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Dynamics of Entangled Polymer Solutions.
I. The Rouse Model
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ABSTRACT: Recent advances on the static correlation properties of semidilute polymer solutions in good solvents,
due to Des Cloiseaux, Daoud et ah, etc, are extended here to time-dependent properties. In this first paper, we ne-

glect all hydrodynamic interactions between monomers (Rouse model): this in incorrect, but pedagogically useful.
We show that (a) there is a characteristic frequency   associated with the motions of chains between entanglement
points (  is independent of the molecular mass M and varies with the concentration c like c2·75 in the Rouse model);
(b) at frequencies   smaller than   (but larger than a certain relaxation rate 1/Tr for the total chain) a behavior
reminiscent of polymer gels is expected; (c) at frequencies above  , or at wavelengths smaller than the correlation
length, individual chain behavior is expected. We reexamine the single-chain modes in the presence of excluded
volume effects, and propose a certain scaling behavior. A by-product of the discussion is an improved under-
standing of the success of the Flory calculation for excluded volume exponents. We also present a tentative calcula-
tion of the time Tr, using the reptation concept4 plus a model of “tube reorganization” and obtain Tr ~ N3c for the
Rouse model. All our results are qualitative and lack precise numerical coefficients.

I. Introduction
The current understanding of entangled polymer solu-

tions1·2 (in good solvents) is based on the existence of a cor-

relation length £ (c) dependent on the concentration c (£ ~

c-374), but independent of the molecular mass M (Figure
1). The average number of contacts between different
chains (per cm3) is proportional to l/£3; thus £ may be con-
ceived as the distance between entanglement points. The
osmotic pressure   is proportional to the number of contact
points

  ~ feBT/£3 ~ c2-25 (1.1)

(T is the temperature, k-ß is Boltzmann’s constant).30 At
distances r > £ the repulsive interactions between mono-

mers are screened out by the other chains in the .medium;
thus on a scale r > £ the chain statistics are Gaussian. On
the other hand, for r < £, each chain behaves as if it were

alone, and shows strong excluded volume effects. All these
properties have been checked by neutron experiments.2

It is a natural temptation to extend these views toward
the time-dependent behavior of polymer solutions. A simi-
lar extension has been achieved during the past 10 years for
critical phenomena: dynamical scaling laws have been pro-
posed after static scaling,5® and more accurate versions of
these dynamical laws have been produced later from renor-
malization group arguments.3b It has always been found
that dynamical scaling is more delicate, and less universal,
than static scaling. This will be particularly true for poly-
mer solutions, where the effects of entanglements are ex-

tremely complex.6 However, an analysis at the level of ref
5a will lead us to some possibly useful predictions.

The main theoretical reference on entanglements is a se-
ries of papers by Edwards and co-workers7,8 with certain
limitations, (a) Edwards thinks in terms of knots, or topo-
logical invariants, which are defined only for infinitely long
chains; the most interesting dependences on chain length
can be displayed only by truncating the final equations in a
rather delicate manner, (b) Static correlations between
chains are treated only by mean-field arguments, i.e., by a

description of the Flory-Huggins type, which, as shown in
ref 2, fails to give the correct exponents in quantities such
as the correlation length.

The present work is very different in spirit, and attempts
mainly (a) to define the dynamical modes in a few simple
limiting cases; (b) to interpolate between these limits, mak-
ing full use of the static scaling properties. The situations

of interest are summarized on the diagram of Figure 2,
where we plot in the abscissa the inverse correlation length
l/£ (i.e., a quantity increasing with concentration like c3/4)
while the ordinate is the wave vector k. The domain of in-
terest to us is mainly the domain of “semidilute” solutions,
where c is somewhat larger than the overlap concentration
c*

c* ~ N/Rf3 (1.2)

Here N is the polymerization index, and Rf (the “Flory ra-

dius”) is the radius of an isolated coil in the presence of ex-

cluded volume effects.7 We have Rf ~ N" (with v =: % for
three-dimensional systems) and thus c* ~ A7-475. We find
essentially three distinct regions in the plot of Figure 2, de-
pending on the relative values of k_1, of the correlation
length £ and of the (concentration dependent) coil radius
R(c).

