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A B S T R A C T   

There exist two theories on the swelling behavior of cross-linked polymer networks treated by statistical ther-
modynamic and scalar methods, respectively. These two theories predict inconsistent network chain length 
dependence of the swelling ratio. The swelling of biopolymer gels is analysed with scaling laws from polymer 
physics, as an alternative for the classical Flory-Rehner theory. In this paper, the swelling data of sodium 
lignosulfonate grafted polyacrylic acid cross-linked networks in good solvents are reanalyzed, and it is pointed 
out that these networks are a typical model network conforming to the two-phase structural picture. For the 
swelling behavior of gels in the semi-dilute regime we derive the scaling theory based swelling equations, which 
make them compact and universal character.   

1. Introduction 

Since Flory initiated the gelation theory in the 1940s to initially 
reveal the relationship between the swelling behavior of hydrogels and 
their network structure parameters, research of hydrogels has entered a 
rapidly developing period in the promotion of mean-field theory [1–6]. 
As a typical hydrophilic polymer network, super absorbent hydrogels 
(SAHs) is widely used in medical dressings, nursing absorption, garden 
water retention, and other fields, all of which are based on its unique 
super absorbent water retention performance [7–10]. Unfortunately, 
attribute to limitations on material degradability, despite their signifi-
cance in numerous applications, SAHs were also considered a significant 
environmental pollution source due to the 
non-sustainable/non-renewable properties attributed to the carbon 
main crosslinking networks [11,12]. Though the combination of 
petrochemically-based monomers and natural biomass is a practical 
solution to create the SAH exhibiting degradable characteristics towards 
application, the application practice and theoretical research of semi-
synthesis SAHs still faced with a rigorous challenge [13–16]. 

On the one hand, Flory-Huggins theory, known as the mean-field 
model [17–19], only depends on the primary chemical structure of the 
molecular chains. Due to the entropy change caused by swelling [20, 

21], there are still unacceptable large differences between the theory 
and experimental result with the different kinds of biomass raw mate-
rials [22,23]. On the other hand, mean-field for polymer solutions is 
intrinsically associated with ideal chains [24,25]. It is formally appli-
cable to the concentrated region of polymer entanglement [26,27]. 
Considering the huge difference in branched structure between biomass 
macromolecules and linear polymer molecular chains and the fact that 
semi-synthetic hydrogel with high swelling is usually in the semi-dilute 
regime, we question whether our Free-Volume-Flory-Huggins (FVFH) 
extension of the Flory-Huggins theory can be used in the description of 
the water holding capacity of biopolymer gels [28,29]. It seems obvious 
that the lack of theory have made semisynthetic SAH one of the few 
subjects that theory behind the practice [28,30]. Present research 
methods were primarily built in the vast processing and experiment 
conditions, operated complicated, and lacked flexibility in performance 
exploration and development. The theoretical research of semisynthetic 
SAHs is getting more and more urgent [31–34]. 

Actually, some thermodynamic models have been proposed to 
incorporate the influence of hydrogen bonding and describe the phase 
behavior of these systems. Prange and collaborators [23], for instance, 
extended Guggenheim’s quasi-chemical partition function with three 
categories of interaction sites: hydrogen-bond donors, hydrogen-bond 
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acceptors, and dispersion force contact sites [35,36]. One of the ad-
vantages of this model is its similarity to the classical Flory–Rehner 
theory for hydrogels and the specific oriented interactions are bundled 
into a pair of interaction-dependent parameters [37]. But their molec-
ular interaction parameters are empirically defined and their roles are 
difficult to be completely determined [38,39]. With the experimental 
data of Prange, the sponge tends to display an atypical absorbency 
exceeding theoretical prediction after the phase inversion desiccation 
technique. So, the exact dependence on molecular structure remains an 
open question [40,41]. 

