Non-Symmetrical Dielectric Relaxation Behaviour Arising from a Simple Empirical Decay Function

BY GRAHAM WILLIAMS AND DAVID C. WATTS

Edward Davies Chemical Laboratory, University College of Wales, Aberystwyth

Received 13th June, 1969

The empirical dielectric decay function $\gamma(t) = \exp -(t/\tau_0)^{\beta}$ may be transformed analytically to give the frequency dependent complex dielectric constant if β is chosen to be 0.50. The resulting dielectric constant and dielectric loss curves are non-symmetrical about the logarithm of the frequency of maximum loss, and are intermediate between the Cole-Cole and Davidson-Cole empirical relations. Using a short extrapolation procedure, good agreement is obtained between the empirical representation and the experimental curves for the α relaxation in polyethyl acrylate. It is suggested that the present representation would have a general application to the α relaxations in other polymers. The Hamon approximation, with a small applied correction, is valid for the present function with $\beta = 0.50$ in the range log ($\omega \tau_0$) > -0.5, but cannot be used at lower frequencies.

The dielectric dispersions and absorptions of many systems do not correspond to a single relaxation time expression. Where the behaviour is symmetrical about the logarithm of the frequency of maximum loss, the empirical equations of Cole and Cole,¹ and Fuoss and Kirkwood² often give an adequate fit to the experimental behaviour. In many cases the behaviour is not symmetrical about the logarithm of the frequency of maximum loss, and the Davidson-Cole empirical relation^{3, 4} gives a good fit to the experimental data. The details of the "skewed arc" representation have been reviewed by Davidson.⁵ In the course of our studies on the primary (α) relaxation of amorphous polymers the non-symmetrical behaviour has become evident, and does not appear to be adequately fitted to a Davidson-Cole distribution. It is the aim of the present paper to examine a simple empirical form for the dielectric decay function which leads to non-symmetrical behaviour of the type observed in polymers.

THEORY

The complex dielectric constant ε^* is related to the normalized decay function $\gamma(t)$ by the equation ⁶

$$\frac{\varepsilon^* - \varepsilon_{\infty}}{\varepsilon_0 - \varepsilon_{\infty}} = \mathscr{L}\left[-\frac{\mathrm{d}\gamma(t)}{\mathrm{d}t}\right].$$
 (1)

 \mathscr{L} indicates the Laplace transform, $\dagger \left[-d\gamma(t)/dt\right]$ is the normalized transient decay current obtained when a steady electric field is removed from a sample. ε_0 and ε_{∞} are the limiting low and high frequency dielectric constants of the given medium. If the decay function $\gamma(t)$ is given by the relation $\gamma(t) = \exp(-t/\tau)$, where τ is a macroscopic time constant, then eqn (1) yields the single relaxation time expression

$$(\varepsilon^* - \varepsilon_\infty)/(\varepsilon_0 - \varepsilon_\infty) = (1 + j\omega\tau)^{-1}.$$

 $\dagger \mathscr{L}[F(t)] = \int_0^\infty \exp\left(-j\omega t\right) F(t) \mathrm{d}t.$

View Article Online

81

We consider the empirical decay function

$$\gamma(t) = \exp -(t/\tau_0)^{\beta}, \qquad (2)$$

 $0 < \beta \le 1$, and τ_0 is some effective relaxation time. Insertion of (2) into (1) gives

$$\frac{\varepsilon^* - \varepsilon_{\infty}}{\varepsilon_0 - \varepsilon_{\infty}} = \mathscr{L}\left[\frac{\beta}{\tau_0} \left(\frac{t}{\tau_0}\right)^{-(1-\beta)} \exp\left(-\left(\frac{t}{\tau_0}\right)^{\beta}\right)\right].$$
(3)

The evaluation of eqn. (3) by analytical means appears complicated. However, if we choose the particular value $\beta = 0.50$, the transform is readily evaluated. For this special case, eqn (3) becomes

$$\frac{\varepsilon^* - \varepsilon_{\infty}}{\varepsilon_0 - \varepsilon_{\infty}} = \frac{1}{2} \left(\frac{\pi}{\tau_0} \right)^{\frac{1}{2}} \mathscr{L} \left[\frac{1}{(\pi t)^{\frac{1}{2}}} \cdot \exp{-2k(t)^{\frac{1}{2}}} \right]$$
(4)

where $2k = (\tau_0)^{-\frac{1}{2}}$. The Laplace transform is now in a standard form,⁷ giving

$$\frac{\varepsilon^* - \varepsilon_{\infty}}{\varepsilon_0 - \varepsilon_{\infty}} = \frac{1}{2} \left(\frac{\pi}{\tau_0} \right)^{\frac{1}{2}} \cdot \frac{1}{(j\omega)^{\frac{1}{2}}} \exp \frac{k^2}{j\omega} \cdot \operatorname{erfc} \frac{k}{(j\omega)^{\frac{1}{2}}}.$$
 (5)

