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ABSTRACT: Biological semiflexible polymers and filaments such
as collagen, fibronectin, actin, microtubules, coiled-coil proteins,
DNA, siRNA, amyloid fibrils, etc., are ubiquitous in nature. In
biology, these systems have a direct relation to critical processes
ranging from the movement of actin or assembly of viruses at
cellular interfaces to the growth of amyloid plaques in neuro-
degenerative diseases. In technology and applied sciences,
synthetic macromolecules or fibrous objects such as carbon
nanotubes are involved in countless applications. Accessing their
intrinsic properties at the single molecule level, such as their
molecular conformations or intrinsic stiffness, is central to the
understanding of these systems, their properties, and the design of
related applications. In this Perspective we introduce FiberAppa
new tracking and analysis software based on a cascade of algorithms describing structural and topological features of objects
characterized by a very high length-to-width aspect ratio, generally described as “fiber-like objects”. The program operates on
images from any microscopic source (atomic force or transmission electron microscopy, optical, fluorescence, confocal, etc.),
acquiring the spatial coordinates of objects by a semiautomated tracking procedure based on A* pathfinding algorithm followed
by the application of active contour models and generating virtually any statistical, topological, and graphical output derivable
from these coordinates. Demonstrative features of the software include statistical polymer physics analysis of fiber conformations,
height, bond and pair correlation functions, mean-squared end-to-end distance and midpoint displacement, 2D order parameter,
excess kurtosis, fractal exponent, height profile and its discrete Fourier transform, orientation, length, height, curvature, and kink
angle distributions, providing an unprecedented structural description of filamentous synthetic and biological objects.

■ INTRODUCTION

In modern natural and applied sciences, image processing plays
a pivotal role in gaining qualitative and quantitative information
from investigated complex systems. A subtype of signal
processing, image processing operates on 2D or 3D arrays of
numerical values by means of morphological operators, filters of
various types, and other standard signal-processing tools. Image
processing has a large impact, for example, in neurosciences, via
neuron tracing in 3D stacks of fluorescence microscopy
images.1,2 The extraction of neuron’s morphology via accurate
localization of soma, axon, and dendrites3,4 is a step in
reconstruction of neuronal cells’ network; that is of great
importance for understanding how the brain works.5 The image
processing is also very helpful in cell biology with segmenting
cytoskeletal actin filaments that are involved in cell mobility and
division as well as in carrying intracellular transport functions.6

From elongation rates over time of these filaments, an
estimation of kinetic and equilibrium constants for polymer-
ization and depolymerization reactions allows clarification of
detailed actin functionality in cells.7,8 DNA is another
important object, for which image processing has been
traditionally widely used. It has become a classical system to
apply polymer physics concepts9,10 and to explore statistical

properties and scaling behavior of macromolecules in both
linear11 and circular conformations.12 In the case of amyloid
fibrils,13−17 understanding the correlations between molecular
structure, mechanical properties, and morphology, as obtained
from processing atomic force and transmission electron
microscopy (AFM, TEM) imaging data, is crucial for
elucidating critical steps in the progression of neurodegener-
ative disorders, such as Alzheimer’s, Parkinson’s,18−20 or sickle
cell disease.21 Particularly, some recent investigations suggest
that disease-specific prion fibrils exhibit higher elastic modulus
than prion fibrils without disease specificity.22 By exploiting the
stochastic optical reconstruction microscopy, which is essen-
tially a fluorescence microscopy technique based on high-
accuracy localization of photoswitchable fluorophores,23 the
image processing can also be used in determining the exchange
pathways of monomers within individual supramolecular
fibers.24

In order to test the accuracy of tracking procedures and
verify the correctness of computational tools, artificial
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generation of synthetic images with curvilinear objects, that
follow a certain shape model, can also be used.25,26 Simulating
images with adjustable size, resolution, level of noise, and
system parameters (branching, length, thickness, flexibility, etc.)
can greatly help in understanding the limitations of available
algorithms and improve their efficiency.27 Hence, gaining access
to quantitative and qualitative information via image processing
and statistical image analysis is central to a very vast landscape
of fields, spanning from in biomedical research to nano-
technology and biomaterials science.
An overarching necessity in all above-mentioned fields is the

efficient detection of curvilinear objects in images of various
types (2D and 3D), acquired primarily by fluorescence
microscopy, confocal laser scanning microscopy, atomic force
microscopy, and scanning and transmission electron micros-
copy (SEM and TEM). This general task has been considered
by a vast number of scientists and researchers. The algorithms
have been developed based on estimation of the first- and
second-order directional derivatives,28 active contour models
that work by “energy minimization” of external (image
intensities, or gradients) and internal (contour tension and
elasticity) forces,29 unbiased detector of curvilinear structures,30

edge and ridge detection based on the optimization of a Canny-
like criterion,31 or linear feature detection using multiple
directional nonmaximum suppression.32 Some of these
methods were widely adapted in medical research and
neurosurgery for diagnosis of vascular diseases and planning
vascular interventions from magnetic resonance angiographic
(MRA) images33−35 and, particularly, in neuroscience and
neurology, where investigation of crucial neuronal functions
provides valuable information about the brain activity and
possible applications in treatment of neurodegenerative
diseases. An additional complication appearing in neuronal
tracing is a separate detection of soma and branching points of
dendrites, which is normally treated separately from axon
tracing.1 Particularly, an imaging data obtained in these research
fields is represented as plane image stacks in 3D that depict
fluorescently labeled cultured neurons. The minimal element of
such images is called voxel (a combination of words “volume”
and “pixel”), which is an image intensity value on a regular grid
in three-dimensional space. Generally, the above-mentioned
algorithms with a readaptation to 3D can be used
independently or in combination with the auxiliary pre- and
postprocessing of recorded data. Some of them are based on an
object “thinning” (skeletonization) method, primarily via
morphological operations of erosion and dilation, that are an
iterative removal of voxels from the surface of the object until
the last thin line remains.4,36−40 However, often they may not
be robust enough on noisy images, which may severely disturb
the quality of segmentation, and additional image preprocessing
by noise filtering is highly required. Alternative methods
employ the minimal-cost path calculation (Dijkstra’s or A*41)
between two points defined by the user or, in an automatic way,
through an appropriate additional utility algorithm.39,42 In a
general 2D case, to facilitate the minimal-cost pathfinding
algorithm, or as a standalone method, the eigenvalues of
Hessian matrix applied to an image are used to compute for
each voxel the match to the object and the corresponding
eigenvector for its local direction.2,43,44 Other methods include
voxel scooping45 and model-based splines,26,44 which were
initially introduced as snakes.29

