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Highlights  1 

 2 

• Multi-objective optimization to predict 3-dimensional morphology from microscopic 3 

images 4 

• Bayesian Optimization for faster convergence 5 

• Retrieval time reduced by up to one-tenth of existing methods. 6 

• Accurately predicts 3-dimensional aggregate structures, achieving less than 10% deviation 7 

in mobility diameter. 8 

• Retrieval of aggregate structures with monomers exhibiting both polydispersity and 9 

overlap. 10 

  11 
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Abstract  1 

Aerosol particles are increasingly recognized for their significant impacts on human 2 

health and climate. Often found in aggregated form, the morphology of these particles plays a 3 

crucial role in influencing their physicochemical properties. Owing to the sub-micron size, 4 

electron microscopy is the most commonly used technique to visualize the aggregated particles. 5 

In a prior study, we proposed a combination of forward modelling coupled with optimization 6 

techniques for the prediction of 3-dimensional structures from microscopic images. Here, we 7 

extend the methodology to a multi-objective optimization approach for the specific cases where 8 

aggregated particles are classified and sampled based on specific properties such as mobility 9 

diameter, aerodynamic diameter etc. The comparison of 2-dimensional features of the 10 

microscopic image with the projections of computationally generated aggregates forms the first 11 

objective function, while the comparison of the measured 3-dimensional property, mobility 12 

diameter, is used as the second objective function. The estimation of the mobility diameter 13 

often requires the calculation of the hydrodynamic radius (Rh) and the orientationally averaged 14 

projected area (PA), which can be computationally expensive for larger aggregates and for 15 

frequent calculations. Bayesian optimization is used for the retrieval process, as it can provide 16 

much faster convergence with significantly fewer function evaluations compared to 17 

metaheuristic algorithms. The multi-objective Bayesian optimization-based retrieval algorithm 18 

has been validated using synthetically generated and experimentally collected microscopic 19 

images. The process is found to be about 5 to 10 times faster than previously reported methods. 20 

The algorithm is further extended to retrieve aggregates with polydisperse and overlapping 21 

monomers. The retrieval process demonstrated strong accuracy, with fractal parameters 22 

showing around 10-15% error compared to the original values. This includes a mobility 23 

diameter difference of less than 10%, indicating high similarity between retrieved and input 24 

structures. Furthermore, tests are conducted on welding fume particles of varying mobility 25 

diameters, where retrieved structures consistently exhibited mobility diameters within a 10% 26 

difference from original values.  27 

 28 

Keywords: Multi-Objective optimization, Bayesian optimization, Aggregated aerosol 

structures, Morphological analysis  
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1. Introduction  1 

Aerosol particles, originating from various sources such as industrial combustion processes 2 

and vehicular emissions, are a major concern due to their significant impact on local and global 3 

weather patterns (Cao, 2017; Lighty et al., 2000; Shiraiwa et al., 2017). These particles 4 

typically exhibit a wide range of sizes, compositions, and morphologies, which play a crucial 5 

role in shaping environmental factors and affecting human health.(David et al., 2019; Gaeckle 6 

et al., 2020). Aerosol particles, specifically those generated from combustion sources,  7 

frequently exist as clusters rather than individual particles due to continuous collisions and 8 

subsequent coagulation (M. Eggersdorfer & Pratsinis, 2014; Filippov et al., 2000; Meakin et 9 

al., 1984). The clusters, also referred to as aggregates, often display fractal-like structures, 10 

exhibiting self-similarity in their arrangement. However, unlike ideal fractals, these aggregates 11 

show self-similarity only over a limited range of length scales and are referred to as quasi-12 

fractal aggregates (Filippov et al., 2000; Forrest & Witten, 1979). Quasi-fractal structures are 13 

found to follow the scaling law given by: 14 

N = kf (
Rg

rpgeo

)
Df

                     (1) 15 

where N is the number of particles or monomers with length scales comprising the radius of 16 

gyration (Rg). Df is the fractal dimension ranging from 1 (for linear aggregates) to 3 (fully 17 

compact structure), and kf is the fractal prefactor, spanning from lower values around 0.3 to 18 

higher values exceeding 7 (China et al., 2015; Sipkens et al., 2023; Sorensen & Roberts, 1996). 19 

rpgeo is the geometric mean radius of monomers, which equals to monomer radius ‘a’ for the 20 

case of monodisperse particles. Aggregates encountered in practice often consist of nearly 21 

spherical, polydisperse primary particles, commonly described by lognormal distributions. 22 

These details in the scaling law to include polydispersed size distribution using the rp,geo and 23 

the geometric standard deviation σp,geo as: 24 

log (rpgeo
) =

∑ log(ri) N
i=1

N
         (2) 25 

log (σpgeo
) = √∑ (log(ri)−log(rp,geo))

2N
i=1

N
       (3) 26 

where ri is the radius of the ith particle, and N is the total number of monomers. For 27 

monodisperse primary particles, the RHS term in Eq. (3) becomes zero, yielding  σp,geo =1. This 28 

allows the equation to be applicable to both monodisperse and polydisperse size distributions 29 

of monomers in an aggregate. 30 
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Morphology of the aggregates can significantly influence their properties, including 1 

surface reactivity, optical properties, and transport and deposition (China et al., 2015; Yon et 2 

al., 2021). Morphological parameters (e.g., effective density, monomer number, fractal 3 

dimension) of size-resolved soot particles from various combustion sources were investigated 4 

in some recent studies, and the results revealed size-dependent variations, highlighting the 5 

differences in soot particle properties across sources (Li et al., 2024; Pang et al., 2022, 2023). 6 

Given their nanoscale size, electron microscopy-based image analysis is among the most 7 

widely used techniques for studying and visualizing these structures (Park et al., 2003; 8 

Thajudeen, Jeon, et al., 2015).  9 

In a typical image analysis method, 2-dimensional features from microscopic images are 10 

used to retrieve 3-dimensional properties of aggregates, including primary particle size 11 

distributions, number of monomers (N), and fractal dimension (Df) (Bescond et al., 2014; 12 

Chakrabarty et al., 2011a; Park et al., 2004). Kruis et al. (Einar Kruis et al., 1994) developed 13 

an automated particle recognition technique to estimate particle size distribution and Fractal 14 

dimensions of the aggregates from Transmission Electron Microscope (TEM) images. An 15 

image characterization process was proposed by Brasil (Brasil et al., 1999) for extracting 2-16 

dimensional features (such as projected area, perimeter, and maximum length) of microscopic 17 

images to estimate 3-dimensional properties (N, kf, Df). Several studies have attempted to 18 

develop relations between 3-dimensional properties, like monomer numbers and fractal 19 

dimensions, and 2-dimensional projection properties, such as 2-dimensional radius of gyration 20 

and maximum length (Chakrabarty et al., 2011b, 2011a). Most of these studies have relied on 21 

developing regression-based equations to represent the relationship. Hogan and coworkers 22 

