to the relaxation times (τk).
It is important to note that the factor of 2 in the relaxation
rates originates from the second moment of the displacements
involved in computing the stress required in the evaluation of
G*(ω).15 The storage modulus comprises the elastic
contribution that measures the ability of a polymer to store
energy due to deformation. Meanwhile, the loss modulus is the
viscous part that accounts for energy dissipation as heat. It is
widely accepted, based on linear-response theory and
thermodynamic principles, that eqs 6 and 7 for the storage
and loss moduli are universally applicable.33,34 Consequently,
these equations are valid regardless of the variations in the
topology of the polymer chain and its composition. Therefore,
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eqs 6 and 7 are also applicable for the ring copolymers, where
the heterogeneity affects only the relaxation times.

3. RESULTS AND DISCUSSION
The properties of the alternating ring copolymer depend on
the eigenvalues of matrix [H.A]. Figure 2 represents the double

logarithmic plot of the eigenvalues of matrix [H.A] versus N/k
for various sizes of the ring copolymer. The mode number, k,
denotes the segments comprising N/k monomers. Small mode
numbers represent large segments that correspond to collective
relaxation modes. Large mode numbers represent small
segments that correspond to local relaxation modes. Due to
the periodic symmetry of ring copolymers, the odd modes
vanish, while the eigenvalues corresponding to the even modes
are double degenerate. Therefore, Figure 2 displays the
eigenvalues with even modes only. The viscoelastic relaxation
rates, 1/τk, of the normal relaxation modes are directly
proportional to their respective eigenvalues, λk. The ring
copolymer consisting of different sized monomers possesses
different relaxation rates, leading to two distinct eigenvalue
zones corresponding to the local and collective relaxation rates.
For small mode numbers, the eigenvalues are similar to those
of the homopolymeric rings,11 while at large mode numbers,
the eigenvalues of the ring copolymer cluster in a specific
region of the log−log plot, which is absent in the ring
homopolymer. The local relaxation rates corresponding to
large mode numbers are considerably higher than the collective
relaxation rates at small mode numbers. The difference in the

eigenvalues at large mode numbers for various ring sizes is
highlighted in the inset of Figure 2.
Figure 3 displays a double logarithmic plot of the storage

and loss moduli for the ring copolymer as a function of the
normalized frequency, ωτ1, both with and without HI. It may
be observed that [G′(ω)] and [G″(ω)] display three different
regimes represented by the low, high, and intermediate
frequencies. Both storage and loss moduli exhibit universal
scaling behavior in the low and high frequency regimes. The
behavior of these moduli in low and high frequency regimes
may be understood from the limiting results of eqs 6 and 7. At
the low frequency regime
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At the high frequency regime
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and

Figure 2. Eigenvalues of the ring copolymer with HI for various ring
sizes as a function of length scale, N/k, with ζB = 5ζA. The inset shows
the variation in eigenvalues at large mode numbers.

Figure 3. Double logarithmic plots of storage and loss moduli of ring copolymers as a function of normalized frequency, ωτ1, for various ring sizes
with ζB = 5ζA.
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The storage modulus varies as [G′(ω)] ∼ (ω)2 in the low
frequency regime and is independent of frequency in the high
frequency regime. The loss modulus linearly increases and
decreases with frequency in the low and high frequency
regimes, respectively, with a maximum in the intermediate
frequency regime. Typically, the structure-dependent behavior
is reflected in the intermediate frequency regime. The variation
of these frequency-dependent mechanical relaxation moduli
may be expressed in terms of the eigenvalues (λk), which are
directly proportional to the corresponding relaxation rates (1/
τk) of the normal relaxation modes. In the low frequency
regime, [G′(ω)] and [G″(ω)] scale with eigenvalues as
[ ]G ( ) ( )k