(A) For very long wavelengths (kR < 1) a macroscopic
description can often be constructed; at frequencies  

which are low, but still higher than the relaxation rate 1/Tr
of the entanglements, the solution is expected to behave
like a gel. Two essential parameters come into play: the ri-
gidity modulus E of the gel, and a friction constant describ-
ing the flow of solvent through the gel. We have already ar-

gued in ref 2 that the elastic modulus should scale like the
osmotic pressure   (eq 1.1)

E =* ksT/ 3 ~ c2,25 (1.3)

Since this proposal, various pieces of evidence have indeed
confirmed that E behaves like cx, where x is definitely
larger than 2, and of order 2.3010,11 We shall discuss the
consequences of eq 1.3 at some length in the following sec-
tions.

(B) For wavelengths 2ir/k which are shorter, but still
larger than £ (1/R < k < l/£), many features of the contin-
uum analysis remain valid. In particular the longitudinal
modes of the “gel” retain the same behavior, since the gel is
a mesh of size £ < k-1. Certain other properties do change,
however; in particular if we look at the slow motions of one
labeled chain in the solution, we find a simple diffusion for
kR. > 1, but a more complicated motion for kR < 1. We
shall analyze these motions in section IV in terms of the
reptation concept,4 suitably augmented to allow for mo-
tions of the surrounding “tube”.12

(C) In the limit k£ » 1 we must recover the dynamical
response functions which are characteristic of a single
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monomers

Figure 1. Qualitative picture of a semidilute polymer solution: A,
B, C,..., are contact points between different chains. The average
distance between neighboring contact points is £. The average
number of monomers on an arc like AB is g ~ ~ (c*/c)o/4.

Figure 2. Different types of modes for polymer solutions, k is the
wave vector of the mode, R is the coil radius.

chain. These response functions have been calculated in
the past for ideal chains.13’148 But if we want to incorporate
excluded volume effects in the calculation, we find a much
more delicate problem. Two relevant proposals have been
made: one in a brief paragraph of ref 14a, and one in a sep-
arate work.14b We have reexamined this question, and find
both attempts inadequate, the basic point omitted being
that the spring constants between beads must be renormal-
ized when the chain is swollen. This point is nontrivial and
will be discussed at some length in the next section.

As usual in flexible polymer dynamics, we can discuss
semidilute solutions at two different levels of complexity:
either we describe the local motions of each chain by a sim-
ple hopping process (the Rouse model15) or we include in
our description the effects of hydrodynamic interactions
between monomers (the Zimm model16). For physical pre-
dictions, we must use the Zimm model. However, it is
somewhat simpler to start by a discussion of dynamical
scaling for the unrealistic but simple Rouse model; the
present paper (part I of the series) is restricted to this dis-
cussion.

Let us start with a brief description of the Rouse equa-
tions, following the simplified picture of ref 13 and 14. We
consider first a single chain, with successive units 1,2,...,
N. The equation of motion for the nth unit is

üf-Bk+SílZiAi 1
at L  2 an2 J

(1.4)

Here B is the mobility of one monomer. fn is an external
force. The second term in the bracket represents the elastic
force due to neighboring units ( 2 is the mean-square ex-

tension of one unit in a theta solvent). We are mainly inter-

ested in properties involving many monomers simulta-
neously, for which it is allowed, and convenient, to treat n

as a continuous variable, hence the notation d2/dn2. Finally
the force    describes the repulsions between monomers

(m) and (n) with (m —  ) » 1, i.e., those repulsions which
create the excluded volume effects. Fortunately, we shall
not need to write down an explicit form of  . One essential
property of eq 1.4 is the following: summing over the index
n, we get an equation for the center of gravity r

a
_

_

at 
1

y arn

Nn at
= — Yf (1.5)

since all the internal forces must add up to zero. Thus the
overall mobility of a single chain is B/N. By Einstein’s rela-
tion, the corresponding diffusion coefficient is

D0 = BkBT/N (1.6)

Note that Do is inversely proportional to the molecular
mass, even when excluded volume effects are incorporated.

For a problem involving many chains, the monomer posi-
tion should be labeled rwhere i defines one particular
chain. We can still write an equation of the form (1.4), pro-
vided that   now includes interactions between chains.
Again we shall avoid writing an explicit equation for  , but
start from situations where the motions are relatively sim-
ple.

