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Regroupement québ́ecois sur les matériaux de pointe and Department of Physics, McGill

University, Montreal, Quebec, Canada H3A 2T8

mark@physics.mcgill.ca, laazirik@physics.mcgill.ca

F. Livet and F. Bley
LTPCM-ENSEEG-INPG, UMR-CNRS n◦ 5614, B.P. 75 - 38402 Saint Martin d’H̀eres CEDEX -

FRANCE
flivet@ltpcm.inpg.fr, fbley@ltpcm.inpg.fr

Abstract: An introduction to x-ray intensity fluctuation spectroscopy is
given by describing its relationship to speckle from coherent sources. Its use
to measure two-time correlation functions is demonstrated using the equi-
librium fluctuations of gold colloids in polystyrene and for non-equilibrium
fluctuations in the unmixing below the miscibility gap in AlLi.
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1. Introduction

After a brief discussion of microstructure, this article gives an intuitive introduction to dynamic
light scattering (DLS) also called intensity fluctuation spectroscopy (IFS). IFS measures the
temporal correlations in diffraction intensities and these can usually be simply related to tem-
poral correlations of density fluctuations. In equilibrium systems, these correlation functions
depend only on the time difference between measurements and are independent of any origin
for time. Thus, IFS reduces to measuring one-time correlation functions. In non-equilibrium
systems, these intensity correlations depend on both time arguments and full two-time correla-
tion functions are measured. In this context, an example of IFS using x-rays will be given for
an equilibrium system. This example is presented to show how array detectors and the isotropy
of scattering allows one to measure two-time correlation functions. A second example in which
IFS is used to measure two-time correlation functions in a non-equilibrium system is then given.
This article emphasizes what is involved in measuring these two-time correlation functions and
the science underlying their behaviour is left to the references.

The physical properties of a material are most often controlled by its microstructure rather
than its atomic structure. Control of this microstructure by specialized heat treatments and other
techniques is the reason for many of the steps in modern materials processing. The simple ob-
servation that a material’s properties depends on its history shows that these are non-equilibrium
phenomena. Because of this importance, measurements of microstructure play a unique role in
understanding the interplay between a material’s structure and its properties. Scattering, primar-
ily using x-rays and neutrons, plays a leading role in measuring structure covering the length
scales from atomic distances to distances involved in a material’s microstructure. Scattering
with both visible photons and electrons have also made many significant contributions in this
area, but we have singled out x-rays and neutrons because their interactions with matter allow
more detailed structural measurements (exemplified by their predominant use in crystallogra-
phy). Inelastic measurements, probing the energy levels of a system, have given deep insight
into the dynamics of the atoms in a material, but have not been as useful in studies of mi-
crostructure. This is, in part, due to the small fraction of the atoms that are directly affected by
the microstructure and also by the long time scales (and thus low energies) that are associated
with its evolution. Measuring dynamics in time, rather than in energy, overcomes (or sidesteps)
these energy resolution issues for probes which are sensitive to the appropriate length scales.
Typically, these length scales are in the few nanometers to several micron range. (Following
current trends, one should probably call it nanostructure not microstructure.) Dynamic light
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scattering [1, 2] provides a powerful probe that measures time fluctuations (at least in trans-
parent systems) but it can be limited by the wavelength of visible light and often doesn’t quite
reach the shorter length scales needed. The recent extension to x-rays (XIFS) is proving to be a
powerful way to explore this type of behaviour[3, 4, 5, 6, 7].

XIFS is an x-ray diffraction technique. As such, the intuition and expertise that has been
developed for diffraction carries over to this new technique. The extra information in XIFS
comes from exploiting coherence properties of the incident radiation which leads to an effect
called speckle. Speckle, often seen in laser light, results when coherent light reflects or scat-
ters diffusely off disordered material. The intensity at each spot in the “image” is the result
of light scattered (reflected) from many different points of the disordered materials. The es-
sentially random path lengths of the light from these points in the sample to the point in the
image, leads to the light being the sum of rays with a random set of phases. However, even
though it is randomly distributed from point to point, the phase at any point sums to a definite
value since the incident light is coherent. Where phases add destructively there are dark spots
and where they add constructively bright ones. Hence, the speckled appearance of the image.
From this description, one should be able to convince oneself, that for diffraction, the speckle
pattern is simply the appropriate projection of the Fourier transform of the scattering volume.
The requirement of a disordered material, that is one composed of small random parts, gives
rise to a much broader diffraction pattern which is modulated by this speckle. A conventional
diffraction pattern, as taken with an incoherent beam, has the finer speckle pattern smeared
out by the angular spread of the incident beam (transverse incoherence) or by the wavelength
spread (longitudinal incoherence) or by a combination of both.