It was only later when we looked to the theory of polymer physics for 
guidance again, that we could find that the abnormal discontinuous 
volume change behavior of semi-synthetic biomass gel in aqueous so-
lutions is strongly related to “sea-island” phase separation structure 
which is the biggest limitation of mean-field theory in explaining water 
absorption mechanism [42–44]. Fortunately, there has been a lot of 
research on homogeneous phase separation theory [45]. As a tractable 
solution in renormalization theory [9,46,47], the coarse-grained mo-
lecular dynamics (CGMD) method removes the constraint on regional 
and global correlations, many properties of polymer solutions can be 
quantified using simple power-law relationships. However, researches 
on the “sea-island structure” of semisynthetic SAHs and some accurate 
signals show that in some cases, over coarse-graining may distort the 
theoretical analysis and lead to spurious results [43,48], which is why 
we have to exploit a trans-scale study method that combines molecule 
scale study and mesoscale study together [49]. 

In light of this, in this paper, based on the mean-field theory and 
renormalization theory of hydrogels, a novel thermodynamic research 
model of the equilibrium swelling of hydrogel was proposed in consid-
ering the crosslinking efficiency and the elastic contribution of physical 
crosslinking. Achieved the trans-scale theoretical formula of semi-
synthetic SAHs by modifying diffusion coefficient between “sea-island 
structure”, [50–52] respectively. As the semi-dilute description holds, it 
is considerably more convenient to deal with a scaling law that depends 
on a reference state that can be readily characterized in accordance with 
fewer experiments. 

2. Theory 

2.1. Equilibrium conditions for the swelling behavior of hydrogels 

During the swelling behavior of most hydrogel materials there exists 
a pair of mutually constrained osmotic pressure swelling driving force 
and elastic reaction binding force [53–55]. The osmotic pressure, as a 
parameter describing the strength of the interaction force between the 
polymer hydrogel and the solvent, can be traditionally calculated using 
the Flory-Huggins theory, which obtains the osmotic pressure of a 
hydrogel from the polymer solution thermodynamics by equating the 
hydrogel polymer network with the corresponding polymer solution 
[56–59]. The difference in osmotic pressure inside and outside the 
polymer network is the driving force for the swelling behavior of 
hydrogel materials. Of course, no hydrogel can be infinitely swollen; 
there are cross-linked structures in the polymer network structure, and 
the swelling behavior will eventually be limited because the stretching 
of the cross-linked structures generates a counteracting elastic pressure. 
Eventually, under the condition that the total pressure or external 
pressure is zero indicates that the osmotic pressure swelling driving 
force exactly balances the elastic reaction binding force, and the 
hydrogel behaves as if it has reached the equilibrium state of swelling 
[60,61]. When we use Πext to denote the external pressure, Πmix to 
denote the osmotic pressure driving force, and Πelas to denote the elastic 
reaction force, the equilibrium conditions for hydrogel swelling can be 
simply described by the following equation: 

Πext =Πmix + Πelas (1) 

Considering the Flory-Rehner hypothesis, it was pointed out that the 

osmotic pressure lysis driving force and the elastic reaction binding 
force are two thermodynamic factors that are independent of each other 
and have a Flory mean field theory and a scalar law theory, respectively 
[62–64]. After that, we will analyze the contribution of the two factors 
to the swelling behavior from different theoretical aspects. 

2.2. Equilibrium conditions for the dissolution behavior of FVFH theory 

As an extension of the classical Flory-Huggins theory [6,65], the 
FVFH theory describes the additional osmotic pressure contribution of 
water and the macromolecular polymer network due to changes in 
hydrogen bonding forces by means of the Flory-Huggins interaction 
parameters between the macromolecular polymer network and water. 
The osmotic pressure following the classical Flory-Huggins theory 
equals: 

Πmixvw

RT
= ln

(
1 − φp

)
+

(

1 −
vw

vp

)

φp + χp,w∅2
p (2)  

vw is the molar volume of water, R is the universal gas constant, T is the 
temperature, φp is the polymer volume fractions, vp is the molar volume 
of the polymer, and χp,w is the Flory-Huggins interaction parameter 
between polymer and solvent (water). 

In the FVFH theory, χp,w is considered to be related only to the 
composition of the polymeric macromolecular network, and this 
assumption holds true for most low-swelling hydrogels based on natural 
polysaccharides such as starch and cellulose. However, for some protein- 
based highly absorbent resins the variable temperature swelling 
behavior deviates significantly from the theoretical value. For, protein- 
like natural macromolecules, the χp,w depend strongly on temperature, 
and temperature-induced protein denaturation tends to cause abrupt 
changes in the χp,w [66]. 