More relevant to macromolecules, fibrillar structures, and
polymers, various image processing methods are applied to

quantify bending properties, network geometry, and basic
morphological characteristics. Identification of the 3D gel
microstructure,46 in particular of collagen fibrils forming a
matrix,47 can be performed via the binarization and thresh-
olding voxels of an image, followed by classification of
branches48 or by nucleation and local maximum points
identification.49 The search of centerline for linear, fiber-like
objects like actin filaments and microtubules can be
implemented in a similar manner,50 or by minimal cumulative
path cost estimation in tracking of outer tips of microtubules,51

and quite promising model-based approaches.25 Various
methods have been applied for segmenting DNA11,52,53 and
amyloid fibrils54,55 adsorbed on surface and visualized by AFM
or TEM. Statistical and scaling properties of these objects can
be derived from the tracked contours and from methods for
simulation and measurement of amyloid fibril width, length,
and height distributions.27

Some macromolecules like DNA or carrageenan polysac-
charides may exhibit a circular conformation and can be well
described by a closed contour.12,56,57 The intrachain bond
correlation functions and statistical behavior of these systems
are different compared to linear polymers.58−60 The tracking
approach based on the snakes model29 provides a direct
method to address these complications. These closed snakes
can be used to obtain spatial description of circular objects in
2D visualized by AFM or EM, with a follow-up analysis of their
particular features.
In this context, the development of computational tools for

the entire set of linear nonbranched and circular objects is of
great importance in nanoscience. There are several examples of
programming applications that can be found in the recent
literature. Most among them are plug-ins for the Java-based
image processing program ImageJ: NeuronJ (neurite tracing
and analysis in fluorescence microscopy images),43 Neurite-
Tracer (automated quantification of neurite outgrowth),39

JFilament (segmentation and tracking of cytoskeletal fila-
ments),25 and actin filament polymerization−depolymerization
tracker.7 Furthermore, MATLAB-based or standalone applica-
tions are also available: NeuronMetrics (semiautomated
processing of cultured neuron images),38 NeuronCyto (neurite
outgrowth measurement based on image segmentation with
topological dependence),3 V3D-Neuron (3D reconstruction of
neurites),61 DNA Trace,62 and Simple Neurite Tracer
(reconstruction, visualization and analysis of neuronal
processes).42 Yet, none of these softwares are fully rooted on
polymer physics concepts to analyze filamentous objects, and a
comprehensive polymeric description of filamentous objects is
yet to be provided within a single program application, which
calls for immediate developments.
Over the past years an increase in acquisition modes of

experimental visualization techniques and a growth of their
quality and resolution have been remarkably rapid. It is
noticeable, especially, in AFM imaging with more accurate
cantilevers and possibilities to scan very-high-resolution images
of the size 5120 × 5120 pixels. With the parallel progress in
computer speed and memory volumes, more precise image
analysis tools and improved data handling have become highly
desirable. In this Perspective we present a solution to above-
mentioned application problems raised in nanosciencea
project with the open-source code called FiberApp, written in
MATLAB programming language, in which cascading algo-
rithms based on statistical polymer physics concepts have been
implemented to yield the most accurate conformational,
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topological, and structural analysis available to date to describe
fibrous and filamentous biological and synthetic objects. The
input images, on which FiberApp works, may have been
generated by any microscopy technique, essentially any TIF
image, although most of the examples which will be presented
are based on high-resolution atomic force microscopy and
scanning and transmission electron microscopy imaging. We
employ the most suitable and promising tracking method based
on active contour models, reinforced by the additional utility
A* pathfinding algorithm for a faster semiautomatic segmenta-
tion process, allowing the tracking of thousands of objects in a
short time. The potential to track linear and circular fiber-like
objects and, independently, the possibility to define segments
of heterogeneous stiffness along their contours using mask
elements are only some of the key features that broaden the
scope of possible applications of the program to a context much
wider than that of classic statistical polymer physics. Moreover,
the ability of FiberApp to simulate “in silico” statistical data and
artificial images of fiber-like objects serves as a powerful tool for
prediction and rationalization of experimental results.