(Thajudeen, Jeon, et al., 2015) introduced a technique to predict the 3-dimensional structures 23 

of aggregates from TEM images by comparing them with a database of test images created 24 

from computationally generated aggregates. The method was later extended to various 25 

applications, including the study on the growth and absorption rates of iron oxide nanoparticles 26 

(Jeon et al., 2016) and morphological analysis of emissions from electrosurgical pencils (Qiao 27 

et al., 2020). However, the efficacy of this method depends on the comprehensiveness of the 28 

database.  29 

Considering these limitations, a retrieval process combining optimization methods and 30 

forward modelling techniques was developed (Singh & Thajudeen, 2023). In this method, the 31 

features obtained from microscopic images were compared to the projections of candidate 32 

aggregates generated by FracVAL, an open-source forward modelling method (Morán et al., 33 

2019). Optimization techniques were used to minimize the difference between the 2-34 
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dimensional features of microscopic images and candidate projections, using an objective 1 

function based on six image features: projected area, perimeter, maximum length, width, 2-2 

dimensional radius of gyration, and 2-dimensional fractal dimension. This method was then 3 

improved using Machine learning (ML) techniques (Singh et al., 2024) to narrow down the 4 

search space for optimization, thereby accelerating the retrieval process. The proposed method 5 

was validated by comparing the retrieved structure against available information on the 6 

sampled aggregate using 3-dimensional aerosol properties, such as mobility and aerodynamic 7 

diameters.  8 

In certain cases, aggregate samples are collected based on predefined aerosol properties, 9 

as is the case when a Differential Mobility Analyzer (DMA) is used to classify aerosol particles 10 

based on their mobility diameter (dm) (Lapuerta et al., 2003; Park et al., 2003; Trivanovic et al., 11 

2019). Prior retrieval methods typically compare these 3-dimensional properties post-retrieval. 12 

However, incorporating these known properties directly into the retrieval process enhances its 13 

efficiency, as each iteration utilizes this information to guide the optimization. This approach 14 

ensures that the retrieved structure aligns with both the 2-dimensional projection features and 15 

the 3-dimensional properties of aerosol particles measured during sampling. Building on the 16 

previous methods, we propose a novel multi-objective optimization-based retrieval framework 17 

by incorporating known 3-dimensional properties as an additional objective function alongside 18 

2-dimensional image features. 19 

It could also be possible that an aggregate structure may be inaccurately designated as 20 

optimal if its projection closely resembles the input image due to a favourable viewing angle 21 

despite differences in its true 3-dimensional form. For example, in an ideal case, various 22 

candidate aggregate structures may yield identical projection properties, resulting in equivalent 23 

objective function values. It is then challenging to determine the best structure. By 24 

incorporating an additional objective function, such as a 3-dimensional property, the retrieval 25 

process can identify the structure with the closest 3-dimensional property compared to the 26 

aggregate corresponding to the microscopic image. This approach ensures that the structure 27 

with the closest match in 3-dimensional properties shall be selected as the optimal structure. 28 

Additionally, multiple aggregates collected at a fixed mobility diameter may exhibit varying 29 

projection features due to differences in structural shape. However, if these aggregates do not 30 

match the input image projections, they will be discarded. Thus, a multi-objective optimization 31 

(MOO) approach is particularly advantageous for retrieval, as it ensures that both 2-32 

dimensional and 3-dimensional properties are considered in tandem. 33 
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An important point to consider is the need for an MOO approach rather than a single 1 

combined objective function for 2-dimensional features and 3-dimensional properties. The 2 

rationale for this choice lies in the varying importance of properties such as mobility diameter 3 

and projected features. For a single objective optimization, six 2-dimensional features and one 4 

3-dimensional property must be combined into a single objective with a total of seven 5 

parameters. Each parameter has varying importance, requiring distinct weights to be added to 6 

the objective function. Determining these weights is not trivial, as improper assignment could 7 

introduce bias and could fail to accurately capture the trade-offs between the properties, 8 

potentially leading to suboptimal results (Cho et al., 2017; Coello, 2000). Moreover, separating 9 

each of the six 2-dimensional properties into individual objective functions would further 10 

complicate the process, making it computationally slow. Increasing the number of objectives 11 

in multi-objective problems also impacts the difficulty of convergence, an increase in the 12 

computational effort of many operations, or the memory requirements for storing non-13 

dominated solutions (Allmendinger et al., 2022; Curry & Dagli, 2014; Schütze et al., 2011). 14 

Therefore, we propose a MOO approach with two objective functions, where 2-dimensional 15 

properties are aggregated into a single objective function, while the 3-dimensional property is 16 

used as a separate objective function. 17 

The cost of the retrieval process is yet another challenge that stems largely from the 18 

inclusion of the mobility diameter (dm) as the second objective function. Two geometric 19 

properties, hydrodynamic radius (Rh) and orientationally averaged projected area (PA), are 20 

essential for calculating dm across different flow regimes, from continuum to free molecular 21 

(Gopalakrishnan et al., 2015; C. Zhang et al., 2012). However, calculating Rh and PA is a 22 

computationally expensive process, especially when frequent calculations are required, which 23 

can significantly increase the simulation time. The process was found to be particularly 24 

prohibitive when utilizing population-based metaheuristic optimization techniques (Singh et 25 

al., 2024; Singh & Thajudeen, 2023). These methods required evaluating objective function 26 

values for the entire population in each iteration, placing increased demands on the 27 

computational resources.  28 

Bayesian Optimization (BO) offers a principled alternative to address such computational 29 

inefficiencies (Jones et al., 1998; X. Wang et al., 2023). It can be adapted to deal with multiple, 30 

expensive black-box functions of potentially incommensurable objectives under constraints on 31 

the total number of evaluations due to time limitations (Garnett et al., 2010; Mahendran et al., 32 

2012; Marchant & Ramos, 2012; Shahriari et al., 2016). In this study, the calculation of the 33 

objective function based on dm is computationally expensive. BO offers advantages over the 34 
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previous methods due to its surrogate modelling technique. Unlike the metaheuristic methods, 1 

BO does not depend on the randomized sampling and evaluation of populations of candidate 2 

solutions in every iteration. Instead, it uses the predictive distribution of a probabilistic 3 

surrogate model (Rasmussen, 2003) trained on an evaluated dataset of solutions to determine 4 

the most promising solution to evaluate next. This approach leverages the uncertainty of the 5 

surrogate model to help balance exploration and exploitation of the search space, thereby 6 

reducing the number of expensive evaluations needed in the retrieval process.  7 

Previously developed retrieval processes have primarily been applied to aggregates with 8 

monomers characterized by point-contact and monodispersity. Studies have shown that an 9 

aggregate can contain a range of monomer sizes with a degree of overlap (Dastanpour & Rogak, 10 