At the same time, the value of χp,w is often calculated from the 
isothermal adsorption curves of hydrogels, and for the case of high 
swelling or water activity aw >0.8, it is often difficult to obtain sufficient 
and accurate experimental data for the isothermal adsorption curves, 
which poses a considerable problem in pre-calculating the osmotic 
pressure of biomass highly absorbent resins and thus predicting their 
water absorption and retention capacity [67–69]. 

For elastic reaction bonding, the original Flory-Rehner theory was 
based on the swelling behavior of isotropic linear Gaussian chains, 
where the elastic contribution to the free energy is given by a strain 
energy function, which is expressed according to the stretching of the 
polymer in three main directions and is considered to be effective for 
highly swollen gel networks with isotropic deformation. 

Πelasνw

RT
= −

Gνw

RT
∅̃1 /

3 (3) 

G is the bulk elastic modulus, and ∅̃ = φp
/

∅ref 
with ∅ref the volume 

fraction at which the chains between the crosslinks are relaxed, i.e. at 
zero stress. Note that ∅̃1 /

3 is linear with the relative stretch of the poly-
mers, which is the governing state variable in the models describing non- 
isotropic deformation of gels. 

However, considering that the molecular chains connected between 
the crosslinking points in the cross-linked network must take into ac-
count the effect of polymer concentration fluctuations and cannot be 
treated as Gaussian chains in the case of polymer networks that fail to 
swell sufficiently or have a high cross-link density, Horkay and McKenna 
point out that the strain energy function can only be used if 1) the elastic 
free energy is independent of the other terms, and 2) the molecular 
chains between the crosslinking points behave as Gaussian chains, 
neglecting volume effects, which are after these two assumptions, the 
elastic reactive binding forces of the isotropic model affine deformation 
can be discussed [70–72]. 

In summary, we can see that the self-consistent calculation of the 
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Flory mean field theory has obvious deviations in the calculation of both 
osmotic pressure and elastic force, and there are many prerequisites in 
the use of the process. However, the results of the Flory method are close 
to the actual values in many cases, mainly because the errors of the two 
important parameters in the self-consistent calculations cancel each 
other out in an unusual way [8,23]. 

(1) The repulsive energy is enonnously overestimated when corre-
lations are omitted.  

(2) The elastic energy is also largely overestimated. 

Long ago, Flory devised a simple and brilliant scheme for computing 
the repulsive energy, which gives excellent values for all di-
mensionalities (Polymer, 35 (1994), 2167). We briefly describe his 
method and the approximations involved. The starting point is a chain, 
with a certain unknown radius R and an internal monomer concentra-
tion 

Cint =
N
Rd (4) 

C is the monomer concentration, N is the number of chain segments, 
R is the radius of rotation, and d is the number of spatial dimensions. 

There is a certain repulsive energy in the chain due to monomer 
interactions. If C is the local concentration of monomers, the repulsive 
energy per cm3 is proportional to the number of pairs present to C2. We 
write it (per unit volume) as: 

Frep =
1
2

Tv(T)C2 (5)  

where v has the dimension of a (d dimensional) volume and is positive. 
We call v the excluded volume parameter. [In the Flory notation v =(1-2 
χ) ad where ad is the monomer volume and χ is an interaction param-
eter. For good solvents χ < 1/2 and v > 0.] 

One essential approximation is to replace the average of c (inside 
thecoil) by the square of the average. 

〈C2〉→C2
int (6) 

This is typical of a mean field approach: all correlations between 
monomers are ignored. The overall repulsive energy after integration 
over a volume Rd, scales as: 

Frep =Tv(T)C2
intRd = Tv

N2

Rd (7) 

This tends to favor large values of R (i.e., to swell the chain). How-
ever, if the distortion is too large, the chain entropy becomes too small, 
and this is unfavorable. Flory includes this through an elastic energy 
term derived from the ideal chain result. 

If we think for example of the end-to-end elongation of the chain, 
since the distribution function pN(r) is a function of (r/ RF) only, this 
implies that the entropy at fixed r is also a function of r/ RF only. Finally, 
the elastic energy should be written Tr2/R2

F , rather than Tr2/ R2
0. Again, 

this brings in a large reduction. 
As is often the case in self-consistent field calculations (e.g., in 

Hartree atomic theory), the errors in (1) and (2) mostly cancel each 
other out, and much of Flory’s subsequent work has attempted to 
improve either (1) or (2) without changing the other, leading to less 
accurate results. 