■ DESCRIPTION OF THE SOFTWARE

Typical Systems of Interest Handled by FiberApp
Software. The concept of representing fiber-like objects solely
by their midline contours, tracked in microscopy images, is
applicable to a broad variety of systems in nanoscience. A few
types of such objects and their features, which have previously
been investigated with the help of FiberApp software, are
exemplified in Figure 1. Figure 1A shows the application of
FiberApp to bovine serum albumin (BSA) flexible (Figure 1A,
left) and rigid (Figure 1A, right) amyloid fibrils, which are
formed upon incubating the protein solution at an elevated
temperature (90 °C) and in an acidic environment (pH 2) for
several days. This analysis allowed the identification of six
distinct polymorphic types of BSA fibrils, which coexist with
four types of intermediates. Furthermore, the handedness
inversion, upon a level change in their hierarchical organization,
was resolved.63,64 Another example is the statistical analysis of
simulated worm-like chain (WLC) contours with known and
predefined structural parameters (Figure 1B).65 These artificial
images of simulated WLC fibrils, with the same resolution as
the AFM imaging data subjected to the tracking procedure, can
help to rule out possible artifacts that originate from tracking

Figure 1. A few illustrative examples of systems that can be analyzed by FiberApp software. (A) Bovine serum albumin (BSA) flexible (left) and rigid
(right) amyloid fibrils.63,64 The inset images depict magnified areas of AFM images with point positioning along tracked contours with low and high
intrinsic stiffness, respectively. (B) Simulated worm-like chain fibrils, generated directly in FiberApp software, providing a theoretical benchmark
model against real systems.66 (C) Functionalized multiwalled carbon nanotubes (the figure is adapted from Li et al.67). The inset image reflects the
feasibility of tracking for hollow objects. (D) Circular DNA adsorbed on APTES-modified mica (with carrageenan fibrils in the background). Image
courtesy of Larissa Schefer. (E) β-Lactoglobulin fibrils that form 2D liquid crystalline domains (left)65 and circles (right), pointed by white arrows, at
liquid interfaces (figure adapted from Jordens et al.66). (F) Wavy lysozyme amyloid fibrils with subpersistence-length complex scaling behavior
(figure adapted from Lara et al.69). (G) Nanoclusters of Fe3O4 nanoparticles with β-lactoglobulin fibrils that can align in the presence of a magnetic
field (figure adapted from Bolisetty et al.70). (H) Linear ι-carrageenan polysaccharide chains, prior (left) and after addition of salt (right), forming
secondary structures and looped conformation.57 Image courtesy of Larissa Schefer. The inset images demonstrate the possibility of closed-contour
tracking. (I) TEMPO-oxidized wood cellulose nanofibrils with areas of different intrinsic stiffness (kinks), originating from the harsh mechanical
treatment during sample preparation.71 In the inset image it is demonstrated a concept of tracking with special masks that define contour segments
with high curvature and low intrinsic stiffness.
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algorithms and, hence, be useful for analyzing the real fibril
images.66 Rigidity and mechanical properties of functionalized
multiwalled carbon nanotubes with sulfonic groups are also
accessible via FiberApp (Figure 1C).67 Topological character-
istics of DNA,57 which is also an extensively used system for the
application of polymer physics concepts in general, as handled
within FiberApp, are shown in Figure 1D.10,68 Another
example, which consists of the liquid crystalline alignment of
β-lactoglobulin fibrils at liquid interfaces, where the coexistence
of two-dimensional isotropic and nematic phases can occur, is
resolved and quantified by a length-scale-dependent order
parameter S2D calculated on all tracked contours (Figure 1E,
left).65 The same polar β-lactoglobulin fibrils at the air−water
interface do not possess the characteristic Gaussian curvature
distribution for 2D WLC but instead have an excess of large
curvature values (fat-tailed curvature distribution), which can
lead to ring-like fibril conformations (Figure 1E, right).66 In the
case of wavy lysozyme fibrils, prepared by incubation of the
protein solution at pH 2 and 60 °C for several days, polymer
physics concepts were applied via FiberApp on tracked
contours in order to study the subpersistence-length complex
scaling behavior and the periodicity in height profiles (Figure
1F).69 Another class of objects handled by the software is a
system of magnetic-responsive Fe3O4 nanoparticle-modified
protein spherical nanoclusters that can align in the presence of
a magnetic field (Figure 1G).70 The system of ι-carrageenan
polysaccharide chains in the random coil conformation (Figure
1H, left) that undergoes a coil−helix transition at high ionic
strength coupled with an increase in thickness and rigidity of
polymers is another example of biomacromolecules which can
be handled by the software (Figure 1H, right). Along with the
formation of the secondary structure, ι-carrageenan chains also
form looped structures that coexist with linear polymer
chains.57 TEMPO-oxidized wood cellulose nanofibrils with
kinks provide an example of heterogeneous stiffness along the
contours, which causes an additional complication for the
tracking procedure. FiberApp solves this problem by employing
masks that define kink areas, so that the contour affinity to
bend depends on whether the contour segment is inside or
outside the mask (Figure 1I). This is essential for the tracking
algorithm to correctly follow the nanocellulose fibrils71 or DNA
with protein-induced bending.72,73 There is also the possibility

to apply more sophisticated theories for chains with bends or
sections of a different flexibility.68 In the case of nanocellulose
fibrils, the detailed statistical investigation of the kink angle
distribution provided convincing evidence that the commonly
accepted model of the structure as built of alternating hard
crystalline and soft amorphous regions of cellulose chains is not
appropriate and supported a process-induced kink formation
generated during the preparation treatment.71 Other examples
of supramolecular fibrous aggregates, not shown in Figure 1,
with periodic height changes accessible via FiberApp, are
offered by self-assembled glycyrrhizic acid forming twisted
ribbons74 or ILQINS hexapeptides forming helical ribbons.75

Description of the Workflow with FiberApp Software.
Together with a brief description of A* pathfinding and active
contour models based tracking procedures, modified and
adapted to the needs of the software, we provide a complete
workflow scheme for processing AFM and other types of
microscopy images, as shown in Figure 2. The code is
optimized for working with modern superhigh-resolution
microscopy images (5120 × 5120 pixels and virtually more)
minimizing the number of errors upon tracking of the objects.
Functions in the “Image Preprocessing” group can be used
prior to fiber tracking in order to remove uneven illumination
from the image and allow correct extraction of z coordinates.
There are two major steps over the general workflow: “Fiber