Since $(j)^{\frac{1}{2}} = (1/\sqrt{2})(1+j)$, eqn (5) becomes

$$\frac{\varepsilon^* - \varepsilon_{\infty}}{\varepsilon_0 - \varepsilon_{\infty}} = (\pi)^{\frac{1}{2}} \frac{(1-j)}{\rho} w(z).$$
(6)

 $\rho = (8\omega\tau_0)^{\frac{1}{2}}$; $z = (1+j)/\rho$ and $w(z) = \exp(-z^2) \cdot \operatorname{erfc}(-jz)$. The values of w(z) have been tabulated (ref. (7), p. 325), so $(\varepsilon^* - \varepsilon_0)/(\varepsilon_0 - \varepsilon_\infty)$ may be determined as a function of $\omega\tau_0$ for $\beta = 0.50$.

FIG. 1.-- $(\varepsilon' - \varepsilon_{\infty})/(\varepsilon_0 - \varepsilon_{\infty})$ and $\varepsilon''/(\varepsilon_0 - \varepsilon_{\infty})$ against log $(\omega \tau_0)$ for the present function with $\beta = 0.50$ (curves 1), and Davidson-Cole function with $\sigma = 0.322$ (curves 2).

DISCUSSION

Fig. 1 shows the plots of $(\varepsilon' - \varepsilon_{\infty})/(\varepsilon_0 - \varepsilon_{\infty})$ and $\varepsilon''/(\varepsilon_0 - \varepsilon_{\infty})$ against log $(\omega \tau_0)$, for $\beta = 0.50$, as determined by eqn (6). Also shown in fig. 1 are the corresponding plots for the Davidson-Cole empirical relation with the parameter ($\sigma = 0.322$)

chosen to give the same $\varepsilon_{\max}''(\varepsilon_0 - \varepsilon_{\infty})$ as the present representation with $\beta = 0.50$. These plots have the same general appearance, but differ significantly in detail, as is shown by table 1. The τ_0 values are different for the two functions, and so are their shapes, for although the half-widths of the loss factor curves are similar, their assymmetries, as measured by Δ (low)/ Δ (high), are quite different. This comparison is extended to fig. 2, where the Argand plot shows a difference in shape, especially at high frequencies.

FIG. 2.— $\varepsilon''/(\varepsilon_0 - \varepsilon_{\infty})$ against $(\varepsilon' - \varepsilon_{\infty})/(\varepsilon_0 - \varepsilon_{\infty})$ for the present function with $\beta = 0.50$ (solid line), and Davidson-Cole function with $\sigma = 0.322$ (dashed line).

In order to compare the function with experimental data it is desirable to have values for the function for which $\beta \neq 0.50$. The case where $\beta = 0.50$ has been evaluated exactly, and the case where $\beta = 1$ is also known, as this corresponds to the single relaxation time function. Using this information a short extrapolation has given the relaxation curves for $\beta \neq 0.5$.

Table 1.—A comparison of the davidson-cole function and the present function (Eqn (6)) for $\varepsilon_{max}^{"}/(\varepsilon_0 - \varepsilon_{\infty}) = 0.272$

	log(ω _{max} τ ₀)	total half width (decade)	Δ (low)	Δ (high)	$\Delta_{(low)}/\Delta_{(high)}$
Davidson-Cole	0.40	2.02	0.70	1.32	0.53
present function	-0.15	2.12	0.90	1.22	0.74

 Δ (low) and Δ (high) correspond to $|\log(\omega_i/\omega_{max})|$, where ω_i are the angular frequencies corresponding to $(\varepsilon''/\varepsilon'_{max}) = 0.50$.