2016; M. Eggersdorfer et al., 2012; Jourdain et al., 2023). These variations can significantly 11 

affect properties such as size, surface area, and total mass. Consequently, integrating these 12 

aspects into the retrieval process is essential to enhance its accuracy and broader applicability, 13 

which is also the focus of this study. The following section explains the methodology of the 14 

MOO-based retrieval process, outlining the steps involved in the integration of the BO 15 

technique for optimization. 16 

  17 
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2. Methodology  1 

2.1.  Multi-objective Optimization Preliminaries 2 

A general MOO may be formulated with the goal of minimizing a vector-valued objective 3 

function F(x), i.e., F(x) = [f1(x),…,fm(x)], where x is a candidate solution belonging to a search 4 

space X (Ehrgott, 2005). Each component of F(x) symbolizes a mathematical description of a 5 

performance criterion that may be in conflict with the others. In this study, x = [N, kf, Df]  forms 6 

the fractal parameter vector used to generate candidate aggregate structures whose 2-7 

dimensional and 3-dimensional properties give F(x) = [f1(x), f2(x)]; f1(x) is based on 2-8 

dimensional image features whereas f2(x) is related to 3-dimensional properties of an 9 

aggregate.  10 

Unlike traditional single-objective optimization methods, such multi-objective problems 11 

typically yield a set of optimal solutions rather than a single unique solution. Some solutions 12 

may perform better with respect to f1(x), while others may excel in f2(x). Thus, a collection of 13 

trade-off solutions is obtained, known as the Pareto set. Key concepts that formalize the 14 

distinctive facets of MOO are defined below (Coello, 2000). 15 

Pareto Dominance: Solution vector xa  is said to dominate xb if fi(xa) ≤ fi(xb), ∀i, and ∃j such 16 

that fj(xa) < fj(xb).  17 

Pareto-Optimal Solution: A solution is considered Pareto-optimal if it is not dominated by 18 

any other solution within the search space. In other words, no alternative solution exists that is 19 

equally effective across all objectives and strictly superior in at least one objective. Such a 20 

solution is also referred to as a non-dominated solution. 21 

Pareto Set: The set of all Pareto-optimal solutions is called the Pareto set. 22 

Pareto Front: The image of the Pareto set in the objective space forms the Pareto front, 23 

showing trade-offs between the objectives. 24 

2.2.   Multi-Objective Optimization Framework for Aerosol Structure Retrieval  25 

A bi-objective formulation of the aerosol structure retrieval problem is considered here. 26 

The first objective function is a combination of 2-dimensional properties of a candidate 27 

structure, whereas the second objective is derived from its 3-dimensional property. In what 28 

follows, details of the two objectives and their integration into a unified optimization 29 

framework are presented. 30 

2.2.1. Objective function based on 2-dimensional features 31 

Projected area (Aproj), perimeter (P), maximum end-to-end length of projection (Lmax), 32 

maximum width perpendicular to maximum length (Wmax), 2-dimensional radius of gyration 33 

Jo
urn

al 
Pre-

pro
of



10 

 

(Rg,2D), and 2-dimensional fractal dimension (Df,2D) are the 2-dimensional features used in the 1 

study (Singh et al., 2024; Singh & Thajudeen, 2023). These properties are calculated by image 2 

analysis using the box-counting method, a widely used technique (Panigrahy et al., 2020; So 3 

et al., 2017; R. Wang et al., 2022). The complete procedure is detailed in our previous study 4 

for reference (Singh & Thajudeen, 2023). The objective function (f1) based on these properties 5 

is evaluated as, 6 

f1(x) =  [
Aproj,T – Aproj

Aproj,T
]

2

+  [
Lmax,T−  Lmax 

Lmax,T
]

2

+ [
PT   −  P

PT
]

2
+ [

Rg2D,T  −  Rg2D

Rg2D,T
]

2

+7 

 [
Wmax,T−Wmax

Wmax,T
]

2

+  [
Df2D,T−Df2D

Df2D,T
]

2

                                               (4) 8 

where all notations are the same as defined earlier, with the subscript ‘T’ representing true or 9 

input image properties, while properties without the ‘T’ subscript refer to the projection 10 

properties of the candidate aggregate projection.  11 

2.2.2. Objective function based on 3-dimensional properties 12 

In this study, mobility diameter (dm) is chosen as the 3-dimensional property, forming the 13 

basis of the second objective function. It can be easily extended to other properties, including 14 

aerodynamic diameter. Aggregate samples are often collected using a DMA based on their 15 

electrical mobility diameter for subsequent image analyses. Similar to the first objective 16 

function, the second one is also the squared relative error between the input dm,T and the dm 17 

obtained from the candidate aggregate generated during optimization,  18 

f2(x) =  [
dm,T   −  dm

dm,T
]

2

.          (5) 19 

The relationship between geometrical parameters, hydrodynamic radius (Rh), 20 

orientationally averaged projected area (PA), and the mobility of aerosol particles is very well 21 

established (Thajudeen, Jeon, et al., 2015). We assume that all particles are singly charged. For 22 

non-spherical particles in different flow regimes, the expression for mobility is, 23 

B =
1+(

λπRh
PA

)(1.257+0.4∗e
−

1.1PA
λπRh)

6πμRh
                   (6) 24 

where µ is dynamic viscosity, and λ is the mean free path of the background medium, in this 25 

case, air. Mobility of a non-spherical particle can also be given in terms of the dm as, 26 

B =
1+(

2λ

dm
)(1.257+0.4∗e

−
0.55dm

λ )

3πμdm
.                   (7) 27 
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dm is calculated by solving Eqs. (4) and (5) as implicit functions. To compute the Rh, the 1 

Smoluchowski radius (RS) estimation process is used, following the methodology proposed in 2 

prior studies (Thajudeen et al., 2012; C. Zhang et al., 2012). The orientationally averaged 3 

projected area (PA) is determined through the Monte Carlo simulation technique. These 4 

processes become computationally expensive when frequent calculations are required for 5 

aggregates with a large number of monomers. Thus, the time required to calculate dm can range 6 

from minutes to hours as the size of the aggregate increases. In studies where aggregates are 7 

generated multiple times, such as Langevin simulations (Thajudeen, Deshmukh, et al., 2015) 8 

or iterative optimization processes, the calculation of properties like dm, Rh, and PA is required 9 

at each iteration. This frequent computation significantly increases the overall computational 10 

cost. BO is known to be an effective algorithm for such kinds of optimization problems as its 11 

use of computationally cheap surrogates of expensive objective function(s) helps accelerate the 12 

search process. 13 

2.3. Multi-Objective Bayesian Optimization 14 

In contrast to metaheuristic algorithms-based optimization, in any iteration of BO, the 15 

available dataset of evaluated solutions is used to train probabilistic surrogate models 16 