II. Gel Behavior. Two-Fluid Model
Let us now consider a longitudinal mode of long wave-

length, the polymer concentration c(r) being slightly mod-
ulated in space and time

c(r) = c + bc(rt) = c + bck(t)eikz (II.l)
where we have chosen (z) as the direction of propagation.
We shall look for modes with an exponential decay bck(t) =

óck(0)e~t/rk and we restrict our attention to the case

Tk < Tr (II.2)

where Tr is a relaxation time for complete disentanglement
of one chain, to be discussed later. At first sight the condi-
tion in (II.2) may seem in conflict with the requirement of
small k (which leads to large Tk). However, we shall verify
later than Tr is usually very large, and that we may have Tk
« Tr while still keeping kR « 1. Our description is essen-

tially a “two fluid” picture, with the solvent (concentration
cs + 5cs, velocity u) and the solute (concentration c + be,
velocity i·) as independent constituents.31 If the displace-
ment of the gel is r and is modulated as in eq II.l there will
be an elastic restoring force (per unit volume) on the gel

Fá = E —9 = —Ek2r (II.3)
az2

This must be balanced by a friction force proportional to
the difference of velocities of the two fluids

Eel +  (   - r) = 0 (II.4)

where   is a friction coefficient. We shall now show that for
longitudinal modes, the solvent velocity u is negligible. The
argument, already quoted in ref 17, is based on the conser-

vation laws for solvent and solute molecules: they read

—-

bcB = —div (cau) —cs div u
at

— be = —div (ci·) =ü —c div i· (II.5)' at

We are interested only in the slow modes (excluding the
normal acoustic waves). Thus the mechanical pressure p is
kept constant. We may always write
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bp = asbcs + abe (II.6)

where os and a are two thermodynamic coefficients of com-

parable magnitude.32 Setting 5p = 0 and using (II.5) one

finds

div (uctscs + fac) = 0 (II.7)

We shall call eq II.7 the “packing condition”, since it ex-

presses that any piling up of solute (5c) must be accompa-
nied by a drop in solvent concentration 5cs. Restricting our

attention to longitudinal modes, the div operator may be
removed and we get

u = -—-r = -ef (II.8)
Oís Oq

Since a/as ~ 1 and c/cs « 1 (semidilute regime) we see that
e « 1; for longitudinal modes the solvent motions can be
completely omitted.

Dropping u in eq II.4 we arrive at a simple relaxation law

1
t =--r

Tk

- = f k2 (II.9)
Tk  

This form is already familiar in the physics of gels with
permanent cross-links18·19 and has been checked on such
gels by inelastic light scattering.19·20

Let us now discuss the coefficient

 /  = Dc (11.10)

which we might call the cooperative diffusion coefficient of
the gel. Our estimate for E is given in eq 1.3. For  , in the
Rouse model, we expect that as in eq II.2 the monomer fric-
tions are additive, thus

  = cB~l (11.11)

D ~
k»TB

c£d
(II.12)

Dc ~ c1·25 (11.13)

The above results are specific for three dimensions. How-
ever, we know from the physics of phase transitions that it
is most instructive to write down the scaling results for an

arbitrary dimensionality d. We then have from ref 2

A more formal description of the crossover would have
been the following; assume that at all concentrations, and
for suitably small k, there is a longitudinal mode with re-

laxation rate l/r*. = D(c)k2. The scaling assumption is then

D(c) = Dof(c/c*) (11.18)

where f is independent of chain length and /(0) = 1. If we

further assume that (a) f(x) behaves as a power of x (say
xm) for large x, (b) that in this regime D(c) = Dc is inde-
pendent of chain length, then we must have

£)c ~ N~ l + ~ Qm

from which the value in (11.15) of m follows.
This discussion is a good example of our approach. It is

possible to describe dynamical scaling in terms of formal
assumptions such as (11.18), but they are not very illumi-
nating. Whenever possible, we prefer to start from concrete
physical models, and ultimately check that the crossover

properties are correct.
We shall discuss the limits fem¡n and kmax within which k

must remain for the gel model to be valid. Let us start by
the lower limit &m¡n. We recall that our description holds
only when the entanglements do not relax. Later in this
section we shall estimate the relaxation time Tr, and find
that Tr ~ Nsc in the Rouse model (eq IV.4). The wave vec-

tor femin at which Tk = Tr is then of order

k-(d=3) (IL19)

Let us compare km¡n to 1/R(c) where R(c) is the coil radius.
It has been shown (both experimentally and theoretically)
in ref 2 that

R2(c) ~ Nc~1/4. (11.20)

Thus

kmin2R2 ~ C~2-°N~2 ~ (c*/c)2 5 (11.21)

Equation 11.21 shows that in the semidilute regime (c >
c*) the wave vector fem¡n is significantly smaller than 1/R.