The dielectric relaxation in amorphous polyethyl acrylate (PEA) has been studied in the frequency range 10^{-2} - 10^5 Hz using a General Radio 1615-A bridge and a Scheiber bridge.⁸ The measurements were performed at 3 pressures at 10.3°C using techniques similar to those described earlier.⁹ Fig. 3 shows the experimental data plotted in normalized form, for which $\varepsilon_{max}^{"}/(\varepsilon_0 - \varepsilon_{\infty}) = 0.21$. Accordingly a value of $\beta = 0.38$ has been chosen for the present function, for which $\varepsilon_{max}^{"}/(\varepsilon_0 - \varepsilon_{\infty})$ is also 0.21. Similarly, a value of $\sigma = 0.217$ has been chosen for the Davidson-Cole function, so that $\varepsilon_{max}^{"}/(\varepsilon_0 - \varepsilon_{\infty}) = 0.21$. All the information has been plotted in normalized form, and the agreement between the experimental data and the present function is reasonable, whereas the Davidson-Cole curve is more skewed. If an attempt is made to fit the α process for polypropylene oxide,¹⁰ polyethylene terephthalate ¹¹ and polyvinylacetate,¹² a reasonable fit is also obtained, and therefore the function may be of use for polymers.

Our main conclusion is that if $\gamma(t) = \exp - (t/\tau_0)^{\beta}$ is an approximately correct decay function, then it would be desirable to construct a molecular theory, giving a

non-exponential decay of this form. A distribution of relaxation times has *not* been introduced, though this decay function would correspond to a particular distribution.

FIG. 3.— $\varepsilon''/\varepsilon''_{max}$ against log (ω/ω_{max}) for (i) present function with $\beta = 0.38$ (solid line); (ii) Davidson-Cole function with $\sigma = 0.217$ (dashed line); (iii) PEA at different applied pressures at 10.3°C. O, 1.01×10^5 N m⁻² (1 atm); \odot , 4.20×10^7 N m⁻² (4.16×10^2 atm); \Box , 8.27×10^7 N m⁻² (8.20×10^2 atm).

We may compare the forms of $\phi(t) = -d\gamma(t)/dt$ for the present function, the Davidson-Cole function ¹³ and the Cole-Cole function.¹⁴ These are given by eqn (7a), (7b) and (7c) respectively:

$$\phi(t) = \frac{\beta}{\tau_0} \left(\frac{t}{\tau_0}\right)^{-(1-\beta)} \exp\left(\frac{t}{\tau_0}\right)^{\beta},\tag{7a}$$

$$\phi(t) = \frac{1}{\tau \overline{\Gamma}(\sigma)} \left(\frac{t}{\tau} \right)^{-(1-\sigma)} \exp\left(-\frac{t}{\tau} \right), \tag{7b}$$

$$\phi(t) = \frac{n}{\tau \Gamma(1+n)} \left(\frac{t}{\tau} \right)^{-(1-n)}; \text{ for } \left(\frac{t}{\tau} \right) \ll 1$$

$$= \frac{n}{\tau \Gamma(1-n)} \left(\frac{t}{\tau} \right)^{-(1+n)}; \text{ for } \left(\frac{t}{\tau} \right) \gg 1$$
(7c)

For short times $(t/\tau \leq 1)$ which correspond to high frequencies, these three functions have the same dependence upon time, for chosen parameters, apart from a small numerical difference. However, as we proceed from the high frequency side of the loss peak, down to the low frequency side, the Davidson-Cole function falls away much more rapidly than does the Cole-Cole function, due to the exponential factor in $\phi(t)$. Our present function falls away less rapidly than does the Davidson-Cole function and the Cole-Cole function, in the low frequency region. This is because $\exp - (t/\tau_0)^{\beta}$ is a slower function of time than $\exp(-t/\tau)$, provided that $0 < \beta \leq 1$.

NON-SYMMETRICAL DIELECTRIC RELAXATION

Finally, since we know $\gamma(t)$ and $\varepsilon^*(\omega)$ for $\beta = 0.50$, we may investigate the accuracy of the Hamon approximation,¹⁵, i.e.,

$$\varepsilon''(\omega) = \phi(t)\omega^{-1},\tag{8a}$$

$$\omega t = 0.1 \times 2\pi. \tag{8b}$$

These equations have been used extensively ^{16, 17} for transforming data obtained as a function of time, to the corresponding frequency dependent data.

When $\beta = 0.50$, then from eqn (7*a*),

$$\phi(t) = \frac{1}{2(t\tau_0)^{\frac{1}{2}}} \exp -\left(\frac{t}{\tau_0}\right)^{\frac{1}{2}}.$$
(9)

Substituting eqn (9) into (8a) gives (10a); and (10b) is equivalent to (8b):

$$\varepsilon''(\omega) = (1/1.256)\alpha \exp(-\alpha), \qquad (10a)$$

$$\omega \tau_0 = 0.1 \times 2\pi/\alpha^2, \tag{10b}$$

where $\alpha = (t/\tau_0)^{\frac{1}{2}}$.