(Rasmussen, 2003) that serve as substitutes to the true (costly) objective functions. An 17 

acquisition function (ascribing an approximate figure of merit to any candidate solution) is 18 

defined based on the predictive probability distribution of the surrogate, which, when 19 

optimized, yields a single solution for evaluation in the next BO iteration. The evaluated 20 

solution is then appended to the dataset on which the surrogate model is retrained. These 21 

iterations continue until convergence or until some predefined computational budget is 22 

exhausted. The accuracy of the surrogate model improves as the model refines with each 23 

iteration, provably guiding the search to converge to an optimal solution (Srinivas et al., 2010). 24 

Compared to metaheuristic methods, BO entails significantly fewer expensive function 25 

evaluation calls, and hence can be much faster in reaching the optimal solution.  26 

Algorithm 1 outlines the steps for extending basic BO to the multi-objective setting, 27 

following a framework similar to the Pareto extension of the efficient global optimization 28 

algorithm (Knowles, 2006). A detailed discussion of each step is provided in the subsequent 29 

sections. The algorithm begins with a Latin Hypercube Sampling (LHS) of the search space, 30 

generating ‘m’ initial candidate solutions [N, kf, Df] that ensure a representative coverage of 31 

the parameter search space. These solutions are used to generate aggregate structures to get 32 

projections to estimate 2D features, which are compared with the input values along with the 33 
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3D properties of the aggregate structures. The number of initial candidate solutions is fixed as 1 

(11|x| – 1), where |x| represents the number of variables; in our case, |x| = 3 for [N, kf, Df]. This 2 

formula is commonly used in previous BO studies, initially given in the works of Jones et. al. 3 

(1998) and Knowles (2006). LHS is a stratified Monte Carlo sampling method that divides 4 

each dimension into intervals and samples points from each interval, thereby resulting in a 5 

well-distributed dataset of initial solution samples (Iman, 2008).  6 

Algorithm 1: Multi-Objective Bayesian Optimization for Structure Retrieval 7 

Inputs: Microscopic image features (2-dimensional properties), Aerosol properties of sampled 8 

aggregate (3-dimensional properties) 9 

Output: Retrieved aggregate structure   10 

1. Initialization: Apply LHS to generate an initial set of m = 11|x| – 1 candidate solutions (x) 11 

with different N, kf, and Df values and generate corresponding aerosol structures using 12 

FracVAL. Evaluate objective functions for each candidate structure: f1(x) based on projected 13 

features and f2(x) based on mobility diameter, to form a dataset 𝐷 = {(x1, F(x1)), (x2, F(x2)), 14 

…, (xm, F(xm))} 15 

While the evaluation budget is not met, do 16 

2. Objective aggregation: Aggregate the two objective functions f1(x) and f2(x) into a 17 

single scalar value using a randomly sampled weight vector by Tchebycheff’s method 18 

(see Section 2.3.1.) 19 

3. Surrogate model building: Train a Gaussian Process (GP) regression model using 20 

dataset 𝐷 to predict the aggregated objective value from fractal parameters (see Section 21 

2.3.2.) 22 

4. Determining next solution to evaluate: Search for values of N*, kf*, and Df* that 23 

optimize the acquisition function derived from GP predictions (see Section 2.3.3) 24 

5. Dataset update: Use x* = [N*, kf*, Df*] to generate a new candidate structure with 25 

FracVAL and calculate f1 and f2. Update 𝐷 ⟵ 𝐷 ⋃ {(x*, F(x*))} and m ← m + 1 26 

End While 27 

6. Pareto Solution Selection: Identify the subset of non-dominated solutions in 𝐷 and select 28 

the “knee” point as the final retrieved aggregate structure (see Section 2.3.4.) 29 

 30 

2.3.1. Objective Aggregation Method  31 

The fundamental idea behind Algorithm 1 is to decompose the multi-objective 32 

optimization problem into a set of single-objective subproblems, with a random subproblem 33 

considered in every iteration. Given a candidate solution x, represented by the parameters (N, 34 

kf, and Df), the original multi-objective problem involves two objective functions, f1(x) and f235 
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(x), based on 2-dimensional and 3-dimensional properties of the aerosol structure generated by 1 

FracVAL, respectively. These objectives may however be of incommensurable scale. 2 

Therefore, to enable meaningful aggregation of the objectives, each function fi(x) is first 3 

normalized to the range [0, 1] using the values observed in the dataset 𝐷. Following 4 

normalization, the Tchebycheff scalarization method is applied in Step 2 of Algorithm 1 to 5 

aggregate the objectives into a single weighted objective function (Knowles, 2006; Min et al., 6 

2019; Q. Zhang et al., 2010). In each iteration of the proposed multi-objective BO algorithm, 7 

a weight vector, i.e., w = [w1,w2], is randomly and independently sampled, ensuring ∑wj = 1 8 

and wj ≥ 0 ∀j. These weights are incorporated into forming the following optimization 9 

subproblem with the Tchebycheff scalarized objective function, 10 

minimize:  y𝐰(x) = max
j

{wjfj(x)} ;     j = [1,2].                (8) 11 

In simple terms, the Tchebycheff scalarization guides the search to move downwards (in 12 

the case of minimization problems) along the directional vector [w2, w1] in objective space. An 13 

important property of the resulting optimization dynamics is that the Tchebycheff method is 14 

compatible with both convex and non-convex Pareto fronts. The applicability of the more 15 

straightforward linear weighted sum of objectives, on the other hand, is limited to convex 16 

Pareto fronts (Min et al., 2021; Q. Zhang et al., 2010). 17 

2.3.2. Surrogate Modelling with Gaussian Process  18 

Notice that the Tchebycheff scalarized objective function y𝐰(x) has no simple 19 

mathematical form as f1(x) and f2(x) are obtained from FracVAL simulations. These 20 

simulations may moreover be expensive, adding to the challenge of solving the subproblem in 21 

Eq. (8). To address this, BO involves training a probabilistic surrogate model to act as a 22 

computationally cheap substitute to the true costly function y𝐰(x). The Gaussian process (GP) 23 

regression model is a popular choice in this regard, due to its principled modelling of predictive 24 

uncertainties (Min et al., 2019; Rasmussen & Williams, 2006; S. Zhang et al., 2022). 25 

Uncertainty estimation is especially important in simulation-based global optimization 26 

environments where an effective balance of exploration (in regions of large predictive 27 

uncertainty due to data sparsity) and exploitation (in regions where the optimum is predicted 28 

to exist) of the search space is sought. With more data being gathered with each iteration in 29 

Algorithm 1, the GP improves its predictions across the search space, reducing uncertainty in 30 

evaluated regions. By leveraging the surrogate model in this manner, BO substantially lowers 31 

the need for costly function evaluation calls to f1(x) and f2(x).  32 
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A GP is a stochastic approach to regression that extends the concept of multivariate 1 