Tracking” and “Data Analysis”. With the first step, each fiber-
like object in the image is fully characterized by its contour,
which is a sequence of points ordered along the fiber’s middle
line from one end to the other. These contours have a constant
distance between the point projections on the image plane, the
step size Δs, which has a typical value of about one to several
pixels size of the image. Thus, the coordinates xi, yi (in the
image plane), and zi (height) of all the points covered by the
contour provide a full spatial description of the fiber’s central
line.
The initial positioning of a contour is manually defined with

the help of a modified A* pathfinding algorithm.41 For that, the
image is considered to be a weighted graph of “moving costs”,
where image pixels are represented by graph vertices. The “cost
of movement” between two adjacent pixels is inversely
proportional to the starting pixel intensity, and this value is
stored as a graph edge between two corresponding graph

Figure 2. General scheme of the workflow of FiberApp software. The possible input data types are given at the left side of the figure (blue
parallelograms). The main internal data types of the program “Image” and “Fiber Data” (green rectangles) define a framework of cyclic tracking
procedure, where fiber data can be collected from, potentially, several images. The program’s core functionalities are organized according to their
specifications and the areas of implementation (orange rectangles). The functions for the fiber data analysis result in forms of output given at the
right side of the figure (violet parallelograms).
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vertices. The algorithm then heuristically searches for the
“lowest cost path” between two points that are manually
defined by a user. Hence, the path will preferably go along a
bright ridge of a fiber-like object in the image, which is a good
first approximation of the object’s midline position.
The contour is, afterward, iteratively and automatically

deformed according to the active contour model.25,29 These
contours are parametric curves that adapt to the image features
in order to minimize the “total contour energy”, which is
expressed as the sum of an “external energy”increasing with
the positional offset of the contour from the brightest pixels of

the imageand an “internal energy”increasing with the
growth of the total curvature along the contour.
Functions in “Tracking with Masks” provide a possibility to

use special mask elements that can be placed to define areas of
the contour with different bending properties (Figure 3). For
example, the curvature-penalizing parameter can be locally
reduced, so that the contour can more easily bend there and
exhibit a kink. In other words, it allows contours to have a
heterogeneous stiffness (e.g., low stiffness inside mask areas,
large stiffness outside). In this example, the masks are used to
force the contour to bend in the kink areas and also define an
angle of contour deviation (kink angle) for further analysis. The

Figure 3. Cryo-SEM images with tracked contours of nanocellulose fibrils. (A) A low stiffness parameter was used to perform tracking, which leads
to an abrupt contour with undesirable fluctuations along it due to noise in the image. (B) The opposite case, a large stiffness parameter, suppresses
the noise influence but does not allow an accurate fit in the vicinities of kinks. (C) The special masks (green squares) can be used to provide the
contour with a heterogeneous stiffness, by making contour segments inside the masks softer (or stiffer) in comparison to the outer parts.

Figure 4. (A) AFM images with BSA fibrils of type F1
1 (bottom), R1

0 (middle), and R1
r (top). The scale bar and the color bar apply to all AFM images.

(B) Height profiles of longitudinal sections along fibrils with respective color identifications from the panel A. The figures in panels A and B are
readapted from Usov et al.63 (C) Length distributions of flexible thin F1

1 and flexible thick F2
1 classes of BSA fibrils acquired after 40 h of incubation.

(D) Length distributions of rigid thin R1
0 + R1

r and rigid thick R2
0 + R2

r classes of BSA fibrils acquired after 100 h of incubation. The solid lines
represent the best-fits for histograms with a log-normal distribution function. The figures in panels C and D are readapted from Usov et al.64 (E)
Average height distributions of ι-carrageenan polysaccharide chains in random coil and ordered helical conformations and double-stranded DNA.
The figure in panel E is reproduced from Schefer et al.57 (F, G) Periodicity analysis and the pitch size estimation based on Fourier transform and
autocorrelation function of the height profiles of supramolecular aggregates at different concentrations. The inset figure depicts an AFM image of
analyzed fibrils. The figures in panels F and G are readapted from Saha et al.74 (H) Cryo-TEM image of twisted lysozyme amyloid fibrils and a
tracked contour shown as a red line. Image courtesy of Stephan Handschin. (I) Noisy pixel intensity profile along the contour. (J) Height
autocorrelation function with clear peaks defining the periodicity of lysozyme amyloid fibrils.

Macromolecules Perspective

DOI: 10.1021/ma502264c
Macromolecules 2015, 48, 1269−1280

1273

http://dx.doi.org/10.1021/ma502264c


resulting coordinates of contours and masks after the tracking
procedure can then be stored in a separate project file and
provide the basis for further data analysis.
Furthermore, the tool “WLC Generator” is used for creating

both synthetic contour coordinates that follow WLC statistics
and images with fibrils scattered on them, while functions in the
“Data Manipulation” set provide a simple solution for
combining and splitting statistics from different images or
fiber types. In what follows, we describe in detail the second
step of the workflow with FiberAppthe basics of fiber data
analysis that can be performed and typical results output that
can be generated. The modulated internal architecture of
FiberApp allows incorporating new processing methods with
ease, thus making it a flexible platform for future developments.
The technical details of processing algorithms, together with
specifications of A* pathfinding and active contour models
based tracking procedures, are discussed in detail in the
Supporting Information.