2.3. Equilibrium conditions for the dissolution behavior of scaling law 

The study of the osmolarity of polymer hydrogels is mainly based on 
the general scaling law proposed by Cloizeaux in 1975 to describe the 
osmolarity of polymer solutions in the semi-dilute state. 

Πelasνw

RT
∼ ∅β (8) 

The scalar index β is obtained from another scalar index b related to 
another scalar law, i.e., the scalar law for the hydrodynamic radius rH of 
the polymer in the dilute state. 

The swelling behavior of highly swollen hydrogels acts as a typical 
critical behavior, where the polymer chains happen to start overlapping 
at the time of swelling equilibrium of the hydrogel network in the sol-
vent, when it can be seen as a polymer solution in a semi-dilute state. In 
such a case for b there exists the relation β = 3ν/(3ν − 1). In earlier 
studies on many glucose homopolymers, the value of ν was around 0.49 
attachment, so we can predict that for hydrogels composed of biomass 
β ≈ 3 [73]. 

For the elastic reaction binding force of hydrogels, De Gennes’ so- 
called critical crosslinking concentration hypothesis states that the size 
of the crosslinking lattices of polymer gels is similar to the average 
polymerization in semi-dilute polymer solutions in the uncrosslinked 
state where the molecular chains happen to be in contact with each 
other. Since the elastic force is formed precisely by the polymer lattice 
swelling behavior, the proportional relationship between polymer con-
centration and elastic force for the equilibrium condition of gel swelling 
behavior can be calculated from this. For gel equilibrium, the sum and 
elastic pressure of the osmotic pressure is exactly zero, which determines 
the proportionality 

G ∼
1

Mc
∼ ∅β

p,0 (9) 

It can be observed that the scalar relationship between the elastic 
modulus and the osmotic pressure has the same exponent. Therefore the 
condensation and swelling behavior should have shown a linear rela-
tionship. However, for the same reason, polymer chains cannot be 
regarded as Gaussian chains when the length of molecular chains be-
tween the crosslinking points is too short, and there are a large number 
of crosslinking defects such as dangling chains in the polymer macro-
molecular network, which all contribute to the deviation of the index. 
For example, some literature states that for synthetic polymer-based gel 
materials, β range from about 2.3 to 2.9 [74,75]. 

It can be seen that the scalar theoretical approach also has some 
errors for describing the swelling behavior of cross-linked polymer 
networks. Although the prediction of the swelling behavior of cross- 
linked polymer networks by the Flory statistical thermodynamic 
approach and the scalar theoretical approach is based on the molecular 
weight between the crosslinking points, the dependence of the two 
theoretical swelling ratios on the network chain length is not consistent. 
Moreover, since both theories are based on homogeneous cross-linked 
networks with homogeneous structures, they also impose high pre-
requisites for the use of the theories [48,75,76]. 

In our previous work [77,78], a series of highly absorbent resin 
hydrogels with good cross-linked structures were synthesized by modi-
fied sodium lignosulfonate and bifunctional supramolecular 
cross-linkers, which are suitable for analyzing and verifying the appli-
cability of the theories. 

3. Materials and methods 

3.1. Preparation of hydrogels 

All hydrogels were prepared from aqueous stock solutions of the 
following chemicals. 

3.2. Materials 

Pentaerythritol (PER), sodium methoxide (MeONa), methanol 
(MeOH), dichloromethane (DCM), acetic anhydride (Ac2O), 2.3-epoxy-
propyltrimethylammonium chloride (GTA), and triethylamine (TEA) 
were purchased from Sinopharm Chemical Reagent Co. Ltd. Allyl gly-
cidyl ether (AGE), sodium percarbonate (SPC), sodium lignosulfonate 
(SL), 2,3-epoxy-1-propanol (glycidol), acrylic acid (AA), ammonium 
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persulfate (APS), and sodium hydrate (NaOH) were purchased from 
Shanghai Aladdin Biochemical Technology Co. Ltd. All compounds were 
utilized without additional purification. 