Let us finally define the upper limit kmax; the continuum
behavior is expected to hold whenever the wavelength is
much larger than the mesh of the transient network shown
on Figure 1, thus we expect kmax ca 1/ .

  ~ c-i./M-p (II.14)

and thus

E ~  -d _ c-„dl(vd-1)

 -c-1 (11.15)

Dc ~ ci/(w¿-u

where v is always the Flory exponent for the excluded vol-
ume, and depends on d

V = 3/(d + 2) {d « 4) (11.16)

The main interest of eq 11.15 appears in connection with
the crossover between semidilute and dilute regimes. In the
dilute limit the longitudinal fluctuations relax by diffusion
of individual coils; for a wave vector k we have 1/rk = Dok2
where Do has been defined in eq 1.6 and scales like IV-1. At
the crossover point (c = c*) we see from (11.15) that

Dc~c* V6d-i)^N-i (II.17)

where we used the definition of c* (eq 1.2) generalized to d
dimensions, namely c* ~ Nl~vd. Equation 11.17 shows that
Dc and Do match smoothly at the crossover.

III. The Limit > 1 (Single-Chain Behavior)
(1) Statement of the Problem. The time-dependent

correlations (relevant for neutron inelastic scattering) in-
side a single, ideal, Rouse chain have been calculated in ref
13. For a given wave vector k (much larger than the inverse
coil radius 1/R) one finds a frequency spectrum33 depend-
ing only on one characteristic width Aa>k. This width varies
rapidly with k

Aojk ~    %4 (ideal chain) (III.l)
Our problem here is to find (at least qualitatively) how eq
III.l must be modified when the chain is not ideal, but is
placed in a good solvent where excluded volume effects be-
come important. We shall proceed in two steps: first we

consider the first distortion mode of the chain (with wave-

length comparable to R); then in a second step we estimate
Aoik for shorter wavelengths by a scaling procedure.

The first mode of a single coil may be depicted physically
as a pulsation, where the coil alternatively swells and con-

tracts; we must ascertain what is the elastic energy in-
volved, and then balance the corresponding restoring force
against viscous friction.
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(2) Mean-Field Estimate for the Elastic Energy. A
first attempt amounts to use of the Flory picture of the coil
with repulsive interactions9 leading to a free energy of the
form

[R2
N2u~\

a^ + a2^T\ (IIL2)

The first term is the elastic energy for an ideal coil (of un-

perturbed radius   1/2 = Ro). The second term is the re-

pulsive energy for N particles, each with excluded volume
v, filling more or less uniformly a volume Rd. a i and 02 are

two numerical constants, which will not play a role in our

discussion.34 Minimization of F with respect to R leads to
an equilibrium radius Rf given by

2aiRp dazN2u
_

N 2
~

Rpd+1
~

Rpd+Z = const    2  (III.3)
Rp ~ N“ with v = 3/(d + 2)

Here we are interested in small deviations from the equilib-
rium radius:

R = Rf + 8R

F(R) - F(Rf) =^F"(Rf)8Rz + ...
= add + 2 )(T&R2/R02)

F(R) - F(Rf) ^ T8R2/R02 (III.4)

Thus, in the mean-field theory of Flory, the spring con-
stant of a swollen coil differs from the spring constant of an
ideal coil only by a numerical coefficient;    is changed into
add + 2).