■ SPECIFICATIONS AND OUTPUTS OF THE
IMPLEMENTED FIBER DATA PROCESSING
METHODS

Basic Morphological Parameters of Fiber-like Objects
and Periodicity along Their Contours. The methods in this
section provide a primary morphological characterization of the
objects accessible by the software and include the height profile,
the height and length distributions, the height autocorrelation
function, and the height discrete Fourier transform analysis.
The height profile is a simple test to briefly estimate the

average height and check the presence of repeating patterns
along the contour. It also can serve in distinguishing between
different families of fiber-like objects. For example, Figure 4B
represents the longitudinal sections of the BSA fibrils displayed
in Figure 4A, by which three distinct types of thin BSA fibrils
(flexible left-handed F1

1, rigid without periodicity R1
0, and rigid

right-handed R1
r) based on their average height, existence of

periodical structure along their contours and visual appearance,
can be determined.63 This method can be used to plot height
profiles not only along curved objects but also along linear
cross sections.
The length distribution can provide information about

nucleation and growth rates of fibrils, when distributions of
samples, taken at different incubation times, are compared.
Furthermore, in the system of BSA fibrils the statistical results
indicate that the conversion rate of the polymorphic trans-
formation F1

1 → R1
0 + R1

r is slightly lower than that of the
transformation F2

1 → R2
0 + R2

r . This arises from the fact that the
total length ratio of flexible classes L(F1

1)/L(F2
1) ≅ 0.27 at 40 h

of incubation is higher than the ratio of rigid classes L(R1
0 +

R1
r)/L(R2

0 + R2
r) ≅ 0.2 at 100 h.64 The shape of length

distribution for amyloid, and cellulose fibrils,71 as well as many
other parameters in biology76 fits well to the log-normal
probability density function f(L):

σ π
= μ σ− −f L

A
L

( )
2

e L(ln ) /22 2

(1)

where L is the total length, μ and σ are the mean value and the
standard deviation of the length natural logarithm, respectively,
and A is a normalizing constant (Figure 4C,D).
By plotting histograms of the average height values, extracted

mainly from AFM images, it then becomes possible to analyze
and discriminate between different families of fiber-like objects.

An example is shown in Figure 4E, where the height
distributions are plotted for ι-carrageenan polysaccharide chains
in random coil and ordered helical conformations together with
the double-stranded DNA. From this accurate analysis, it was
possible to resolve a long-standing question whether the
ordered helical conformation of carrageenans exists as a single
or double helix. The final conclusion that can be drawn states
that thicker strands consist only of a single polymer chain.57

Discrete Fourier transform (DFT) of height profiles provides
a way to estimate a pitch size of objects with periodical height
variations as in twisted or helical ribbons. Fast Fourier
transform (FFT) is a rapid method to calculate DFT and has
the form

∑= =π

=

− − −A h k Ne 1, ...,k
n

N

n
i k n N

1

2 ( 1)[( 1)/ ]

(2)

where hn is the height of the nth point along the contour, N is
taken as a maximal number of points in a contour among all
fiber-like objects, and i is the imaginary unit. Amplitudes Ak of
the DFT describes the presence of a frequency component k in
the height profile. One clear peak in the graph is the signature
of a distinct periodical structure, whose value in nanometers
can be estimated via 1000/(peak position).
The second way to study periodical patterns is to calculate

the height autocorrelation function Rxx. The discrete
autocorrelation function has the general form

∑=
− =

− −

+R m
N m

x x( )
1

xx
n

N m

n n m
0

1

(3)

where m is the lag, N is the total number of points along a
contour, and x identifies either the discrete height hn or twist
angle θn profile. The twist (helix) angle profile is obtained via
the height profile’s maxima and minima peaks position. The
angle values span linearly from 0 to π within the distance
between maxima and the consequent minima height peaks and
from π to 2π until the next maxima to complete the period.
Hence, for sake of simplicity, the twist angle and height profiles
have same periodicities (note that often it is assumed that a full
period for the angle should have a doubled value in comparison
to the height). A presence of periodicity in the resulting curve is
a signature of the periodical pattern in height/twist angle
profiles with the same period.
Both the above-mentioned methods were applied to yield

consistent values for the periodicity (p = 8−9 nm) of self-
assembled fibrillar supramolecular structures of glycyrrhizic acid
(Figure 4F,G).74 We note here that the information on the
pitch size is also essential for estimation of the mechanical
properties of fiber-like objects in helical ribbons conforma-
tion.77 Moreover, Figure 4H shows a Cryo-TEM image of
twisted lysozyme amyloid fibrils with a tracked contour (red
line). Despite the fact that the height profile along the contour
is very noisy (Figure 4I), the Height Autocorrelation Function
results in the clear peaks that define the periodicity of these
lysozyme amyloid fibrils (Figure 4J) showing a great robustness
of the approach.

Persistence Length Estimation Methods. The persis-
tence length is a basic property of polymers, which quantifies
their rigidity and is formally defined via the bond correlation
function in 3D as the length over which angular correlations in
the tangent direction decrease by e times.78 There are several
approaches of the persistence length estimation for WLC
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discrete contours, consisting of N points and, accordingly, N −
1 segments (Figure 5A−C). However, there is evidence that
some systems like DNA at short length scale52,79 or simulated
bottle-brush polymers when the chain length of the macro-
molecules tends to infinity80 do not necessarily follow the
standard statistics of WLC but can be well described by the
alternative generalized theory of semiflexible polymers. Here,
we assume a WLC behavior for investigated systems of fiber-
like objects at all length scales.
One of the most practical and widely used methods for the

persistence length estimation is to calculate the mean-squared
end-to-end distance (MSED) between contour segments
(Figure 5A). This characteristic for a WLC model in 2D has
the following theoretical dependence: ⟨R2⟩ = 4λ[l − 2λ(1 −
e−l/2λ)],9 where λ is the persistence length and R is the direct
distance between any pair of segments along a contour
separated by an arc length l. Employing this approach, a subtle
increase in persistence length of ι-carrageenan chains upon a
coil−helix transition from 22.6 to 26.4 nm could be detected,
indicating an increase in rigidity of segments in helical

conformation (Figure 5D,F) and yielding a valuable direct
indication of the coil−helix transition on a single chain level.57