2 and [ ]G ( ) ( )k
1, respectively. Thus,

the mechanical relaxation moduli are dominated by the lower
nonzero eigenvalues in the low frequency regime, which
denote the smaller relaxation rates corresponding to the
collective relaxation modes. In the high frequency regime,
[G′(ω)] is independent of the eigenvalues, whereas [G″(ω)]
varies with eigenvalues as [G″(ω)] ∼ (λk). Thus, [G″(ω)] is
dominated by higher eigenvalues with high relaxation rates that
correspond to the local relaxation modes.
The magnitudes of [G′(ω)] and [G″(ω)] increase with an

increase in the size of the ring copolymer due to a
corresponding increase in the number of normal relaxation
modes. In the low frequency regime, the magnitude of [G′(ω)]
and [G″(ω)] for the ring copolymers is lower in the presence
of HI than that in its absence. This is due to an increase in the
lower relaxation rates in the presence of HI. This difference
increases with an increase in the size due to an increase in the
number of lower relaxation rates, while in the high frequency
regime, [G″(ω)] is dominated by the higher relaxation rates
and the magnitude of [G″(ω)] decreases in the presence of HI,
suggesting that HI decreases the higher relaxation rates
corresponding to the local relaxation modes.
For a particular size of the ring copolymer, the plots of the

storage modulus both with and without HI merge in the high
frequency regime, depicting a constant value of [G′(ω)]. One
crossover is observed for [G′(ω)] in the intermediate
frequency regime, while [G″(ω)] of a large ring copolymer
displays two crossovers in the intermediate frequency regime,
and [G″(ω)] of a small ring (N = 20) shows only one
crossover. The structure-dependent behavior of the ring
copolymers lies in the intermediate frequency regime, where
[G′(ω)] ∼ (ω)α1 and [G″(ω)] ∼ (ω)α2. The values of these
scaling exponents for the linear polymers are 0.66 and 0.5 with
and without HI, respectively.15 Table 1 lists the values of the
exponents α1 and α2 for the ring copolymer in the presence
and absence of HI. For the ring copolymers, α1 and α2
decrease and increase, respectively, with an increase in ring
size, which is similar to that of the ring homopolymers.29 In the
absence of HI, α1 and α2 are similar to the exponents of the
linear polymer chains. In the presence of HI, α2 for the large
sized rings is similar to the exponent of the linear polymer,
while α1 shows a notable deviation. The ring copolymers

exhibit the same power law behavior as that of the ring
homopolymers in both low and high frequency regimes.29

The intermediate frequency regime is dominated by the
intermediate eigenvalues, representing the multimode relaxa-
tion. In the presence of HI, [G′(ω)] shows quasi-plateau
behavior for the ring copolymers, which is reminiscent of a
more solid-like behavior, and [G″(ω)] exhibits a bimodal
behavior with two maxima due to the difference in the
mobilities of the A- and B-type monomers. At the low
frequency region, the dynamics of the ring copolymer is
accelerated in the presence of HI, which may be explained
from the smallest nonzero eigenvalue representing the smallest
relaxation rate. The smallest nonzero eigenvalue (λN−1) of the
ring copolymer for N = 1000 is 1.3159 × 10−5, which on
inclusion of HI increases by an order of magnitude to 1.0526 ×
10−4.
It is interesting to compare the frequency-dependent

viscoelastic responses of the ring copolymers of various sizes
both with and without HI. This is done by comparing [G′(ω)]
and [G″(ω)] as a function of the normalized frequency, ωτ1.
Figure 4 depicts a double logarithmic plot comparing [G′(ω)]
and [G″(ω)] for the ring copolymers. For a particular sized
ring, [G′(ω)] and [G″(ω)] exhibit crossovers in the
intermediate frequency regime. The frequency corresponding
to this crossover is called the crossover frequency, ωc, at which
[G′(ω)] = [G″(ω)], representing a crossover between the
liquid-like viscosity and solid-like elasticity. At low frequencies,
the ring exhibits a liquid-like viscous behavior at frequencies
below the ωc, i.e., ω < ωc, and [G′(ω)] < [G″(ω)]. A solid-like
elastic behavior is observed at higher frequencies above the ωc,
i.e., ω > ωc and [G′(ω)] > [G″(ω)]. It indicates that the
viscoelastic behavior of ring copolymers is predominantly
viscous and elastic in the low and high frequency regimes,
respectively. This characteristic crossover frequency is different
with and without HI and does not occur at ωτ1 = 1, which is
predicted for the single relaxation time of a Maxwell fluid,
suggesting that these ring copolymers exhibit multimode
relaxation. It occurs at ωτ1 ≈ 1 for lower generation
dendrimers, as found in theoretical35 and experimental
studies.36 For star polymers, it occurs at ωτ1 ≈ 437 and at
ωτ1 < 1 and 1 < ωτ1 < 4 for large and small sized Rouse
rings,29 respectively. This characteristic crossover occurs at ωτ1
< 1 for all sizes of the ring copolymers both with and without
HI, as seen from Figure 4. Thus, it may be concluded that the
ring copolymers are less compact than the corresponding linear
and ring homopolymers. This crossover frequency shifts to
lower frequencies with increasing ring sizes. A marginal shift to
lower frequencies is noted in the presence of HI.
The effects of the size and HI on the viscoelastic spectrum of