IFS can now be explained by imagining that the diffracting material fluctuates in time and
thus so do the speckle intensities. Hence the name IFS. Note that the fluctuating intensities even
occur in equilibrium systems where the conventional diffraction pattern is constant in time. IFS
is an ideal way to study the kinetics of fluctuations in a system provided that the scattering
intensity is sufficient for the time scales of the system under study. For the last three decades
or so, it has been extensively used with light scattering to study a large variety of systems [1].
For x-rays, IFS has the advantages of accessing optically opaque materials, of probing shorter
length scales and of being less affected by multiple scattering (see, however, a description of
diffusing wave spectroscopy [8]). The prime disadvantage of x-rays over visible light is the
much lower coherent intensity levels of x-ray sources.

We conclude this section with a summary of the criteria for XIFS, for more details see
Refs. [9, 10, 7]. (1) The coherence conditions determine a coherence volume and the observed
scattering must come from this volume. In the paraxial limit, the volume is usually determined
by the finite size of the source and by its monochromaticity. There are two transverse coherence
lengths which depend on the horizontal and vertical root mean square (rms) size of the source
σh, σv. At a distance R from the source, ξi = λ R/(2πσi) are the rms transverse coherence
sizes (we have used σi << R). The longitudinal coherence length ξl = λ 2/(2∆λ ) = c/(2∆ν)
specified by either wavelength λ with spread ∆λ or frequency ν with spread ∆ν . More pre-
cisely, the longitudinal coherence limits the largest path length difference between points in
the scattering volume. For reflection geometry this constraint is approximately ξl (ki/q)2. Here
q = |�q|= |�ko−�ki | is the wave-vector probed and �ki and �ko are the incident and out-going wave-
vectors. For transmission at small angles it is approximately ξl ki/q. These sizes are typically
several microns for undulator x-ray sources but the path length difference constraint may grow
to millimetres for small angle scattering. (2) The detector resolution must resolve the speckle
size. This is ≈ λ /ξi , the diffraction broadening from the finite size of the beam. (3) Sufficient
photons must be scattered per speckle during the characteristic time of the dynamics. Since IFS
is a noise measurement, many independent time samples are needed for good statistics. A good
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Fig. 1. (a) Scattering of Au particles in polystyrene (top). Black region is due to the shadow
of a beam stop and the black arc consists of the wave-vectors for which fluctuations are
shown (q = .028Å−1) in Fig. 2. The two directions of the wave-vector (horizontal and
vertical) are labelled by qx and qy and q=

√
q2

x +q2
x. (b) Circular average of (1a) (bottom).

The 20 pixel wide stripe of the black arc contribute to the single point in this circular
average for q = .028(±.0003)Å−1.

rule of thumb to estimate how short a time constant can be measured for a given scattering
intensity is to require one count per speckle in each time constant. Since the scattering volume
is small by (1), strong coherent x-ray sources such as third generation synchrotrons are needed.
Typical results measure time constants from milliseconds to many minutes, for wave-vectors
from 10−4 to 1 or 2 Å−1.

2. Equilibrium IFS

In this section we present data for the colloidal system of Au particles in the polymer
polystyrene. We present this data to illustrate the above description more explicitly and in a
way which leads to a natural description using IFS for non-equilibrium systems. The science of
this interesting system will not be addressed [11, 12].

Particles in a homogeneous material lead to a peak in the small angle x-ray scattering (SAXS)
which reflects the size and distribution of particle shapes. Figure 1(a) shows the small angle x-
ray scattering from 60 nm gold particles well dispersed in polystyrene for 25 C, a temperature
below the glass transition. The scattering pattern was collected on an area detector so a rel-
atively large section of the small angle peak could be collected in parallel. The area detector
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Fig. 2. The intensity fluctuations versus time for selected individual pixels from the 20 pixel
wide arc of scattering at wave-vectors for which |�q| = .028(+− .0003)Å−1. Increasing
pixel number corresponds to increasing angle around the arc. Lighter colours are higher
intensities.

is a charge coupled device (CCD) used with direct illumination. The wavelength used was
1.62 Å and each pixel in the CCD subtends an angle that corresponds to a wave-vector res-
olution of 3.1× 10−5 Å−1. The black rectangular region center left is the shadow of a beam
stop which prevents the transmitted incident beam from hitting the detector. Pixels near the
edge of the CCD are also not used. The black arc will be discussed later. The top part of the
figure shows the average scattering on the CCD and below is the corresponding circular aver-
age obtained by averaging the image over arcs of constant wave-vector. This circular average
corresponds to what is usually measured in small angle scattering experiments. For this system
the small angle scattering is isotropic and decays monotonically away from beam center. The
size of the speckles for this setup is comparable to the pixel size of the CCD.