The bond correlation function (BCF) is the most general
way to evaluate the persistence length (Figure 5B). For WLC in
2D it corresponds to ⟨cos θ⟩ = e−l/2λ,81 where θ is the angle
between tangent directions of any two segments along a fibril
contour separated by an arc length l. A different method that
can be successfully applied only to very stiff fiber-like objects (l
< λ) is the mean-squared midpoint displacement (MSMD) as
depicted in Figure 5C. The equation, describing the behavior of
a midpoint deviation has the form ⟨ux

2⟩ = l3/48λ,21,55 where
⟨ux

2⟩ is the mean-squared midpoint displacement between any
pair of segments along a contour, separated by an arc length l.
This expression is derived with an assumption that these
deviations are small in comparison to the corresponding arc
lengths (|ux| ≪ l). Both methods were successfully applied for
the persistence length estimation of BSA fibrils. The flexible
fibrils were analyzed by means of BCF (Figure 5E,G), while
rigid fibrils were via the MSMD method (Figure 5E,H). The
obtained results are consistent with MSED analysis for all
classes (λMSED is equal to 160 nm for F1

1, 150 nm for F2
1, 1280

Figure 5. Overview of the persistence length estimation methods for discrete contours that are employed in FiberApp and their practical
applications. Schematic representations of methods: (A) mean-squared end-to-end distance (MSED) versus internal contour length; (B) bond
correlation function (BCF); (C) mean-squared midpoint displacement (MSMD) versus internal contour length. (D) AFM image of ι-carrageenan
polysaccharide chains in random coil and ordered helical conformations. The red arrows point toward the thick helix segments. (E) AFM image of
BSA fibrils on mica. The arrows of the same color point to fibrils of a certain type: F1

1 (cyan), F2
1 (violet), R1

0 (green), and R2
0 (orange). (F) Plot of

MSED versus internal contour length for separate helix and random coil segments of the ι-carrageenan polysaccharides and values of corresponding
persistence lengths extracted from fits. (G) Plot of BCF for BSA fibrils of types F1

1 and F2
1 with resulting persistence lengths. (H) Plot of MSMD

versus internal contour length for BSA fibrils of types R1
0 and R2

0 with resulting persistence lengths. The figures in panels D and F are readapted from
Schefer et al.57 The graphs in panels G and H are readapted from Usov et al.63
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nm for R1
0, and 2550 nm for R2

0)63 and give access to bending
rigidities D of the corresponding fibrils as a characteristic of
mechanical properties through the expression D = λkBT.

82

Scaling Behavior and Pair Correlation Function. Based
on polymer physics concepts, the average end-to-end distance
is a power-law function of the internal contour length l and
scales according to the relation ⟨R(l)⟩ ∼ lv,83 where ν is a
scaling exponent. When l is small in comparison to the
persistence length (l < λ), the scaling exponent approaches the

value 1, indicating rod-like statistical behavior. For the contour
lengths above the persistence length l ≫ λ the expected scaling
exponent might vary, depending on temperature, quality of
solvent, excluded volume interaction, and other parameters, and
for the important case of self-avoiding random walk (SAW)
chains in a good solvent this is equal to 3/4 in 2D and 3/5 in
3D.10

The 2D pair-correlation function g(r) is defined as g(r) =
⟨s(r)⟩/πr2,83 where ⟨s(r)⟩ is the length of the contour segment

Figure 6. (A) Cryo-TEM image of lysozyme amyloid fibrils. (B) Averaged end-to-end distance versus the internal contour length plot with the
scaling exponent ν values for sinus model and lysozyme fibrils at three different length scales. (C) Pair correlation function plot with corresponding
values for the scaling exponent α. The figures in panels A, B, and C are readapted from Lara et al.69 (D) AFM image of BSA amyloid fibrils of types
F1
1 and R1

0. (E, F) Averaged end-to-end distance versus the internal contour length plots (blue axis) and scaling exponent propagations (red axis) for
BSA fibrils of types (E) F1

1 and (F) R1
0. The figures in panels E and F are readapted from Usov et al.63

Figure 7. AFM image of β-lactoglobulin fibrils (A) at the air−water interface with ring configurations and (B) deposited onto mica from the bulk
solution. (C, D) Normalized probability distributions of absolute curvature values extracted from the generated WLC data (violet), the generated
WLC data after applying the tracking procedure (blue), real fibrils from panels A and B, respectively (green). In both scenarios real fibrils exhibit an
excess of curvature upon being adsorbed to a surface, which is clearly visible in the inset images. The figures in panels A, B, C, and D are reproduced
from Jordens et al.66 (E) Probability density functions of the angles between segments of discrete WLCs with identical contour length L = 700 nm,
persistence length λ = 50 nm, and discretization step size Δs = 1 nm. The segments are separated by a distance 1 nm (green), 25 nm (blue), 50 nm
(violet), and 500 nm (red). (F) Excess kurtosis as a function of the separation distance between segments of WLCs.
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incorporated in a circle of radius r, where the average is taken
by centering the circles at the contour points with all possible
positions of the circle. In the rod-like limit (l < λ) the pair
correlation function behaves as g(r) ∼ rα, which together with
the approximation 2r ≈ ⟨R(s)⟩ ∼ sv results in a relationship
between two exponents α = 1/ν − 2.69

Using FiberApp, the estimation of exponents for sinusoidal
lysozyme amyloid fibrils below the persistence length (2.5 μm)
was carried out by both approaches (Figure 6A−C), with the
observable progressive changes in the values of ν and α at
multiple length scales.69

An alternative way of presenting scaling exponents, based on
the analysis of two BSA fibril classes F1