3.3. Synthesis of hyperbranched crosslinker with tunable molecular 
structure 

Under nitrogen atmosphere, PER (0.1361 g, 1 mmol), MeONa 
(0.0162 g, 0.3 mmol), and MeOH (1 mL) were placed in a 50 mL reaction 
tube. After magnetic stirring for 30 min, MeOH was distilled off under 
reduced pressure. The system was heated to 95 ◦C and glycidyl (5.9264 
g, 80 mmol) monomers were slowly added within 5 h. After dropping, 
the system was reacted for a further 3 h. A small amount of MeOH was 
used to dissolve the reaction product. Subsequently, it was neutralized 
using a cation exchange resin activated by hydrochloric acid. Transfer 
the solution to 10 vol of acetone to precipitate hyperbranched macro-
molecules. After vacuum drying, hyperbranched polyglycerol macro-
molecules are obtained. The hyperbranched polyglycidol 
macromolecules (containing 0.01 mol of terminal hydroxyl), AGE 
(1.1985 g, 0.0105 mol), and accelerator TEA (0.05 g) were added to the 
flask and reacted at 130 ◦C under a nitrogen atmosphere for 5 h. The 
product was dissolved in MeOH and transferred to an ether solution to 
induce precipitation. The hyperbranched crosslinker with the mono-
functional vinyl group was obtained after the removal of ether by rotary 
evaporation. Finally, the number of terminal double bonds was deter-
mined using the bromination method [79]. 

The general procedure for the epoxidation process using sodium 
percarbonate is as follows. A terminal olefin (0.01 mol) and sodium 
percarbonate (4.0 g, containing approximately 15% active oxygen) were 
mixed in DCM (30.0 mL). Add Ac2O (5.0 mL) through the constant 
pressure funnel, and the rate of Ac2O addition was controlled to ensure 
the reaction temperature did not exceed 40 ◦C. After the reaction was 
completed, the solvent was removed by distillation and a dual functional 
hyperbranched crosslinker was obtained and coded as HPG. Crosslinkers 
with different functional group ratios of epoxy and vinyl groups could be 
obtained according to the abovementioned procedure by changing the 
amount of sodium percarbonate oxidant. 

3.4. Synthesis of superabsorbent hydrogels 

Sodium lignosulfonate grafted polyacrylic acid hydrogels (PSH) were 
synthesized by free radical graft copolymerization in an aqueous solu-
tion. AA, NaOH (molar ratio 4:3), SL, and HPG were dissolved in 
deionized water at 10 ◦C with stirring and nitrogen was bubbled to 
remove dissolved oxygen. After heating the system to 65 ◦C, an initiator 
(APS) was added and the system was reacted for 2 h to complete the 
polymerization reaction. A polyacrylic acid homopolymer was extracted 
with ethanol at the end of the reaction. For grafting efficiency calcula-
tions, the unreacted SL was separated using dimethyl sulfoxide. The 
hydrogel was dried at 80 ◦C and mechanically crushed to obtain 
powdered PSH xerogel, which was sieved with a steel mesh (80–100 
mesh). 

3.5. Characterization 

The water absorption and retention properties of the gels were tested 
using the equilibrium swelling method. The swelling degree of the dry 
gel in deionized water and normal saline was calculated by using Eq 
(10). 

Qeq =
m2 − m1

m1
(10)  

where m1 and m2 represent the weight of the dry and swollen samples, 
respectively. The swelling degree of the dry gel in deionized water and 
normal saline were marked as Qeq and Q′

eq, respectively. 

The dynamic mechanical properties of the gel after swelling were 
tested using an extended rheometer (MCR302, Anton Paar). The 
hydrogels were subjected to a constant strain of 0.1% by varying the 
frequency from 1.0 to 1000 Hz at 25 ◦C. The gap width used was 0.1 mm. 

4. Results 

4.1. Dependence of hydrogel swelling on molecular weight between cross- 
linking sites 

According to the Flory polymer swelling theory, the statistical ther-
modynamic theory of swelling behavior at equilibrium can be expressed 
as 

Mc = − F(f )ρgV1V
2
3
2cV

1
3
2
[
ln(1 − V2)+V2 + χV2

2

]
(11)  

where V2 is the volume fraction of the polymer at swelling equilibrium, 
V2c is the volume fraction of the polymer in solution when the cross- 
linking reaction occurs, χ is the interaction parameter, V1 is the molar 
volume of the solvent, ρg is the dry gel density and F(f) is a factor related 
to the structural parameters of the network and the degree of restricted 
motion of the cross-linking point. The cross-linked network can exhibit a 
large swelling in a good solvent, when V2≪1. The following equation 
can be obtained after expanding the logarithmic term in Eq. (11) and 
keeping only the starting two terms. 