(3) Critique of the Mean-Field Theory. The mean-
field theory is remarkably successful in predicting the ex-

ponent v. However, it has been gradually recognized21 that
the free energy F of eq III.2 overestimates both the elastic
and the repulsive energy by a large amount. Consider for
instance the excluded volume term; Flory assumes that the
probability p for two given monomers (n) and (m) [\n — m\
» 1] to be in contact is of order 1/Rd ~ N~"d. But, at
present, we have rigorous predictions for the correlation
between ends (i.e.,   = 1 and m = N). The result is quite
different:22

p^l/N.d+y-l (III.5)
where y is another critical exponent, related to the entropy
of the swollen chain.23·24 For d = 3, y ~ 1.2 and thus the re-

pulsive energy is overestimated in the mean-field theory by
a factor JV°·2. However, we know that the ratio between
elastic and repulsive energy is rather well estimated by
Flory, since the value of v is good for all d = 1, 2, 3, 4.35
Thus we conclude that the elastic term in eq III.2 is also
overestimated by something like N0·2 (for d = 3). This con-
clusion can aho be arrived at from a different starting
point. Consider a swollen chain with an end-to-end vector
R. In the absence of external forces the average R vanishes.
But if we apply small forces +f at one end and —f at the
other end, we obtayi a finite thermal average

R = xf (  .6)
We might call   the susceptibility of the chain. In terms of
  the free energy of a chain with prescribed elongation R
may be written

F(R)-F( 0) = —R2-R.f (III.7)
2 x

(and minimization of (III.7) with respect to R brings us
back to (III.6)). Thus we are essentially interested in the
inverse susceptibility 1/ .

A general thermodynamic theorem relates   to the spon-
taneous fluctuations of R:25

X= (R2)/3kBT (HI.8)

where the symbol < > represents a thermal average in the
absence of any external force f. From the scaling properties
of the excluded volume problem23·24 we predict

(R2)~N2" (III.9)

Inserting (III.9) and (III.8) into (III.7) we see that the cor-

rect scaling form for the first term in eq III.2 is

F(R) - F(0)|elastic ~ N~2l,R2 (III.10)

The mean-field estimate of this term is too large by a factor
Al2*'_i. The profound reason for the success of the Flory
theory appears thus related to the fact that 2v — 1 is nearly
equal to   — 1 or that y — 2v is very small.36

(4) The Fundamental Mode of a Swollen Coil. The
above discussion shows that the spring constant of a swol-
len coil is not given by the mean-field estimate of (III.4)
but rather by

F(R)-F(Rf) ^kBT^ (III.ll)
Kf

where Rp is the swollen radius. Knowing the restoring force
involved, let us now estimate friction effects; if the time
rate of change of R = Rp + oR is 5R, the velocities of all
beads in the expansion mode are of order SR and the over-
all dissipation rate is

T5 a* NB-H&R)2 (III.12)

Equating this to the change of spring energy per unit time,
we arrive at

NB~15R =* -kBT
8R

Rf2
(III.13)

and thus at a relaxation rate for the fundamental mode of a

single coil
1 kB TB

0i
~

NRf2
(III.14)

Thus 0i scales like iV1+2‘', while for an ideal chain it scaled
like N2. Of course, since the Rouse model is an oversimpli-
fied idealization, we cannot compare (III. 14) to experi-
ments. But in paper II of this series we shall construct a

similar formula including hydrodynamic interactions, and
this (hopefully) will be meaningful.

(5) Characteristic Frequency for a Given Jr in a Sin-
gle Chain. Returning now to the width Ao>k of the dynamic
structure factor for neutron or light scattering, at a given
wave vector k, we make the following assumption

  * = (l/0i)/.(ftRF) (c « c*) (III.15)
where /s(x) is a dimensionless function, which must have
the following properties.

(a) For kRp (=x) small, we must recover the macroscopic
diffusion of the whole coil. This corresponds to

Atok -*  Dok2 (x « 1)

Thus fs (x —*· 0) —*· x2 and Do =* Rf2/0 1. Using eq III. 14 for
0i it is possible to check that this definition of Do is consis-
tent with (1.6). (b) For i~lwe must have Ao>k ~ l/0i and
thus /8(1) ~ 1. (c) For   » 1 we expect /s(x) -*    , where p
is some exponent, as yet unknown. In this limit the width
Ao>k, which measures a local property, must become inde-
pendent of N (i.e., of the total chain length)

Aaik — — Rfp kp ~ A''-1-2"A^"kP
0i
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Since Aoik is independent of N we must have

p = 2 4- \h (III.16)

In particular, for d = 3, v = % and p = 3.66 for the Rouse
model.