At this temperature, this system has a diffusion constant such that the time constants for
the range of wave-vectors measured are of order minutes. The intensities in the CCD image
fluctuate in time and this is illustrated in Fig. 2 which plots the intensities of several pixels in
the black arc shown in Fig. 1(a) as a function of time. For an isotropic system, the time constants
of the fluctuations depend only on the magnitude of the wave-vector and not on its direction.
So each speckle should fluctuate with equivalent noise distributions and time constants. In this
figure, the changing positions of the Au particles resulting from their Brownian motion leads
to the observed intensity fluctuations. To analyze this noise one can measure its autocorrelation
function,

g2 = 〈I(t1)I(t2)〉/(〈I(t1)〉〈I(t2)〉), (1)

where 〈...〉 denotes an average over pixels. If the intensities are uncorrelated, the g2 will be
equal to one and often g2−1 is what is plotted. One can easily show that autocorrelating (I(t1)−
〈I(t1)〉)/〈I(t1)〉 will also result in g2−1. Figure 3 shows two representations of these correlation
functions. First, there is some freedom in how one chooses the pixels over which to average.
Often different averages are used for 〈I(t1)I(t2)〉 and 〈I(t)〉. For 〈I(t)〉 one can choose more

(C) 2003 OSA 22 September 2003 / Vol. 11,  No. 19 / OPTICS EXPRESS  2272
#2833 - $15.00 US Received August 04, 2003; Revised September 15, 2003



Fig. 3. (a) Two-time correlation functions, using averages over the arc in Fig. 1(a) (top). (b)
Time correlation functions (bottom). The noisy signal (blue) is the single slice correspond-
ing to the diagonal line in 3(a) (a function of t2 − t1). Since the function is symmetric in t1
and t2 only the portion for t2 > t1 is shown. The less noisy signal (red) is a simple average
over all slices. The black curve on top is g2 calculated using the multitau algorithm which
obtains correlations for longer times after averaging intensities over successively longer
times [13].

pixels to get a better estimate of the average scattering so for equilibrium scattering, averaging
over time and over �q with the same |�q| often leads to the best estimate. For Fig. 3(a) only
averages over �q were performed showing that reasonable correlations can be measured from
a pair of images. This is possible because of using array detectors. For equilibrium systems,
the two-time correlation function only depends on τ = t2 − t1. This is seen in Fig 3(a) by the
colour contours being parallel to the diagonal. It is clear that better statistics can be obtained
by appropriately averaging over time. Figure 3(b) shows correlation functions for one cut of
Fig. 3(a) and superimposed on it are two ways of averaging over time.

Several comments about the correlation functions need to be mentioned. Thermal fluctu-
ations are typically small variations about the average and so a Gaussian approximation for
density fluctuations simplifies calculations [1, 2]. Also, quite generally in this limit, the time
correlation functions are simple exponential decays, characterized by a single time constant.1

Fourier transforming this into frequency space leads to the Lorentzian frequency spectrum often

1Note, however, that this is typically not true for polymeric systems, and the correlation function in Fig. 3(b) is not
a simple exponential [14].
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observed by other techniques. Since we are measuring intensity-intensity correlation functions
these are often the square of those for underlying thermodynamic fluctuations [1, 2].

We emphasise that intensity fluctuations are noise and as such a good estimate of the signal
to noise is given by 1/

√
N, where N is the number of uncorrelated times measured [13]. DLS

measurements have typically measured the correlation functions at a single point of scattering
and thus 104 correlation times are needed to get 1% accuracy. With the hundreds or even thou-
sands of speckles measured in parallel by an appropriate area detector, correlation functions can
be measured in only a few correlation times2 This has an obvious advantage for measurements
in systems with long correlation times such as seen in Fig. 3. Finally, two technical points. For
〈I(t1)2〉 ( i.e. t1 = t2) , there is a contribution from photon statistics which does not appear in
〈I(t1)I(t2)〉 for t1 �= t2. This can be removed by extrapolating the values on each side t ± δt,
δt being the time step. Also, the limit of g2(τ )− 1 as τ goes to zero would be 1.0 for a fully
coherent beam and a lower value can result from various combinations of partial coherence in
the experimental setup, a detector bigger than the speckle size or an indication that the system
has time constants faster than the sampling time.