Q=

⎡

⎢
⎣

1
2 − χ

F(f )ρgV1

⎤

⎥
⎦

3
5

V − 2
5

2c M3/5
c (12) 

Obviously, the degree of swelling Q is proportional to M3/5
c . 

From the scalar theory, the equilibrium of the swelling behavior of 
polymer networks is based on the law of proportionality in the contact 
concentration C∗ of polymer solutions. 

The cross-linked network reaches swelling equilibrium in a good 
solvent when the chain ends of the macromolecular network just touch 
each other to form physical entanglement points. The equilibrium con-
centration at this point can be expressed as: 

Cθ = k(f )C∗ (13)  

k(f) is a constant related to the crosslinking point functionalities and the 
concentration of the polymer at the crosslinking reaction. 

We have modified related description and made it more accurate. It 
can be seen from Eqs. (8) and (10) that there is a significant difference 
between statistical thermodynamics and scalar theory in predicting the 
swelling of polymer cross-linked networks. As De Gennes points out in 
his book Scaling concepts in polymer physics, let us start with a solution 
of chains (polymerization index N) in a good solvent (excluded volume 
parameter v = a3(1 − 2χ) > 0). The chains repel each other, and this is 
reflected in the existence of a positive osmotic pressure Π. When attach 
the chains together, for example by reaction of the chain ends with 
certain z-functional molecules (z being equal to 3, 4. etc.), and we let 
them choose their density. They would like to separatefrom each other 
as much as possible. However, each coil must remain incontact with its 
neighbors because of the crosslinks. What we have is a set of closely 
packed coils sealed together by the crosslinks. The situation is reminis-
cent of the overlap threshold in semi-dilute solutions. Thus, the gel 
automatically maintains a concentration c proportional to c∗. At this 
point, the following equation can be derived. C = k(z)C∗ =

k(z)N− 4 /

5v− 3 /

5a− 6 /

5.Since Mc is proportional to N, it can be concluded that 
C∗∝M− 4/5, the exponential rule for the equilibrium swelling of the cross- 
linked network in a good solvent can be obtained. 

Q∝M4/5
c (14) 

It can be seen from Eqs. (12) and (14) that there is a significant 
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difference between statistical thermodynamics and scalar theory in 
predicting the swelling of polymer cross-linked networks. 

4.2. Swelling behavior of polymer hydrogels in two-phase systems 

The existing statistical thermodynamics and scalar swelling theories 
assume that polymer networks have only a homogeneous cross-linked 
structure, but in practice most cross-linked networks have a non- 
homogeneous cross-linked structure. There are often physical cross- 
linkages, ionic cross-linkages, covalent cross-linkages, hydrogen cross- 
linkages and crystalline cross-linkages in polymer networks, and the 
relationship between different types of cross-linkages and the degree of 
swelling is also different. Therefore, experimental data about hydrogels 
at high swelling degrees are often very scattered and difficult to corre-
spond with the relevant theories. 

If we consider the cross-linked network as a mixture of multiple 
homogeneous networks with equal chain lengths interconnected, where 
the total volume of the swollen macromolecular network is equal to the 
sum of the volume Vp,i of each homogeneous component plus the volume 
Vt,i of the absorbed solvent, then the actual swelling ratio q of the non- 
homogeneous network can be expressed as: 

Q∗ =

∑

i

(
Vp,i + Vt,i

)

∑

i

(
Vp,i
) =

Vp,i
∑

i

(
Vp,i
)

(
Vp,i + Vt,i

Vp,i

)

=
∑

i
∀iQi (15)  

where ∀i and Qi denote the volume fraction of the ith homogeneous 
network in the cross-linked network and its corresponding swelling 
degree, respectively. 