The loss factor curve has been evaluated using eqn (10), in the following manner. Particular values of (t/τ_0) were chosen, and the corresponding values of ε'' and $\omega\tau_0$ were then determined using (10*a*) and (10*b*) respectively. The result is compared with the true values, calculated by taking the imaginary part of eqn (6), and this is presented as the plot of ε'' (Hamon)/ ε'' (true) in fig. 4. The agreement for log $(\omega/\omega_{max}) \ge 0.5$ is good, but for log $(\omega/\omega_{max}) < 0.5$ there is a discrepancy which rises to a maximum of 10 % at about log $(\omega/\omega_{max}) = -0.5$. Below this frequency, the ratio ε'' (Hamon)/ ε'' (true) decreases to about 0.7 at log $(\omega/\omega_{max}) = -1.4$.

FIG. 4.— ε'' (Hamon)/(ε'' (true) against log (ω/ω_{max}) for the present function with $\beta = 0.50$.

A similar pattern of behaviour has been observed ¹⁸ when the Hamon approximation has been applied to the Cole-Cole distribution function. For $0.3 \le n \le 0.5$ the Cole-Cole, $\varepsilon''(\text{Hamon})/\varepsilon''(\text{true})$ behaves in a similar manner to our function for $(\omega\tau_0)>1$, i.e., the high frequency region, while at low frequencies $(\omega\tau_0 < 1)$ the ratio departs from unity as does our function (fig. 4). Thus, we conclude that the Hamon approximation may be used with good accuracy in the region $\omega\tau_0 > 1$, for experimental

G. WILLIAMS AND D. C. WATTS

results which conform to our function (eqn. 7(a)) with $\beta = 0.5$. The approximation may be used with good accuracy, if the correction is applied from fig. 4, for results in the region $-0.5 < \log(\omega \tau_0) < 0$, but cannot be applied to transient data which would transform to loss data below log ($\omega \tau_0$) = -0.5.

CONCLUSIONS

The empirical decay function $\gamma(t) = \exp - (t/\tau_0)^{\beta}$ may be transformed analytically into the complex dielectric constant if we choose $\beta = 0.5$. The resulting dispersion and absorption curves are non-symmetrical about the logarithm of the frequency of maximum loss and the behaviour lies between that obtained from the Cole-Cole and the Davidson-Cole empirical relations. The present decay function with $\beta = 0.38$ gives a reasonably satisfactory representation of the α relaxation in polyethyl acrylate at 10.3°C, and it is suggested that the α relaxation in other amorphous polymers could be fitted to the present function for suitably chosen distribution parameters. The accuracy of the Hamon approximation has been investigated for $\beta = 0.5$ and is applicable to the frequency range log ($\omega \tau_0$)> -0.5, but fails at lower frequencies.

The authors thank Imperial Chemical Industries Ltd. for a grant for the purchase of dielectric measuring equipment, and the Science Research Council for the award of a studentship to D. C. W.

- ¹ R. H. Cole and K. S. Cole, J. Chem. Phys., 1941, 9, 341.
- ² R. M. Fuoss and J. G. Kirkwood, J. Amer. Chem. Soc., 1941, 63, 385.
- ³ D. W. Davidson and R. H. Cole, J. Chem. Phys., 1950, 18, 1417.
- ⁴ D. W. Davidson and R. H. Cole, J. Chem. Phys., 1951, 19, 1484.
- ⁵ D. W. Davidson, Can. J. Chem., 1961, 39, 571.
- ⁶ M. F. Manning and M. E. Bell, Rev. Mod. Phys., 1940, 12, 215.
- ⁷ M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, (N.B.S., 1964), p. 1028, eqn (118).
- ⁸ D. J. Scheiber, J. Res. Nat. Bur. Stand., 1961, 65C, 23.
- 9 G. Williams, Trans. Faraday Soc., 1966, 62, 2091.
- ¹⁰ G. Williams, Trans. Faraday Soc., 1965, 61, 1564.
- ¹¹ S. Saito, *Res. Electrotech. Lab.*, (*Tokyo*), 1964, no. 648, p. 30.
 ¹² Y. Ishida, M. Matsuo and K. Yamafuji, *Kolloid Z.*, 1962, 180, 108.
- 13 see. ref. (5), p. 579.
- ¹⁴ R. H. Cole, and K. S. Cole, J. Chem. Phys., 1942, 10, 98.
- ¹⁵ B. V. Hamon, Proc. Inst. Elec. Eng., 1952, 99, part IV, monograph 27.
- ¹⁶ see ref. (11), p. 50.
- ¹⁷ G. Williams, Polymer, 1963, 4, 27.
- ¹⁸ G. Williams, Trans. Faraday Soc., 1962, 58, 1041.