(6) Longitudinal Modes in Semidilute Solutions. Re-
turning now to region C of Figure 2, we expect eq III. 16, for
the spectral width Aoik, to hold (in the Rouse model) pro-
vided that the chain portions which are probed are smaller
than the correlation length £. The crossover between region
B (gel-like) and region C (single chain) can be described in
terms of another dimensionless scaling function fm [m
stands for many chain)

  * = /m(k£)A (HI. 17)

where A is a characteristic frequency, dependent on con-

centration. For frequencies smaller than A, we expect the
pseudo-gel behavior. For frequencies larger than A, we

shall have individual chain motions. This corresponds to
the following requirements on the function fm

(i) For x « 1 we must have Acvk -*· Dc k2, where Dc is given
by eq 11.10. This imposes f(x) —*· x2 and gives us an explicit
formula for A

A = Dc/ 2 (III.18)
The frequency A will play an important role in all our dis-
cussions. Note that A ~ c2·75 for d = 3.

(ii) For x » 1 the width Aoik has to be independent of c

(since it expresses a single-chain property), and propor-
tional to kP, where p is the same exponent which was dis-
cussed in eq III.16. Thus we must have fm(x) —*  xp and
also:

-v     -2^„[ +(2—pH/ —i)
kP

Since this is independent of c we must have 1 + (2 — p)v =

0 in agreement with our earlier calculation of p (eq III.16).
This completes our discussion of the longitudinal modes

for the Rouse model. The transverse modes are not very
significant in this model (since the whole description of
viscosities is not correct) and we 'shall omit them. (A dis-
cussion of transverse modes with hydrodynamic interac-
tions will be given in the second paper of this series.)

IV. Motions of One-Labeled Chain in the Solution
(1) Description of Entanglements in Terms of a

Tube. We now focus our attention on the motion of one

particular chain inside the transient network provided by
the others. In principle, it would be possible to study these
motions by inelastic neutron scattering using a few labeled
(deuterated) chains mixed with a larger fraction of “nor-
mal” (hydrogen carrying) chains. In practice the motions to
be discussed are usually too slow to be observed in this way.
However, they retain a considerable theoretical interest,
because they are largely controlled by entanglement ef-
fects. Two parameters of particular significance are37 (i)
the macroscopic self-diffusion of the labeled chain Ds and
(ii) the renewal time Tr required for a complete change in
the chain conformation and in the topological relations
with its neighbors. It is plausible to expect that these two
quantities are related by

DSTT = R2(c) (IV.l)
where R(c) is the coil radius given by eq 11.20. Equation
IV.l expresses that there is a smooth crossover between the
diffusion rate Dsk2 (at a wave vector k) and the renewal
rate 1/Tr, when k ~ 1 /R.

Some time ago we discussed a related but simpler prob-

Figure 3. One chain Cl trapped inside other chains Ci C2 C3 . . .

For not too long times, Cl is essentially confined inside a tube of
radius ~£.

lem, where one (ideal) mobile chain “reptates” inside a

fixed network.4 The essential conclusion was that Tr scaled
like (V3, and Ds like N~2. Extensions of these results to the
case of molten polymers (where all chains are mobile) have
been constructed by Edwards and Grant8 and by Doi.27

Our approach here will be different and only qualitative,
but it does give some insight, and also allows for the con-

centration effects (on   and on the coil radius R) in a way
which is consistent with the static scaling laws of the sys-
tem.

Central to our picture is the motion of a tube ( ) inside
which the labeled chain is trapped (Figure 3). The diameter
of the tube is the diameter of the pores in Figure 1; i.e., it is
the correlation length  .38 It is shown in ref 2 that the la-
beled chain can be visualized as a sequence of N/g nonin-
teracting “blobs”, each with g monomers and a size £. A
similar picture applies to the tube itself; we may picture it
as a Rouse chain, with N/g successive segments of length  .
The total extended length of the tube is thus Lt = (N/g)%.
We shall now investigate the long-time motions of the
chain in the tube, and later the effects of tube deformation.

(2) Relaxation by Reptation. Let us first ignore the
tube motions, as in the simple reptation problem of ref 4.
Then for times t such that A-1 < t < Tr, we can think of
the chain as performing a one-dimensional random motion
along  . The diffusion coefficient of the whole chain in this
one-dimensional problem will be called Dt. For semidilute
solutions (where friction on the solvent dominates) we ex-

pect Dt — -D0 — kBTB/N. This can be understood in terms
of the associated tube mobility gt = Dt/k&T; if we pull a

Rouse chain inside a tube of finite diameter (  »  ), filled
mostly with solvent, c « cs, with a certain force, we expect
that the friction will be proportional to the number of
beads whatever the shape of the tube.