the ring copolymers are measured via the loss tangent (tan δ),
which quantifies the energy dissipated during an oscillatory
deformation relative to the stored elastic energy. Figure 5
depicts the double logarithmic plot of tan δ as a function of the

Table 1. Scaling Exponents of the Storage and Loss Moduli,
[G′(ω)] ∼ (ω)α1 and [G″(ω)] ∼ (ω)α2, of the Ring
Copolymers in the Presence and Absence of HI in the
Intermediate Frequency Regime With ζB = 5ζA

Ntotal α1
[A] α1

[H.A] α2
[A] α2

[H.A]

200 0.558 0.846 0.490 0.642
500 0.536 0.772 0.494 0.644
1000 0.522 0.746 0.495 0.650
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normalized frequency, ωτ1, for the ring copolymers with and
without HI. A small change in the ring size has a more
pronounced effect on the loss tangent in the low frequency
regime, while in the high frequency regime, all curves merge,
showing that the loss tangent is independent of the ring size.
The loss tangent decreases sharply and plateaus off before
merging. This frequency-independent plateau occurs at a
higher frequency for small sized rings. This denotes the
transition from a viscoelastic liquid to a viscoelastic solid.
Similar behavior was observed in the crystallizing polymers,
where the loss tangent drops precipitously with the
crystallizing parameter as the polymer approaches a purely
elastic response.38 A precise understanding of the magnitude of
the crossover frequencies can be obtained by examining the
loss tangent, tan δ. The frequency at which [G′(ω)] =
[G″(ω)] represents the crossover frequency, (ωc). However,
on a logarithmic scale, log10tan(δ) = 0 corresponds to
crossover frequency, (ωc), marked by the red line in the
figure. From Figure 5, it may be seen that the crossover
frequency decreases with an increase in the ring size both with
and without HI. This is because large polymers exhibit more
solid-like behavior at lower frequencies. However, this decrease
in the crossover frequency is very small in the presence of HI.
The crossover frequency is closely related to the character-

istic relaxation time of the polymer, which measures the time
scale at which the transition from predominantly viscous to
predominantly elastic behavior occurs in a polymer. This
characteristic relaxation time may be approximated as the
inverse of the crossover frequency τ* = 1/(ωc). The reduced
characteristic relaxation times for ring copolymers with and
without HI are presented in Table 2 for different ring sizes. It
may be noted that the characteristic relaxation times increase
with an increase in the ring size, corresponding to a slower
relaxation. The characteristic relaxation time of small sized ring

copolymers is higher in the presence of HI, while it is lower for
the larger ones. This may be due to the weaker strength of HI
in smaller rings. An increase in the strength of HI increases the
smaller relaxation rates corresponding to the collective
relaxation modes and decreases the relaxation time. However,
an increase in the ring size tends to increase the characteristic
relaxation time. Due to the two counteracting trends, the
increase in the characteristic relaxation times is much smaller
for the large sized rings with HI than that for the rings without
HI. The ring copolymers have a higher relaxation time because
of larger B-type monomers relative to that of a ring
homopolymer with only A-type (smaller) monomers.29

The effect of increasing the number of B-type monomers in
a ring copolymer of a particular size, Ntotal = 1000, is studied by
varying the number of B-type monomers from 250 to 600 to
generate three block ring copolymers with different values of ρ,
i.e., ρ = 0.25, 0.4, and 0.6. For block ring copolymers, the mean
square bond lengths are chosen to be different for the bonds
between B−B, A−B, and A−A type monomers as lB−B > lA−B >
lA−A, which makes the corresponding spring constants different.
Figure 6 represents the double logarithmic plot of the storage
and loss moduli for the ring copolymers (Ntotal = 1000) as a
function of the normalized frequency for different values of ρ.