Gaussians to infinite dimensions (Rasmussen, 2003). It places a Gaussian distribution prior 2 

over possible functions y𝐰, with the distribution completely specified by its mean (usually set 3 

to zero) and covariance function k(x, x′) (whose hyperparameters are tuned to maximize the 4 

log marginal likelihood of the observed aggregated data). Once the original dataset, 𝐷 is 5 

transformed into the aggregated form 𝐷𝐰 = {(xi, y𝐰(xi))}i=1
m , the Gaussian prior can be 6 

updated to give the posterior predictive distribution over function values at any new query point 7 

xq. The predictive mean μ(xq) and variance σ2(xq) for the function at a new query point xq 8 

are then given by, 9 

μ(xq) = kq(K + σn
2 . I)−1Y             (9) 10 

σ2(xq) = k(xq, xq) − kq(K + σn
2 . I)−1kq

T                 (10) 11 

where Y = [y𝐰(x1), y𝐰(x2), … y𝐰(xm)]T, kq =  [k(x1, xq), k(x2, xq), … , k(xm, xq)] is the 12 

covariance between the test point xq and the training points (x1, x2, …, xm), K is an m×m matrix 13 

whose entries are the covariance between all training points, σn is a noise parameter, and I is 14 

the identity matrix. In this study, the squared exponential function is chosen as the covariance 15 

function k(x, x′) and the GPyTorch library (Gardner et al., 2018) is used for building the GP 16 

model. 17 

2.3.3. Acquisition function 18 

Given the trained probabilistic surrogate model, one way to approach the optimization 19 

subproblem in Eq. (8) is to solve for x* that minimizes μ(xq) as given by Eq. (9). However, 20 

this ignores sparsely evaluated / underexplored regions of the search space where the predictive 21 

uncertainty, σ2(xq), of the GP may be high, and therefore has the tendency of getting trapped 22 

in spurious local minima. In order to address this shortcoming, an acquisition function that 23 

combines both the predictive mean and the variance of the GP is typically defined in BO 24 

frameworks. The acquisition function serves as a figure of merit, which, when optimized, yields 25 

an uncertainty-informed solution x* that offers a trade-off between exploration and exploitation 26 

of the search space. While various acquisition functions have been proposed over the years 27 

(Shahriari et al., 2016; X. Wang et al., 2023), many of which may be applicable to the structure 28 

retrieval problem, in this work, we employ the relatively simple lower confidence bound (LCB) 29 

acquisition function. Specifically, instead of naively minimizing μ(xq), with LCB, the 30 

optimization in Eq. (8) is approached by minimizing: 31 

LCB(xq) = μ(xq) − κ ⋅ σ(xq)                (11) 32 
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where κ is a user-defined parameter that controls the trade-off between exploration and 1 

exploitation. The search for x* = [N*, kf*, Df*] minimizing the LCB can ultimately be carried 2 

out using any preferred global optimization heuristic. In our implementation, the state-of-the-3 

art exponential natural evolution strategies (xNES) (Wierstra et al., 2008) is used for its known 4 

efficiency in low-dimensional search spaces. 5 

One advantage of the LCB over many other acquisition functions is that κ can be freely 6 

tuned to instil BO with desired search dynamics. Higher values of κ emphasize exploration, 7 

while lower values focus more on exploitation. In this study, κ was chosen between 0.3 and 8 

0.7, with any value within this range yielding effective results for the test cases considered.  9 

2.3.4. Pareto Solution Selection 10 

By the time the available function evaluation budget is exhausted, the iterative multi-11 

objective BO algorithm yields a set of approximately Pareto optimal solutions. Figure 1 12 

provides an illustration of a two-dimensional objective space containing all solutions generated 13 

during a single run of the BO algorithm, with the subset of non-dominated solutions (closest to 14 

being Pareto optimal) marked in red.  15 

Figure 1. Representation of a Pareto front in multi-objective optimization: dominated solutions 16 

(blue circles), non-dominated solutions (red dots), and the recommended best trade-off point 17 

(green diamond) 18 

In Figure 1, six non-dominated solutions are identified for further analysis. To illustrate 19 

this, consider solutions 1 and 2 from the figure. Both solutions are non-dominated because 20 

neither is superior in both objectives; solution 1 offers better performance for f1, while solution 21 

2 is slightly better with respect to f2. The six non-dominated solutions, including solutions 1 22 

and 2, collectively constitute an approximation of the Pareto set. Each point in the set offers a 23 
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unique balance between the two objectives, thereby requiring an additional stage of decision-1 

making to determine a single preferred solution to the problem at hand.  2 

In this study, the Pareto front is found to often be irregular and non-convex, indicating a 3 

complex trade-off landscape among the objectives. Since it is difficult to provide explicit 4 

preference information in such cases, a common heuristic strategy to determine a single 5 

preferred solution from the Pareto set is to select a point in the middle of the Pareto front, where 6 

the surface bulges out the most. This point is marked in Figure 1 with a green diamond. The 7 

rationale behind the heuristic strategy is that such points are generally furthest from the 8 

extremes of the Pareto front, and thus represent a well-balanced compromise among the various 9 

objectives. In some disciplines, this bulge is informally referred to as the “knee” of the Pareto 10 

front (Heidari et al., 2022). To locate the knee, both objectives of all non-dominated solutions 11 

were normalized to the range [0, 1], following which the point with the minimum Euclidean 12 

distance to the origin was selected as the preferred solution. Thus, the aerosol aggregate 13 

corresponding to this point was identified as the final retrieved structure. 14 

The discussions heretofore outlined the multi-objective optimization approach via 15 

probabilistic surrogate model-based BO, incorporating both 2-dimensional image features and 16 

3-dimensional properties of candidate aggregates generated by FracVAL. The algorithm can be 17 

further tailored to utilize any other 3-dimensional property-based objective function, such as 18 

the aerodynamic diameter. The detailed results and corresponding analysis are discussed in the 19 

following section.  20 
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3. Results and discussion 1 

The proposed method was tested using both synthetic images generated from 2 

computationally simulated aggregates and microscopic images of mobility-classified 3 

aggregates. The synthetic test aggregates were created with varying fractal parameters, 4 

accommodating up to 500 monomers, with Df ranging from 1.3 to 2.4 and kf from 0.9 to 1.6. 5 

These synthetic images were derived from aggregates featuring monomers of a fixed radius of 6 

15 nm. Test cases were randomly selected from the defined parameter ranges, with the 7 

assumption that all aggregates were constructed with monodispersed monomers with point 8 

contact. The testing was subsequently expanded to include synthetic aggregates with 9 

monomers having polydispersity and overlapping. Finally, the methodology was applied to 10 

microscopic images collected from welding fumes, further validating its applicability in 11 

practical scenarios. 12 

3.1.   Bayesian optimization-based retrieval with single objective function 13 

The proposed method was first tested with the single-objective optimization (SOO)-14 

based retrieval process and compared with previous retrieval methods to evaluate its 15 

effectiveness. The effectiveness of the Bayesian optimization-based retrieval process was 16 

evaluated using the same test cases. The retrieved fractal parameters and mobility diameters of 17 

the resulting structures are presented in Table 1.  18 

Table 1. Retrieved fractal parameters and mobility diameters for synthetic aggregates using 19 

Bayesian optimization-based retrieval. 20 

Case 

no. 