1 and R1
0 (Figure 6D), is

illustrated in Figure 6E,F. A local linear fit of the log−log plot
with the end-to-end distance versus the internal contour length
dependence reflects the scaling exponent at this particular
position. The resulting curve is relatively smooth, and in such a
case, it can accurately express the evolution of the scaling
exponent value with contour length. For different systems the
scaling exponent can indicate whether the fiber-like objects are
in equilibrated or “trapped” configurations due to the
interaction with a substrate.9,84 For example, in the case of
the flexible BSA fibrils F1

1, the scaling exponent reached the
plateau of 3/4 expected for SAW in 2D, indicating the
equilibrated state on mica. For the rigid fibrils R1

0, on the other
hand, the processing length is not long enough compared to the
persistence length to draw any conclusion and the scaling
exponent does not attain any plateau value, i.e., is not stationary
around the 3/4 expected value.63

Curvature Distribution and Excess Kurtosis. The
analysis involving the curvature estimation for polar and chiral
fibrils can shed light into important aspects of interaction with a
surface upon their adsorption. The probability density function
p(κ) for the curvature κ of WLC in 2D is equal to p(κ) =

(2λΔs/π)1/2e−λΔsκ
2

and is described by a Gaussian distribution
of κ.25,85 It was shown that the fibrils exposed to an
inhomogeneous environment, such as an air−water interface
or a mica substrate (Figure 7A,B), do not possess the same
Gaussian distribution as WLCs. In all cases, there is an evidence
of an excess of curvature, which can also lead to ring-like

conformations of these fibrils (Figure 7A). This spontaneous
curvature can be easily detected in the fat tails of the real fibrils
curvature distributions in comparison to the synthetic WLCs
data, which were subjected to the same tracking procedure in
the corresponding simulated images, but still retained the
Gaussian shape of curvature distribution (Figure 7C,D). The
simulated images of WLCs contours were generated using
parameters from the corresponding AFM images, by duly
taking into account the finite tip size effect.86,87

The equilibration of the fiber-like objects adsorbed on a
substrate can also be verified using the excess kurtosis of the
angle θ between consecutive segments of a tracked discrete
contour.11,53 The excess kurtosis is defined as K = ⟨θ4⟩/⟨θ2⟩2 −
3, and if the chains are fully equilibrated on a substrate in 2D,
then the distribution of θ is Gaussian and K = 0, which is a
feature of the WLC behavior.88 However, it is only possible to
apply this method on separation distances below the
persistence length (l < λ) because upon increasing the distance
between segments the excess kurtosis value starts to decrease
down to K = −1.2, and the probability density function of the
angle θ transforms from Gaussian into uniform distribution
shape (Figure 7E). The corresponding evolution of the excess
kurtosis is depicted in Figure 7F for a population of 7000
generated WLC with identical contour length L = 700 nm,
persistence length λ = 50 nm, and step size Δs = 1 nm.

Orientation Distribution and 2D Order Parameter.
The orientation distribution and the length-scale-dependent 2D
order parameter can be used for quantifying the alignment of
fiber-like objects in different systems and under various
conditions. Figure 8A shows the AFM image of β-lactoglobulin
fibrils adsorbed at the air−water interface with the coexistence
of strongly aligned nematic domains and completely randomly
oriented fibrils, which form an isotropic phase in analogy to
liquid crystals. The orientation distribution of segments
belonging to all tracked contoursinside box-size-dependent
domainsexhibits a clear peak along one direction (Figure
8B), while randomly oriented fibrils possess a uniform
distribution in all possible directions (Figure 8C). It is possible
to quantify the order of the assembly by assigning a particular
number for each distribution, i.e., via a 2D order parameter.

Figure 8. (A) AFM image of β-lactoglobulin fibrils adsorbed at the air−water interface. (B, C) Orientation distribution of contour segments within
areas highlighted in panel A. The 2D order parameter within fibril nematic domains is relatively large (panel B, S2D = 0.3) in comparison to the
corresponding value in the isotropic region (panel C, S2D = 0.037). (D, E) AFM images of β-lactoglobulin fibrils adsorbed at the air−water interface
after a short period (10 min) and a long period (60 min) of adsorption times, respectively. (F, G) Decompositions of 2D order parameter S2D

image of
the images from the panels D and G, respectively, into S2D

align and S2D
rand with weight factors a and b. The images in panels A, D, E, F, and G are

readapted from Jordens et al.65
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This is defined as S2D = 2⟨cos2θn⟩ − 1, where θ is the angle
between the nth segment and the local director in the chosen
area. The values of the 2D order parameter for the above-
mentioned areas are very different: 0.3 and 0.037, respectively
(Figure 8B,C). This measure was used to quantify, for example,
the alignment of the magnetic-responsive clusters containing
hybrids of Fe3O4 nanoparticles with β-lactoglobulin amyloid
fibrils upon application of a magnetic field (Figure 1G).70

In the case of β-lactoglobulin fibrils adsorbed at the air−
water interface we introduced an additional feature, which is the
length scale dependence of the 2D order parameter, i.e., S2D(d).
For calculating this object, we divided the whole image into
square blocks of a certain size d. Calculating and averaging S2D
values for all blocks results in one mean number, which is
parametric with d, yielding the length scale dependent S2D(d).