Figure 4. Comparison of the storage and loss moduli of the ring copolymer (a) without HI and (b) with HI for various ring sizes with ζB = 5ζA.

Figure 5. Double logarithmic plot of loss tangent (tan δ) versus normalized frequency, ωτ1, for ring copolymers with and without HI with ζB = 5ζA.

Table 2. Characteristic Overall Relaxation Times of Ring
Copolymers of Various Sizes with ζB = 5ζA

Ntotal τA* τH.A*
20 3.162 6.026
50 4.786 6.607
100 11.220 7.499
200 16.218 7.727
500 24.547 8.254
1000 60.256 8.484
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It is evident from Figure 6 that B-type monomers have a
significant effect on the viscoelastic properties, even at lower
number fractions. With an increase in ρ, the storage modulus
[G′(ω)] increases at intermediate frequencies, while the loss
modulus [G″(ω)] shows an appreciable increase in the
intermediate frequency regime, followed by a decrease at
higher frequencies. Both [G′(ω)] and [G″(ω)] follow a power
law behavior in the intermediate frequency regime as [G′(ω)]
∼ (ω)α1 and [G″(ω)] ∼ (ω)α2. An increase in the number of
B-type monomers increases scaling exponents α1 and α2.
However, the ring copolymer with ρ = 0.4 shows a higher value
of α1. In the intermediate frequency regime, [G′(ω)] shows a

quasi-plateau that is enhanced with an increase in the number
of B-type monomers. This indicates a transition from liquid-
like to solid-like behavior. Therefore, with an increase in ρ, the
ring copolymers show more solid-like behavior. At higher
frequencies, the effect of the number of B-type monomers is
relatively weak on [G′(ω)]. These results suggest that the B-
type (larger) monomers influence the stress relaxation
dynamics more than the plateau modulus. Remarkably, the
effect of larger monomers is more pronounced on the loss
modulus than on the storage modulus. For the loss modulus,
an increase in the number fraction of B-type (larger)
monomers results in the appearance of a second maximum

Figure 6. Double logarithmic plot of storage and loss moduli of ring copolymers as a function of normalized frequency with different number
fractions of B-type monomers in an Ntotal = 1000 sized ring copolymer with ζB = 5ζA.

Figure 7. Comparison of storage and loss moduli of the alternating ring copolymer (ABAB...) and block ring copolymer (A3B3A3B3...) with HI for
Ntotal = 300 with ζB = 5ζA.

Figure 8. Double logarithmic plot of storage and loss moduli of ring copolymers as a function of normalized frequency by varying the friction
coefficient of the B-type monomer (ζB = ζA, 2ζA, 4ζA, 8ζA).
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at a lower frequency. These maxima are due to the larger
monomers, which have a lower mobility. The two maxima have
similar amplitudes for an equal number of A- and B-type
monomers in the ring copolymer. The splitting between the
maxima remains unaltered by changing the number fraction of
the B-type monomers.
A comparison between the storage and loss moduli of the

alternating ring copolymer (ABAB...) and block ring copolymer
(A3B3A3B3...) with HI is depicted in Figure 7. In the low
frequency regime, the magnitude of both the storage and loss
moduli decrease for the block ring copolymer compared to
those of the alternating ring copolymer. This decrease is higher
for the storage modulus relative to that of the loss modulus as
the storage and loss moduli vary as [ ]G ( ) ( )k

2 and
[ ]G ( ) ( )k

1, respectively, in the low frequency regime.
Therefore, the smaller relaxation rates increase in the block
ring copolymer (A3B3A3B3...). In the high frequency regime,
the magnitude of the storage modulus remains unaltered as
[ ]G ( ) ( )k