Fractal Parameter(s) 
dm(I) dm(O) 

Function 

evaluations N(I) Df(I) kf(I) N(O) Df(O) kf(O) 

1 50 1.8 1.3 50 1.80 1.35 183.6 185.1 55 

2 50 2.0 1.1 55 1.90 1.46 177.5 191.6 65 

3 100 1.8 1.3 106 1.96 1.05 259.6 263.3 48 

 21 

The results are compared based on the number of function evaluations, as illustrated in 22 

Figure 2. The comparison was made between the initial retrieval method, based on Particle 23 

Swarm Optimization (PSO) and forward modelling method (Singh & Thajudeen, 2023), and 24 

ML-based retrieval methods (Singh et al., 2024) developed in earlier studies. The number of 25 

function evaluations was recorded when the objective function values reached an order of 10-26 

3. For both prior retrieval methods, the number of function evaluations was determined by 27 

multiplying the required iterations by the population size, which was consistently set at 20 for 28 

each case. 29 
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Figure 2. Comparison of the number of function evaluations required by the Bayesian 1 

optimization-based retrieval process and the PSO-based retrieval process 2 

 3 

Figure 3. Comparison of total retrieval time between different retrieval methods 4 

The results indicate that the Bayesian optimization-based retrieval method requires the 5 

least number of function evaluations across all tested aggregates across a wide range of fractal 6 

parameters. This efficiency is further illustrated in Figure 3, where the computational time for 7 

retrieval is compared. The total retrieval time encompasses the entire process, from aggregate 8 

generation and projection property calculation to optimization. As the size of the aggregate 9 

increases, so does the generation time, leading to a proportional increase in total retrieval time. 10 

For instance, obtaining the optimal structure of an aggregate with 500 monomers using 11 

traditional methods would take approximately 50 to 60 hours. In contrast, employing the 12 

Bayesian method can reduce this time to just 5 to 6 hours, representing a significant 13 

improvement over previous methods.  This demonstrates the superiority of the Bayesian 14 

optimization-based retrieval method for determining aggregate structures for further analysis.  15 
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3.2.   Multi-objective Bayesian optimization for aggregate retrieval 1 

Given the demonstrated effectiveness of BO in the single-objective method, it was 2 

extended to MOO. Two objective functions based on projected properties and mobility 3 

diameter were used for evaluation, resulting in the Pareto set. The Pareto set was developed 4 

with non-dominated (Pareto optimal) solutions in the search space. A solution is nondominated 5 

if no solution improves one objective without causing a deterioration in at least one other 6 

objective. The final candidate was chosen by identifying the solution on the Pareto front with 7 

the minimum distance from the origin after normalization. The process was initially tested on 8 

synthetic aggregates.  9 

Figure 4. Retrieval based on Bayesian multi-objective optimization: (a) Input image (blue), 10 

most similar projection and retrieved structure (yellow), (b) solutions plot (blue circles) and 11 

non-dominated solutions (red squares), (c) normalized plot with recommended solution (green 12 

diamond) and non-dominated solutions (red squares).  13 

Figure 4 shows an input image of a synthetic aggregate with monodispersed and point-14 

contacted monomers. The input fractal parameters were N = 50, kf = 1.3, and Df = 1.8. The first 15 

step in the retrieval process involved the calculation of relevant 2-dimensional features. The 16 

mobility diameter of the input aggregates was dm = 183.6 nm. The plot in Figure 4(b) represents 17 

all the solutions (in blue circles), where fobj,1 corresponds to the values of the objective function 18 

(a) 

(b) (c) 
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of the 2-dimensional properties, and fobj,2 corresponds to the objective function based on 1 

mobility diameter. The point identified as the green diamond on the plot is considered as the 2 

preferred solution, and the red squares represent non-dominated solutions. The fractal 3 

parameters associated with this point were N = 50, kf = 1.26, and Df = 1.8. The most similar 4 

aggregate and retrieved structure is presented in yellow. The predicted dm of the retrieved 5 

aggregate was found to be 183.1 nm. The final retrieved structure is chosen from the set of 6 

non-dominated solutions, as presented in Table 2. The table demonstrates the progression of 7 

the results towards the preferred solution. This case was executed for approximately 200 8 

iterations, with convergence towards these solutions starting after 50 iterations.  9 

Table 2. Selection of the final retrieved structure from non-dominated solutions 10 

 11 

3.3.   Comparison between single and multi-objective optimization-based retrieval 12 

The method was initially applied to different aggregate structures that were synthetically 13 

generated, and the results are presented in Table 3a, and predictions of dm are in Table 3b. 14 

Retrieval was performed using both single and multi-objective optimization (MOO) 15 

approaches, with most retrieved parameters falling within a 10% error margin, demonstrating 16 

the effectiveness of the MOO process in improving accuracy. In each case, the best solution 17 

has been highlighted in bold for emphasis. The multi-objective approach showed an advantage 18 

by selecting aggregates with 3-dimensional properties more closely resembling the input 19 

aggregate, as presented in Table 4. This observation is supported by Figure 4(c), where the 20 

optimal solution aligned well with both objectives. 21 

While MOO outperforms SOO in most cases, SOO still performs well in a few instances. 22 

This is expected, as SOO-based retrieval is a well-developed approach and remains effective 23 

when no prior 3D information is available. However, when samples are collected based on a 24 

specific 3D property, MOO becomes the preferred method, as it integrates both 2D and 3D 25 

information for improved accuracy. Table 3b further supports this, showing that MOO-based 26 

retrieval consistently produces aggregates with better dm values compared to SOO. Therefore, 27 

MOO is recommended when 3D information is available, while SOO remains useful when 28 

only microscopic images are provided without prior 3D data. 29 

No. kf Df N f1 dm f2 

1 1.35 1.74 52 0.077266 183.1 0.0000074 

2 1.31 1.73 53 0.045675 181.8 0.0000961 

3 1.26 1.80 50 0.046504 183.1 0.0000074 

4 1.26 1.79 49 0.078079 183.4 0.0000012 

5 1.26 1.80 49 0.092937 183.5 0.0000003 
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Table 3a. Retrieval of test aggregates with various fractal parameters (input) and retrieved 1 

parameters using both single and multi-objective optimization-based retrieval processes (best 2 

results are in boldface) 3 

 4 

Table 3b. Comparison between input and retrieved mobility dimeters using both single and 5 

multi-objective optimization-based retrieval processes (best results are in boldface) 6 

Case 

no. 
N(I) Df(I) kf(I) dm(I) dm(O,soo) dm(O,moo) 