65

This function S2D(d) is further expressed as the sum of the
weighted components S2D

align(d) and S2D
rand(d), corresponding to

the alignment of the nematic and isotropic components,
respectively65

= + −S d aS d a S d( ) ( ) (1 ) ( )2D
image

2D
align

2D
rand

(4)

where a is the relative surface fraction of the aligned (nematic)
domains. It can further be shown that decrease of the order
with the box size d is an exponential function65

= + − − ΛS d b b( ) (1 )e d
2D
align /2

(5)

where the offset b accounts the finite size of the image and Λ is
the characteristic length of the nematic order decay, in analogy
to the relationship between the persistence length and tangent
correlations along the contour. The component S2D

rand(d) can be
evaluated from simulated images of randomly oriented fibrils
that are generated using all relevant parameters from the
original AFM images.
Applying this analysis to the tracked contours of β-

lactoglobulin amyloid fibrils at the air−water interface after
different adsorption times (Figure 8D−G), it is possible to
quantify isotropic−nematic transition in a reliable and rigorous
manner.65

From 2D Projection Traces to 3D Structural Param-
eters.Much of the discussion above refers to objects with a 2D
conformation because either adsorbed on a substrate (AFM,
TEM) or with a pseudo-2D conformation when confined
within a thin layer of suspension (Cryo-TEM), for which a 2D
polymer physics analysis provides an accurate description. It is
however interesting to extract also information for objects,
which span a truly 3D conformation, but for which only their
projection traces on a plane are accessible. This is the case, for
example for fibrils visualized by confocal microscopy or
fluorescence-based stochastical optical reconstruction micros-
copy (STORM). In order to access the persistence length of
fibrillar structures distributed randomly in 3D, one should
carefully consider how the statistical properties of WLC
projections change from a 3D space into a 2D plane. When a
chain is projected onto the xy plane from the z direction, the
mean-square of the projected end-to-end distance modifies into
⟨R2⟩proj = (2/3)⟨R2⟩3D.

9 The observable projected internal
contour length lproj also differs from the actual one, l3D. To
understand how, let l3D be decomposed in N segments of
identical length ΔS so that l3D = NΔS; similarly, lproj =
∑i

NΔSproji , where ΔSproji are the individual projections of the
various ΔSi on the projection plane. Then we can rewrite lproj =
N[(1/N)∑i

NΔSproji ], or lproj = N⟨ΔSproj⟩, where ⟨ΔSproj⟩ is

nothing else than the average projection of ΔSi on the
projection plane. By averaging over all possible directions of
segments ΔS placed at an angle θ from z, we derive ⟨ΔSproj⟩ =
(2/π)∫ 0

π/2ΔS sin θ dθ = (2/π)ΔS, and then lproj = N⟨ΔSproj⟩ =
N(2/π)ΔS = (2/π)l3D. By applying the WLC model in 3D
expressing ⟨R2⟩3D vs l3D for the actual fibril, ⟨R2⟩3D = 2λ[l3D −
λ(1 − e−l3D/λ)], but using only the observable quantities ⟨R2⟩proj
and lproj, one gets ⟨R

2⟩proj = (2λ/3)[πlproj − 2λ(1 − e−πlproj/2λ)],
where λ is the real persistence length of WLC in 3D. This
illustrates well that in the case of randomly oriented WLC
fibrils in 3D their structural parameters, such as the persistence
length, are easily accessible through a statistical analysis of their
projections traces.
Beside the persistence length, other important structural

parameters can be extracted from the projection traces. For
example, because fibrils are rather rigid, ⟨R2⟩3D ∼ l3D

v, with the
scaling exponent ν typically ranging between the very flexible
random walk value, ν = 1/2, and the fully rigid chain value, ν =
1, the fractal exponent m = 1/v ranges between 1 and 2 and is
thus preserved upon projection on a surface of Euclidean
dimension two,89 implying that the scaling and fractal
exponents for the real fibril and its projection are identical
and thus accessible via the observable ⟨R2⟩proj ∼ lproj

v.

■ OUTLOOK AND CONCLUSIONS

Given the paramount significance that elongated, semiflexible
colloidal objects and biological macromolecules embody in
medicine, biology, materials science, and nanotechnology, there
is an increasing urgent need to develop semiautomated
procedures for the processing of a large amount of microscopy
images and generating statistical significant output on the
structural features and molecular conformations of these
filamentous objects. The newly developed FiberApp open
source code is deeply rooted in statistical polymer physics and
is meant to bridge the gap currently existing between the high-
resolution imaging process of fiber-like, filamentous, and
macromolecular objects and their structural analysis at the
single molecule level. We anticipate that this code will serve a
vast community of scientists working on very diverse disciplines
and may pave the way to new approaches to the study of
biological and synthetic polymers such as microtubules, actin,
amyloid fibrils, collagen, nanocellulose, silk fibroin, and the
many types of supramolecular fibers found in current applied
and fundamental sciences.
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E.; Janicíjevic,́ A.; Pazdzior, G.; van der Vliet, P. C.; Wyman, C.; Wuite,
G. J. L. Nucleic Acids Res. 2005, 33, e68.
(74) Saha, A.; Adamcik, J.; Bolisetty, S.; Handschin, S.; Mezzenga, R.,
submitted.
(75) Lara, C.; Reynolds, N. P.; Berryman, J. T.; Xu, A.; Zhang, A.;
Mezzenga, R. J. Am. Chem. Soc. 2014, 136, 4732−4739.
(76) McGeoch, C. C. A Guide to Experimental Algorithmics;
Cambridge University Press: Cambridge, UK, 2012; p 171.
(77) Usov, I.; Mezzenga, R. ACS Nano 2014, 8, 11035−11041.
(78) Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford University
Press: New York, 2003; pp 54−60.
(79) Wiggins, P. A.; Nelson, P. C. Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys. 2006, 73, 031906.
(80) Hsu, H.-P.; Paul, W.; Binder, K. Macromolecules 2010, 43,
3094−3102.
(81) Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Oxford
University Press: New York, 1986; p 317.
(82) Manning, G. S. Phys. Rev. A 1986, 34, 668−670.
(83) De Gennes, P. G. Scaling Concepts in Polymer Physics; Cornell
University Press: Ithaca, NY, 1979.
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