Knowing Dt, we can estimate the time Trep required for
the chain to reptate on one tube length Lt; after such a

time, the conformation is completely renewed. We have

«v,,

Using the relation   ~ gv and the formula of (1.13) for £, this
gives

 ^, - ^  - / —1> (IV.3)
If in this expression we insert the Flory value for v (eq
11.16) we find a remarkably simple result, independent of
the dimensionality d.

Trep ~ Nac (IV.4)
The time required do disentangle one chain increases very
rapidly with molecular mass; it also increases, at fixed N,
linearly with concentration.

(3) Relaxation by Tube Reorganization. The above
discussion ignored the possibility of modifications occur-
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Figure 4. The fundamental process of tube renewal. The chain Cl
is trapped by other chains: C, D, .... If the extremity E of chain C
is close to Cl, C can shift from “below Cl” to “above Cl” in a short
time.

ring in the topology of the tube. We shall now estimate
these modifications, and show that they do not qualitative-
ly alter the relaxation rate. There are two types of tube mo-

tion. (i) Large-scale displacements, carrying around all
chains. These displacements do not modify the local entan-
glements. (ii) A real contribution to tube renewal is shown
on Figure 4. This occurs only when one of the chains C
which constrain the motions of the labeled chain Cl has an

extremity E lying close to Cl (i.e., lying in the tube region).
Then, in a short time, the chain C may commute for in-
stance from a situation “below Cl” to a situation “above
Cl” (Figure 4c). If we do not draw the chains, but only a

tube surrounding Cl, the above process must be described
as a local jump of the type shown on Figure 5. The jumping
unit is of length £, and has necessarily the characteristic
jump frequency   introduced in eq 11.41. However, only a

small fraction of the jumps may correspond to class (ii),
namely those for which a chain extremity E is near  ; con-

sidering only those jumps, we are led to a characteristic fre-
quency /¿  <  .

The fraction fs is the average number of chain ends E
contained in a volume   . The concentration of end points
is 2c/N (since each chain has two ends) and we may write

J N  NK N (IV.5)

Following Edwards and Grant8 we shall now picture the
tube itself as a Rouse chain, the size of the fundamental
unit being £. Successive units are separated by distances > 
and have their interactions screened out;   is ideal. The
number of units on   is N/g. The lowest relaxation mode of
the   chain can be called the rate for tube reorganization
1/  . From the work of Rouse15 we know that l/6r must be
proportional to the jump frequency (/¿ ) and to the in-
verse square of the number of beads N/g. Thus

l/6r ~ fn£(g/N)*
cíd Dc / g\ 2

N  2 \N/

=*      g2

 3 2

(IV.6)

Figure 5. Tube deformation: a region of size   moves over dis-
tances   with a jump frequency A. Note that this process is associ-
ated with a change of topology only if an event of the type shown
on Figure 4 takes place within the chains.

where we have used the definitions of   (eq III.18) and Dc
(eq 11.12). Finally using eq 1.3 or 11.15 for E we get

1 _BkBT g2
Sr

~

 2 N3
(IV.7)

Comparing to eq IV.2 we see that Sr ~ Trep; reptation in-
side the tube and reorganization of the tube give compara-
ble contributions to the relaxation of entanglements. The
total rate is

1 1 1 1
--1--~

TT~ rep er Trep
(IV.8)

This qualitative resemblance between Trep and Tr provides
some justification for the work of Doi27 on viscosities of
melts, where reptation was the only process taken into ac-

count. Similar conclusions have been reached by Edwards
and Grant.8

V. Conclusions

(1) Inelastic Scattering of Neutrons. Let us first sum-

marize the principal results of this analysis, using the lan-
guage of neutron scattering, since this technique measures

some comparatively simple correlation functions.
(a) Coherent scattering probes the fluctuations 5c(rt)

of the concentration and measures a “dynamic form fac-
tor”:

Scoh(ku>) = dte«^-k-r> <5c(0,0)5c(rt)> (V.l)

For a given wave vector k and for co > 1/Tr we expect a

scaling form for Scoh:

Scoh(kco) = S(k)Acok_1 *coh(a>/Aa>k) (V.2)

where S(k) is the static form factor (discussed in ref 2) and
 ( ) is a dimensionless function (normalized by /  dx =

1). The crucial parameter is the frequency scale Acok, and is
described by eq III.17. For k£ > 1, Acok increases like k2+1/,‘'.
For k¿ < 1,   -’k ~ Dck2 where Dc is a collective diffusion
coefficient characteristic of a quasigel behavior [eq 11.12].
But for k£ < 1, the width Acok is probably too small to be
seen in practice by neutron experiments.