Using this analysis one can measure the correlation functions as a function of wave-vector.
Access to larger wave-vectors is one of the advantages using x-rays for IFS. Measuring time
constants as a function of wave-vector is closely related to the equation of motion of the system
and is the motivation for making these types of measurements. We leave to the references
a description of the wide variety of systems studied and the interesting science obtained but
would like to point out that, for instance, the diffusion equation leads to time constants that
vary as 1/D|�q|2.

3. Non-equilibrium IFS

Although extremely successful for equilibrium systems, IFS has not often been used to study
fluctuations in non-equilibrium systems. This is in part due to the bias of DLS measurements to
use point counting methods which require averaging over time to get good statistics and partly
due to using autocorrelation techniques which depend on the average scattered intensity being
constant. In non-equilibrium systems a full two-time correlation function needs to be measured
and things are more difficult as these techniques can not be used. In a study of phase separation
in a sodium borosilicate glass [16] and in the unmixing of AlLi [17], it was shown how to use an
area detector and the isotropy of the x-ray scattering to overcome these limitations. Measuring
many speckles at the same time not only helps with statistics but helps to decompose the time
evolution of the scattering into an average and a fluctuating component3.

In the article we will present an example two-time correlation measurements from Livet et
al. [17] to emphasize the above points. Please see the original articles for a comparison of the
measurements [16, 17] to the predictions of dynamical scaling [18, 19]. These articles show the
different nature of fluctuations in non-equilibrium systems.

Figure 4 shows the time evolution of the circular averaged SAXS pattern for the unmixing
of Al.91Li.09 at 220 C. The sample was quickly quenched from 475 C above its miscibility gap
to room temperature where everything is frozen. It was then heated in-situ to this anneal tem-
perature which is below its miscibilty gap but where diffusion constants are such that unmixing
can take place on the time scale seen in the figure. The time at which the sample reached 220 C
is defined as t = 0. For this isotropic system, an instantaneous average can be calculated by av-
eraging over intensities at constant |�q|. Based on the high degree to which scaling works in the
Al−Li system, this is equivalent to studying the fluctuations about an instantaneous “average”

2The required independence of each speckle is easily seen in the Gaussian approximation [15].
3Of course, if the fluctuating component is much faster then the variation in the average, a quasi-equilibrium ap-

proach may work.

(C) 2003 OSA 22 September 2003 / Vol. 11,  No. 19 / OPTICS EXPRESS  2274
#2833 - $15.00 US Received August 04, 2003; Revised September 15, 2003



Fig. 4. Time evolution of scattered intensity. Scattering was measured with a wavelength of
1.51 Å.

as determined by the scaling form.
A two-time correlation function is presented in Fig. 5 for |�q| = 0.0155 Å−1 and three of its

cross-sections are shown in Fig 6. These correlation are based on autocorrelating:

D(�q, t) =
I(�q, t)−〈I(�q, t)〉

〈I(�q, t)〉 . (2)

Here the averages are over 40 pixel wide annuli for the given time t, but calculations with 20
pixel annuli gave the same result aside from an increased Poisson noise. This figure clearly
shows a dependence on both t2 − t1 and the average time from the quench (t1 + t2)/2, in clear
contrast to Fig. 3(a). The growing width perpendicular to the diagonal shows the slowing down
of the fluctuations with time.

Figure 6 shows three cross-sections for several values of constant t1. A fit to a theoretical form
for the correlation function [18, 19] is also shown. This function is not a simple exponential and
the figure shows both a Gaussian and Lorentzian form for comparison. The references discuss
the comparison of these types of measurement to theories of dynamical scaling.

4. Conclusions

First, we conclude that by using area detectors, one can measure two-time correlation func-
tions which are important in the study of non-equilibrium systems. The two examples of such
measurements so far published [16, 17] have been in systems in which dynamical scaling was
known to work well, but nothing in the measurement of the two-time functions depends on scal-
ing. An obvious next step would be to extend these types of measurements to other examples of
non-equilibrium systems. We also note that light scattering geometries exist [20, 21] which are
also using CCD’s and we would like to encourage their use for two-time correlations as well.
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Fig. 5. Contour plots of two-time correlation functions for |�q| = .1055. Contour levels are
0.2, 0.4, 0.6 and 0.8. The diagonal t1 = t2 has been normalized to 1.0 after suppressing
the effects of Poisson noise. The black dot indicates the time at which the peak maximum
sweeps by this particular wave-vector.

Fig. 6. Correlation functions for q = .0155 Å−1value and t1 = 2163 s; 7920 s; 16230 s.
Solid lines are the fits. For comparison, the dash-dot line is a Gaussian and dashed line is a
Lorentzian with the same height and width as given by the fit.
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