1 50 1.8 1.3 183.61 185.11 183.10 

2 50 2.0 1.1 177.55 191.58 182.87 

3 100 1.3 1.4 312.15 287.47 297.96 

4 100 1.8 1.3 259.61 263.26 255.29 

5 150 2.2 0.9 291.33 255.95 278.27 

6 200 1.3 1.4 473.85 400.38 460.75 

7 250 1.8 1.3 414.51 381.66 420.23 

8 250 2.3 1.0 342.57 335.71 337.75 

9 300 1.3 1.4 628.73 652.64 624.85 

10 300 1.8 1.3 458.68 445.36 456.28 

 7 

The visual representation in Table 4 highlights the comparison between the retrieved 8 

structures obtained through single and multi-objective optimization-based retrieval processes. 9 

The results demonstrate that the multi-objective approach yields more structurally similar 10 

aggregates. Additionally, aggregates retrieved using the multi-objective method show better 11 

similarity in both 2-dimensional and 3-dimensional properties and the fractal parameters, 12 

further emphasizing its ability to align with the input data compared to the single-objective 13 

approach. 14 

 15 

 16 

 17 

Case 

no. 

Fractal Parameter(s) Single objective optimization Multi-objective optimization 

N(I) Df(I) kf(I) N(O) Df(O) kf(O) N(O) Df(O) kf(O) 

1 50 1.8 1.3 50 1.80 1.35 50 1.80 1.26 

2 50 2.0 1.1 55 1.90 1.46 52 2.05 0.91 

3 100 1.3 1.4 103 1.41 1.5 100 1.37 1.39 

4 100 1.8 1.3 106 1.96 1.05 98 1.86 1.11 

5 150 2.2 0.9 138 2.15 1.28 149 2.21 1.22 

6 200 1.3 1.4 188 1.52 1.52 210 1.31 1.29 

7 250 1.8 1.3 250 1.85 1.32 239 1.79 1.27 

8 250 2.3 1.0 229 2.28 1.11 255 2.27 1.04 

9 300 1.3 1.4 287 1.2 1.53 313 1.34 1.41 

10 300 1.8 1.3 296 1.91 0.93 297 1.85 1.32 
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200, 1.3, 1.4, 473.9 

185.1 

Table 4. Comparison of retrieved structures using single and multi-objective optimization-1 

based retrieval processes 2 

Case 

no. 

Input image and 

parameters (N, Df, kf, dm) 

Single-objective BO 

optimization & dm,out 

Multi-objective BO 

optimization& dm,out 

Case 1 

 

 

 

 

 

 

  

Case 2 

 

 

 

 

  

Case 3 

 

 

 

 

 

 

Case 4 

 

 

 

 

  

Case 5 

   

 3 

Additional validation has been done, including the calculation of relative errors between 4 

input and retrieved parameters (N, kf, Df) as well as actual and predicted dm values for SOO 5 

and MOO-based retrieval process, presented in Table 5; the test cases are based on Table 3. 6 

 7 

 8 

50, 1.8, 1.3, 183.6 

50, 2.0, 1.1, 177.6 

100, 1.8, 1.3, 259.6 

150, 2.2, 0.9, 291.3 256.0 278.3 

263.3 255.3 

182.9 191.6 

183.1 

400.4 460.8 
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Table 5. Relative errors between input and retrieved parameters (N, kf, Df) and actual and 1 

predicted dm values for SOO and MOO-based retrieval processes. 2 

Case 

no. 

% Relative Error 

N(SOO) Df(SOO) kf(SOO) N(MOO) Df(MOO) kf(MOO) dm(SOO) dm(MOO) 

1 0.0 0.0 3.8 0.0 0.0 3.1 0.81 0.28 

2 10.0 5.0 32.7 4.0 2.5 17.3 7.90 3.00 

3 3.0 8.5 7.1 0.0 5.4 0.7 7.91 4.55 

4 6.0 8.9 19.2 2.0 3.3 14.6 1.41 1.66 

5 8.0 2.3 42.2 0.7 0.5 35.6 12.15 4.48 

6 6.0 16.9 8.6 5.0 0.8 7.9 15.51 2.76 

7 0.0 2.8 1.5 4.4 0.6 2.3 7.93 1.38 

8 8.4 0.9 11.0 2.0 1.3 4.0 2.00 1.41 

9 4.3 7.7 9.3 4.3 3.1 0.7 3.80 0.62 

10 1.3 6.1 28.5 1.0 2.8 1.5 2.90 0.52 

 3 

3.4.   Retrieval of aggregates with polydispersity and overlapping 4 

Aggregated aerosol particles are composed of monomers that vary in size, a characteristic 5 

known as polydispersity. These particles exhibit a broad size distribution, ranging from a few 6 

nanometers to several hundred nanometers in diameter (Dastanpour & Rogak, 2016; M. L. 7 

Eggersdorfer & Pratsinis, 2012). Subsequently, these particles aggregate to form larger 8 

structures composed of primary particles that also display polydispersity. Therefore, 9 

incorporating this aspect into the retrieval process is essential to enhance the versatility and 10 

accuracy of the analysis, since real aggregates exhibit some level of polydispersity in the 11 

monomer size. The polydispersity can be determined with a geometric standard deviation σp,geo 12 

and the geometric mean of the monomers size rp,geo based on Eqs. (2), and (3) Monomers of 13 

different sizes are generated and attached to the growing cluster by following the scaling law. 14 

This feature is available in FracVAL and was exploited to generate candidate aggregates with 15 

polydispersity. 16 

Additionally, the monomers can overlap with each other due to sintering (M. 17 

Eggersdorfer et al., 2012). The aggregates formed from combustion-generated nanoparticles 18 

often exhibit overlapping between the monomers. The morphology can vary significantly due 19 

to necking or overlap between monomers. Necking or overlap refers to non-point contacts 20 

between adjoining monomers due to sintering or variations in combustion temperature, which 21 

alter the overall morphology. This overlapping phenomenon requires careful consideration, as 22 

excessive overlapping can result in the merging of adjacent monomers. The overlapping can 23 

be quantified with the overlapping coefficient (V) as: 24 

V = 1 − |
AB

2rp
|                                (12) 25 
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where AB is the centre distance between the two adjoined monomers and the rp is the radius of 1 

each monomer. Prior studies used this factor to limit the overlapping between the monomers 2 

(Morán et al., 2018; Oh & Sorensen, 1997). It was integrated into the FracVAL code to 3 

introduce controlled overlapping between monomers.  4 

Initial tests were conducted using synthetic aggregates generated with FracVAL, which 5 

was adjusted to produce aggregates with varying degrees of polydispersity and overlapping. 6 

The polydispersity index ranged from 1 to 2, and the overlapping index ranged from 0 to 0.5. 7 