Solubility ratio Assume that a cross-linked network has a two-phase 
structure, i.e., it is composed of a homogeneous network 1 with low 
cross-linkage and a homogeneous network 2 with high cross-linkage. If 
we express the volume fraction V occupied by the low cross-linked re-
gion by the parameter Z, then Eq. (15) can be expressed as: 

Q∗ =ZQ1 + (1 − Z)Q2 (16) 

When the crosslinking degree in the high crosslinking zone is very 
high and Q2 is approximately 1, the swelling effect is only generated in 
the low crosslinking zone, and the lower corner of the identification of 
the homogeneous network in the low crosslinking zone can be omitted at 
this time, then Eq. (16) can be expressed as follows. 

Q∗ =ZQ + (1 − Z) (17) 

The above analysis shows that Eq. (17) is a special case of Eq. (15). 
In the sodium lignosulfonate grafted polyacrylic acid crosslinking 

network system prepared in this paper, thanks to the good reactivity of 
sodium lignosulfonate and the nature of polyelectrolyte, it exists in 
aqueous solution as a cluster of polygroups, and after the polyacrylic 
acid molecules are grafted on the surface of sodium lignosulfonate, the 
sodium lignosulfonate macromolecules can be regarded as the cross-
linking points of multiple polyacrylic acid molecules. Unlike the ideal 
crosslinking network which requires carbon-carbon bonds as cross-
linking points, the sodium lignosulfonate grafted polyacrylic acid 
crosslinking network system can be considered as a typical inhomoge-
neous crosslinking system with a two-phase structure. 

In this two-phase model network, the sodium lignosulfonate clusters 
can be considered as highly cross-linked spheres with an approximate 
solubility ratio of 1. In a polyacrylic acid bridged macromolecular 
network, since each polyacrylic acid macromolecule has two reactive 
end groups, if the molecular weight of the polyacrylic acid macromol-
ecules do not differ significantly, the molar ratio of sodium lignosulfo-
nate to the number of reactive chain ends of polyacrylic acid in the 
starting state of polymerization, y = [SL]/[PAA], the mass fraction of 
sodium lignosulfonate can be expressed as can be expressed as: 

WSL = 1
/[

1+
1
2y

⋅
Mc

MSL

]

(18)  

where Mc and MSL are the molecular weights of polyacrylic acid and 
sodium lignosulfonate, respectively. 

Considering the small difference in density between the components, 
the mass fraction of sodium lignosulfonate can actually be regarded as 
the volume fraction occupied by the highly cross-linked region in the 
two-phase cross-linked network, which is the (1 − Z) part, then Eq. (18) 
can be expressed as： 

Z = 1
/[

1+ 2y ⋅
MSL

Mc

]

(19) 

By substituting Eq. (19) into Eq. (17), the relationship between the 
real swelling degree and the actual swelling degree of the homogeneous 
network formed by the macromolecular chain with chain length Mc as： 

Q=
Q∗ − 1

Z
+ 1 =

Q∗ − WSL

1 − WSL
(20) 

To verify the swelling theory from the experimental swelling data Q∗, 
the swelling degree Q must first be calculated for the corresponding 
homogeneous network to satisfy the theoretical premise, WSL represents 
the mass fraction of sodium lignosulfonate. 

Each unit volume of the dry gel cross-linked network contains μ so-
dium lignosulfonate spheres as crosslinking points and v homogeneous 
polyacrylic acid network chains of equal length. If each sphere is con-
nected with f network chains, the total number of contacts between the 
network chains and the spheres should be μf or 2v if the cross-linked 
network structure is whole and there are no suspended chains [80,81]. 
If the number of sodium lignosulfonate macromolecular units in each 
sphere is n, the starting ratio y for graft copolymerization can be 
expressed as 

y= nμ/2v (21) 

After combining Eq. (18), Eq. (19) and Eq. (21): 

y=
n
f
=

1
2

[
1 − Z

Z

]
Mc

MSL
(22) 

According to the elasticity theory of cross-linked networks, the 
elastic deformation energy of Gaussian chain phantom networks strictly 
follows the following equation: 

ΔGel=
ξ
2

kT

(
∑

i=1,2,3
λ2

i − 3

)

(23)  

where λi,i=1,2,3 is the deformation stretch ratio in the direction of the 
three tensile principal axes, and ξ is the number of independent circuits 
in the cross-linked network structure, and he has a simple relationship of 
ξ = v − μ between the number of network molecular chains v and the 
number of crosslinking points μ. Since there is a relationship of v =

ρg/Mc between the number of network molecular chains v and the mo-
lecular weight Mc between crosslinking points, where ρg is the dry gel 
density. The following equation can be obtained through Eq. (21) and 
Eq. (22). 