(b) Incoherent scattering probes the position rn of a

single monomer at successive times and measures the
quantity

Sincikco) = J- X dteiut <e¿Mr„(í)-r„<0») (V.3)

We could define a characteristic width Acojine for incoher-
ent scattering by an equation similar to (V.2). For k£ > 1,
this is not qualitatively different from the coherent line
width.
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(2) Mechanical Relaxation. Mechanical measurements
probe modes of very low wave vector (k£ « 1) but span a

very convenient range of frequencies  .30 Here the most in-
teresting object is the complex,  -dependent, shear modu-
lus  ( ).

(a) At frequencies   lower than the total disentangle-
ment rate 1/Tr we have a purely fluid behavior  ( ) -*·    
with a viscosity  , which will be estimated below.

(b) At intermediate frequencies l/Tr «   «   we expect
a rubberlike behavior, with a rigidity E (eq 1.3).

(c) At high frequencies   >   we expect a complex E
dominated by single-chain relaxation processes. Extending
the discussion after eq III. 14 we see that the mth mode of a
swollen blob should have a relaxation rate l/0m ~

Am“(1+2'1 (instead of m~2 for an ideal chain). This can be
translated into a spectrum of relaxation times by the usual
manipulations.30

The crossover between (b) and (c) is naturally smooth.
The crossover between (a) and (b) should also be smooth,
and this condition fixes the scaling behavior of the static
viscosity i? in the Rouse model:

7!
~ ETt-NZc'+^^-U (V.4)

where we have used eq IV.2 for   . In three dimensions   ~

N3c3·25. Note that for c = c* ^ N~i/5, this viscosity be-
comes   —  N2/5 ~ c*Rf2· This can be checked indepen-
dently by a direct calculation for a single Rouse chain in-
cluding swelling; thus all crossovers are smooth.

(3) Limitations Due to the Use of Specific Models.
The scaling laws obviously fail when the size of the regions
concerned becomes as small as a monomer unit; this impos-
es a limitation on k, and also on the concentration c; £(c)
must be much larger than the monomer size  . Physically,
when we go to high c values, the friction between mono-
mers dominates over the friction between polymer and sol-
vent; the behavior is then much less universal.

Assuming that c is not too large (semidilute regimes and
that k  « 1), we have to distinguish between two types of
dynamic properties.

(a) All scaling laws which are independent of the molecu-
lar mass (i.e., which apply in the regions B and C of Figure
2) should hold quite strictly for an entangled system of
Rouse chains. For instance the crossover at   =   (or k =

 -1) has a very general meaning. Of course, when, in the
second paper of this series, we shall add hydrodynamic in-
teractions, we shall see that the formulas for   (and the
power laws above and below   =  ) are modified, but the
existence of a crossover frequency   will be maintained.

(b) The equations which involve the molecular mass (or
the polymerization index N) are much more tentative,
since they are based on an extension of the reptation
model; scaling by itself is not enough to predict the laws for
the renewal time Tr or for the viscosity - .

Finally, it may also be useful to point out certain limita-
tions in connection with the long wavelength modes (k£ <
1) and their observation by light scattering. Our analysis
assumed the elastic modulus E of the “pseudo-gel” to be
real and independent of frequency in the range of interest
(  »   » 1/Tr). The mechanical data6 do show a plateau
in the real part  '{ ) and an imaginary part  "( ) which is
usually smaller than E' in the plateau region. But, to ob-
tain a plateau while remaining in the semidilute regime re-

quires a rather careful choice of concentrations, and a large
molecular mass; basically we want     (N/g)3 (c/
c*)i5/4 to very large, while still maintaining a small c. If

AT, is not large enough, the structure of E ( ) will be more

complex and the spectrum of the scattered light at fixed k
may become non-Lorentzian.
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