0, while the magnitude of the loss modulus is
lower for the block ring copolymer, which corresponds to a
decrease in the higher relaxation rates. The topological features
of any polymer are reflected in the intermediate frequency
regime. In this regime, the block ring copolymers lack the
quasi-plateau and bimodal trend in the storage and loss
moduli, respectively, unlike those of alternating ring copoly-
mers. Therefore, the block ring copolymers are structurally
different from the alternating ring copolymers.
Figure 8 displays the storage and loss moduli, [G′(ω)] and

[G″(ω)], of the ring copolymer with Ntotal = 1000 and ρ = 0.5
in the presence of HI for various sizes of the B-type monomers.
The size of the B-type monomers is varied up to 8 times that of
the A-type monomers. The ring where the size of B-type
monomers is equal to the size of A-type monomers, ζB = ζA,
corresponds to a ring homopolymer (black line) and
reproduces the corresponding eigenvalues. For such rings,
[G′(ω)] exhibits power law behavior [G′(ω)] ∼ ω0.697 in the
intermediate frequency regime (10−3 to 10°), while [G′(ω)] ∼
ω2 in the low frequency region and displays a constant value at
the high frequency domain. These bounding regimes represent
the universal scaling behavior of [G′(ω)] in the low and high
frequency regions. Similarly, [G″(ω)] also obeys power law
behavior [G″(ω)] ∼ ω0.618 in the intermediate frequency
regime and exhibits universal scaling behavior in the low and
high frequency regimes. The scaling exponents for various sizes
of B-type monomers in the ring copolymers in the
intermediate frequency regime are given in Table 3. Both
scaling exponents α1 and α2 increase with an increase in the

size of B-type monomers. In the low frequency regime, the size
of the B-type monomer drastically affects both moduli,
[G′(ω)] and [G″(ω)], while in the high frequency regime,
all curves coincide with each other. An increase in the size of
B-type monomers enhances the viscoelastic behavior of
polymers by enhancing both [G′(ω)] and [G″(ω)] in the
low frequency regime. For ζB > ζA, the A-type monomers are
more mobile than the B-type monomers, and the dynamics is
slower than that of ring homopolymers with only A-type
(smaller) monomers. [G′(ω)] displays a quasi-plateau regime
with different sizes of B-type monomers (ζB = 2ζA, 4ζA, 8ζA),
and this quasi-plateau region is pronounced for the larger B-
type monomers, indicating a liquid to solid-like transition. The
loss modulus for ζB > ζA, i.e., for the ring copolymer with ζB =
4ζA, 8ζA shows a second maximum at lower frequencies due to
a difference in the mobilities of the A- and B-type monomers.
The split between the maxima increases with an increase in the
size of the B-type monomers. Similar behavior is observed in
the case of ring copolymers without HI and dendrimers.39,40

The effect of different sizes of B-type monomers on the
crossover frequency of the ring copolymers in the presence of
HI is depicted in Figure 9. It may be observed that the

crossover frequency decreases with an increase in the size of
the B-type monomers, suggesting that at lower frequencies, the
ring copolymers with larger B-type monomers exhibit more
solid-like behavior. An increase in the relaxation time with size
is compensated by an increase in the strength of the HI, similar
to the behavior of the loss tangent. Here, the size of the ring is
fixed so that the effect of the size of the B-type monomer and
the effect of HI can be observed. Table 3 presents the reduced
characteristic relaxation time for the corresponding crossover
frequency using equation τH.A* = 1/(ωc). The relaxation times
here vary appreciably. Copolymers with larger B-type
monomers have higher relaxation times. Such ring copolymers
have a lower mobility and slower dynamics. This lower
mobility further contributes to a decrease in the crossover
frequency. It may be concluded that the crossover frequency
and the characteristic relaxation times of the ring copolymers
with different B-type monomers are primarily governed by the
size of the B-type monomers rather than HI.
The effect of incorporating the fluctuations in HI in linear

polymers was reported earlier using Gaussian approximation,19

which agreed well with the results of the Brownian dynamics
simulations.41,42 When fluctuations are included, both the
storage and loss moduli decrease at low frequencies. However,
at high frequencies, the storage modulus is the same as that

Table 3. Scaling Exponent (α1 and α2) of [G′(ω)] and
[G″(ω)], Respectively, and the Characteristic Overall
Relaxation Times of Ring Copolymers with HI for Various
Sizes of the B-Type Monomer (ζB = nζA With n = 1, 2, 4, 8)a

ζB = nζA α1 α2 τH.A*
ζB = ζA 0.697 0.618 1.122
ζB = 2ζA 0.711 0.634 1.897
ζB = 4ζA 0.714 0.636 6.310
ζB = 8ζA 0.783 0.691 15.400

aThese scaling exponents are extracted from the slopes of the straight
lines by fitting the intermediate frequency regime for different values
of N.