ξ=
(

f − 2
n

)

y ⋅ v=
(

f − 2
n

)

ρg
y

Mc
(24) 

Eq. (24) shows that ξ is not only related to the number of network 
chains v, but also depends on the polymerization ratio y and the struc-
tural parameters n and f of the highly cross-linked pellets. 

Although the parameters n and f are unknown, it can be assumed that 
under aqueous polymerization conditions, the number of sodium 
lignosulfonate macromolecular units per pellet of the polyelectrolyte is 
proportional to the solution concentration, i.e., the starting ratio y for 
graft copolymerization, while the number of grafted macromolecular 
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chains on the surface of each pellet is proportional to the collision 
probability of acrylic acid monomers and is therefore also affected by 
the graft copolymerization monomer ratio y.Therefore, there will be no 
significant change in the ratio of (f − 2)/n during the polymerization 
process. Thus, it is reasonable to assume that when comparing the 
experimental data with each other and verifying the swelling theory, the 
proportional relationship between the swelling degree Q and the mo-
lecular weight Mc between the crosslinking points can be obtained by 
different graft copolymerization ratios y. 

The network property parameters based on the elastic modulus 
provide more accurate and valid evidence for our assessment of the 
swelling theory. PAA is often used as a model system for super absorbent 
hydrogels and that their interaction with water indeed resembles that of 
other semi synthetic SAHs. We have collected data on equilibrium 
swelling degree of petroleum based and semi synthetic SAHs, which 
concern polyacrylic acid (PAA) and lignosulfonate-graft-copolymer. We 
have designed lignosulfonate-graft-copolymer systems to investigate the 
applicability of the models for the elastic pressure of biopolymer gels. 
We have collected network parameter data on the change of the semi 
synthetic SAHs subject to externally applied pressure, via either osmosis 
or rheometer method. The choice for SL-g-PAA hydrogels is advanta-
geous because the crosslinking of these systems is well controlled, 
rendering uniform cross-linked network in the gels. 

The dissolution data of SL-g-PAA hydrogel model network in saline 
were plotted against the molecular weight Mc between the crosslinking 
points as a double logarithmic coordinate plot as shown in Fig. 1. 
Although the data showed a trend of certain proportional relationship, 
the distribution of data points was scattered and the linear regression 
rate was not high. Similarly, for the SL-g-PAA hydrogel model network 
with a two-phase structure, the ideal network swelling degree Q can be 
calculated by substituting Q∗ and WSL into Eq. (24). However, a double 
logarithmic coordinate plot of Q against the molecular weight M Mc 
between the crosslinking points shows that the data distribution is still 
scattered. As mentioned earlier, the dispersion of the data points was 
improved to a large extent by plotting Q against Mc/y as suggested by 
Eq. (24). As shown in Fig. 2, with this plotting method, the experimental 
data distribution can be fitted to both sides of a straight line with a slope 
of 0.13. According to this treatment, it is equivalent to rewriting Eq. (24) 
as the following equation: 

Q=

⎡

⎢
⎢
⎣

1
2 − χ
ρgV1F(t)

y

⎤

⎥
⎥
⎦

3
5

V − 2
5

2c

[
Mc

y

]0.13

(25)  

5. Conclusion 

In this paper we have analysed the deswelling of biopolymer gels 
with both the Flory-Rehner theory and scaling laws from polymer 
physics for the semi-dilute regime. Our work shows that semi-dilute 
polymer theory can be applied to develop a simple power-law rela-
tionship between swelling and crosslinking point functionality. The 
simplicity of our resulting equations provides substantial utility for gel 
synthesis design. 
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Fig. 1. Experimental swelling ratio Q∗ and the correaponding molecular weight 
of precursor chains Mc for SL-g-PAA hydrogel model networks in normal saline 
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Fig. 2. Dependence of the swelling ratio Q of the homogenous areas in SL-g- 
PAA hydrogel model networks on the parameter (Mc/y). 
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