The results are presented in Table 6, which includes different polydispersity indices and 8 

overlapping coefficients. This analysis provides insight into prediction accuracy by evaluating 9 

the retrieved values of N, kf, Df, and dm for different test cases. It shows that the MOO-based 10 

retrieval processes perform well with structures having polydispersed monomers with a certain 11 

degree of overlap between them. 12 

Table 6. Retrieved values of N, kf, Df, and dm for aggregates with varying polydispersity 13 

indices and overlapping coefficients 14 

Case 

no. 
N(I) Df(I) kf(I) σp,geo ov N(O) Df(O) kf(O) dm(I) dm(O) 

1 50 1.8 1.3 1.2 0.2 50 1.91 1.15 180.5 184.6 

2 50 2.0 1.1 1.2 0.2 49 1.94 1.14 174.1 179.1 

3 100 1.6 1.6 1.2 0.2 99 1.65 1.37 263.6 254.1 

4 100 1.8 1.3 1.1 0.2 95 1.77 1.19 247.8 251.1 

5 100 1.8 1.3 1.2 0.1 99 1.76 1.06 258.1 247.4 

6 100 1.8 1.3 1.2 0.3 99 1.84 1.20 242.4 254.2 

 15 

Two test cases were used to demonstrate this retrieval process: In Case 2, the inputs were 16 

N = 50, Df = 2.0, kf = 1.1, σgeo = 1.2, with an overlapping coefficient of 0.2 and an input mobility 17 

diameter for the second objective function of 174.2 nm. In Case 6, the inputs were N = 100, Df 18 

= 1.8, kf = 1.3, σgeo = 1.2, with an overlapping coefficient of 0.3 and an input mobility diameter 19 

for the second objective function of 242.4 nm. The input images are presented in blue in Figure 20 

5, while the retrieved projections and aggregates are shown in yellow. The parameters of the 21 

retrieved structures are as follows: for case (a), N = 49, Df = 1.94, kf = 1.14 and the dm,out = 22 

179.1 nm; for case (b), N = 99, Df = 1.84, kf = 1.20 and dm,out = 254.2 nm. These predictions 23 

demonstrate good agreement with the input values.  24 
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 1 

Figure 5. Retrieval of aggregates with polydispersity and overlapping of input (blue) and 2 

retrieved (yellow) aggregate structures. 3 

3.5.   Retrieval from microscopic images 4 

The proposed retrieval method was further evaluated using microscopic images of 5 

aggregates obtained from welding processes through scanning electron microscopy (SEM). 6 

The test images are collected from fume particles generated by a wire additive arc welding 7 

process. Aggregate samples are collected using a DMA with a fixed voltage, corresponding to 8 

a fixed electrical mobility value. Silica wafer is positioned at the outlet of the DMA to collect 9 

the particles, which is utilized to collect images using SEM. 10 

The obtained images are processed using ImageJ software, and a Fortran code to extract 11 

the required features. The 2-dimensional features, along with the measured mobility diameter, 12 

are integrated into the retrieval process as an input. The retrieval process follows the proposed 13 

methodology to obtain the aggregate structures. The test images used for retrieval were 14 

collected from aggregates exhibiting polydispersity and monomer overlap, which are key 15 

factors for evaluation. ImageJ software is used to assess the monomer size distribution and 16 

calculate the polydispersity and overlapping index. Figure 6 presents two test images used in 17 

the retrieval process. The retrieval was configured for 5% monomer overlap, with a 18 

polydispersity index of 1.5, estimated through ImageJ by measuring the sizes of individual 19 

monomers. 20 

Figure 6 shows the best-matched projection highlighted in blue and the corresponding 3-21 

dimensional aggregate presented in yellow. The predicted fractal parameters for the image (a) 22 

with measured dm of 500 nm are N = 45, Df = 1.69, and kf = 1.12. The mobility diameter of the 23 

retrieved structure is found to be 537.4 nm. Image (b) is collected with a dm of 270 nm and the 24 

(

(

(a) 

(b) 

Jo
urn

al 
Pre-

pro
of



26 

 

predicted parameters of N = 42, Df = 1.65, and kf = 1.31. The corresponding predicted mobility 1 

diameter for the retrieved structure is 303.9 nm. These results highlight the effectiveness of the 2 

proposed method for real-time analysis of aggregates. 3 

 4 

Figure 6. Retrieved structures of two mobility-classified aggregate images, a) dm = 500nm and 5 

b) 270nm, with the best-matched projection (in blue) and corresponding 3-dimensional 6 

aggregate (in yellow).  7 

(

(

(a) 

(b) 
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4. Conclusion  1 

In this study, a multi-objective Bayesian optimization-based retrieval method is 2 

developed to retrieve 3-dimensional structures from microscopic images of aggregated aerosol 3 

particles. The objective was to identify the optimal aggregate structures that exhibit the 4 

maximum similarity to the input microscopic image based on projection or image features and 5 

3-dimensional property, mobility diameter. Initial testing was conducted using a Bayesian 6 

optimization-based retrieval process and compared with previously developed metaheuristic 7 

optimization-based retrieval. BO was found to be better than prior methods. It required fewer 8 

function evaluations and reduced retrieval time. It showed significant improvement in 9 

computational efficiency, reducing the time required for aggregate retrieval from 10 

approximately 50-60 hours to 5-6 hours for aggregates with 500 monomers.  11 

The following tests involved comparing single-objective and multi-objective Bayesian 12 

methods focused on assessing their effectiveness in predicting fractal parameters and mobility 13 

diameters. The results suggested that the multi-objective approach, which considers two 14 

objective functions, consistently outperforms the single-objective method, particularly in terms 15 

of predicting mobility diameter (dm). Further testing involved synthetic aggregates with 16 

polydispersity and overlapping, confirming the adaptability of the proposed method. The 17 

method effectively handled aggregates with varying polydispersity indices (up to σP,geo = 2) and 18 

overlapping coefficients (ov = 0.5), demonstrating accurate predictions of fractal parameters 19 

and mobility diameters with errors under the 10% range. Additionally, the methodology was 20 

validated with real-time aggregates collected from welding conditions. The Bayesian 21 

optimization-based retrieval method successfully predicted the parameters of aggregates with 22 

a known mobility diameter, again with an error of less than 10%. 23 

In conclusion, MOO, with Bayesian techniques, represents a fast and efficient method 24 

for retrieving aggregate structures. This method has proven successful across various cases, 25 

from synthetic test images to real microscopic images of aggregates. The study can also be 26 

extended to aggregates sampled based on other aerosol properties like aerodynamic diameter 27 

as the second objective function. The method demonstrates its versatility and potential for 28 

application in multiple areas requiring morphological analysis. 29 
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Highlights  
 

• Multi-objective optimization to predict 3-dimensional morphology from microscopic 

images 

• Bayesian Optimization for faster convergence 

• Second objective function includes apriori information of mobility diameter 

• Retrieval time reduced by up to one-tenth of existing methods 

• Accounts for polydispersity in particle size and overlapping 
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