Figure 9. Comparison of storage and loss moduli of ring copolymers
as a function of normalized frequency by varying the friction
coefficient of the B-type monomer (ζB = ζA, 2ζA, 4ζA, 8ζA).
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predicted by the Rouse−Zimm model, while the loss modulus
is enhanced.19

4. CONCLUSIONS
In this work, we present a multiresolution model of ring
copolymers within the framework of the optimized Rouse−
Zimm theory. The multiresolution feature arises from
differently sized beads with different friction coefficients that
are connected through different harmonic springs. The model
represents larger beads as B-type monomers and smaller beads
as A-type monomers. The HI between the pair of monomers
are approximated by using the preaveraged HI tensors. For
ring polymers, inclusion of fluctuations in HI may decrease the
magnitude of both storage and loss moduli at low frequencies,
as in linear polymers. The mechanical relaxation moduli are
evaluated from this multiresolution model, which provides an
insight into the rheology of the ring copolymers. The
frequency-dependent loss and storage moduli are evaluated
as a function of the ring size, HI, number fraction, and size of
the B-type monomers. The mechanical relaxation moduli
depend only on the eigenvalues, which are determined from
the numerical diagonalization of the [H.A] matrix. In the low
frequency regime, both storage and loss moduli are dominated
by the lower relaxation rates corresponding to the collective
relaxation modes, while in the high frequency regime, the loss
modulus is dominated by higher relaxation rates corresponding
to local relaxation modes. The HI increase the smaller
relaxation rates corresponding to collective relaxation modes,
which accelerates the overall relaxation dynamics. The higher
relaxation rates corresponding to local relaxation modes
decrease with HI and the characteristic maxima shift to a
lower frequency. In the presence of HI, [G′(ω)] shows a quasi-
plateau, which is reminiscent of a more solid-like behavior,
while [G″(ω)] exhibits two maxima due to the difference in
the mobilities of two types of monomers. The dynamical
ranges of both storage and loss moduli are reduced in the low
frequency regime, which indicates accelerated dynamics in the
presence of HI.
The viscoelastic response of the ring copolymers is

predominantly viscous in the low frequency regime and elastic
in the high frequency regime. The characteristic crossover for
the ring copolymers occurs at ωτ1 < 1, suggesting that the ring
copolymers are less compact as compared to the linear and
ring homopolymers and represent the multimode Maxwell
model. The inverse of the crossover frequency represents the
characteristic overall relaxation time. The characteristic
relaxation time for large sized rings is lower for the rings
with HI, suggesting enhanced dynamics in the presence of HI.
The ring copolymers in the absence of HI exhibit a slower
relaxation due to the larger size of one of the monomers as
compared to the bare Rouse rings. The storage and the loss
moduli are also evaluated as a function of the number fraction
and size of two different types of monomers for a particular
ring size.
The quasi-plateau in [G′(ω)] increases with an increase in

the size and number fraction of B-type monomers, leading to a
transition from the liquid to a solid-like behavior in the
intermediate frequency regime. The loss modulus shows a
second maximum due to a difference in the mobilities of the
two types of monomers, which is enhanced with the number
fraction and size of the larger monomer. The splitting between
the maxima remains unchanged on changing the number
fraction, while it increases with the size of the larger

monomers. Both storage and loss moduli increase with an
increase in the size of the larger monomers in the low
frequency regime, indicating a slow relaxation dynamics of ring
copolymers as compared to the ring homopolymers with only
A-type (smaller) monomers. This slow relaxation may be
characterized in terms of the relaxation times, which vary
appreciably with the size of the larger monomers.
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