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EDITOR’S NOTE: The history of science is full of simultaneous discoveries,
but the quadruple near-coincidence shown by this and the following three pa-
pers is probably a rather rare occurrence. All of these papers had their origin
in the experimental work on molten styrene-a-methylstyrene block copoly-
mers done in Mitchel Shen’s group at Berkeley, and two of them were direct-
ly inspired by Shen’s lecture at the 1974 Gordon Conference on Polymer
Physics in July of that year. However, each group solved the same general
problem Independently and by methods differing considerably in detail. By
mutual agreement among all the authors, the four papers are printed togeth-
er in this issue of Macromolecules as a microsymposium on the dynamics of
block-polymer chains.

Viscoelastic Retardation Time Computations for
Homogeneous Block Copolymers
David R. Hansen and Mitchel Shen*

Department of Chemical Engineering, University of California,
Berkeley, California 94720. Received December 26, 1974

ABSTRACT: The Rouse-Bueche-Zimm molecular theory of viscoelasticity has been extended to compute the re-

tardation time spectra of block copolymers of various configurations and compositions. The basic assumption of the
block copolymer model is that the effect of the presence of foreign blocks on the retardation spectrum is due exclu-
sively to the difference in the friction coefficients. Mathematically this modification is accomplished by introducing
into the equations of motion a frictional coefficient matrix. Retardation spectra can then be obtained by numerical-
ly solving for the eigenvalue spectrum on a computer. Results show that the viscoelastic retardation spectra and
maximum retardation times of the block copolymers vary as a function of the block configurations, block composi-
tion, and the friction coefficient ratio of the blocks. The model is restricted to bulk homogeneous block copolymers,
or block copolymers dissolved in appropriate solvents without microphase separation.

Block copolymers, along with graft copolymers, exhibit
some interesting viscoelastic properties. Many of these
unique properties are a consequence of the heterophase
structure, since it is now well known that the free energy of
mixing for many polymeric blocks is positive. However,
some of the block copolymers are homogeneous, even in
bulk, e.g., the block copolymers of styrene and «-methyl-
styrene.1’2 Block copolymers in appropriate solvents also
show no microphase separation.3-5 The viscoelastic proper-
ties of these homogeneous block copolymers are amenable
to theoretical treatment by the bead-and-spring model
enunciated by Rouse,6 Bueche,7 and Zimm.8 Previously,
this theory was applied to block copolymers containing a

very small copolymeric block.9’10 The aim of that treatment
was to test the limit of the RBZ theory by introducing the
foreign block as a perturbation to the system and predict
the consequence of this perturbation. In this work, we shall
extend the model to cover the whole range of block compo-
sition and a variety of block configurations. Viscoelastic re-
tardation spectra and maximum retardation times are com-

puted numerically for all of these block copolymers.

Theory
In the previous treatment for the viscoelastic behavior of

macromolecules containing a small copolymeric block, a

rigorous mathematical derivation was given.9 In this work,
however, we shall follow a simplified procedure first pro-
posed by Peticolas.11 The free-draining case of Rouse6 and
Bueche7 will be used for our calculations.

The RBZ model represents the polymer molecule by re-

placing the N submolecules with TV + 1 beads held together
with N entropy springs. When the polymer coil is disturbed

by a velocity gradient, the springs are stretched. The re-

storing force of these entropy springs is proportional to dis-
placement, the spring constant being given by 3kT/b2
where b2 is the average end-to-end distance of the sub-
molecule. As the beads move through the medium, a vis-
cous drag is exerted on them whose magnitude is deter-
mined by the friction coefficient f. As the flow ceases, the
recovery of the polymer chain is effected without accelera-
tion, so that the viscous and the elastic forces are exactly
equal to each other. The equations of motion for the string
of identical beads can be represented in matrix notation
as11

x = -    (1)

where x and x are column vectors of bead positions and
bead velocities respectively, Z is the nearest neighbor ma-
trix and   = 3kT/b2f.

Equation 1 was written for homopolymers. For block co-

polymers, the equation must be revised to take into ac-
count the fact that not all beads are the same. We shall as-

sume, for simplicity, that the submolecular spring con-

stants are the same for the copolymeric blocks, and that
only the frictional coefficients of the beads are different.9
For a block copolymer consisting of copolymeric blocks A,
B, C.....their frictional coefficients can be designated by
/a, /b, Zc, · · · · Thus the equations of motion for this block
copolymer become

x = aBD-1Zx (2)

where  ß = 3kT/b2fs. D-1 is the inverse of a diagonal ma-

trix whose elements are the frictional coefficients of the re-
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Table I
Structures and Maximum Retardation Times of Various Block Copolymers

Macromolecules

Log Tma/

Polymer Block configuration 10% A 50% A

I. Diblock copolymer AxBy (x + y = 50) -0.42 0.65
II. Triblock copolymers (a) AxByAx {2x + y = 50) 0.64 1.22

(b) BxAyBx (2x + y = 50) -0.62 0.65
(c) AXBXCX (  = 16, total 48 beads)

III. Alternating (segmented) (a)  , , , ,... lx = 1,5, 10, total 50 beads) 0.97
block copolymers (b) AxByAxBy. . . (x,y) = (1, 9); (1, 4); (1, 2);

(2, 1); (4, 1); (9, 1) (total 50 beads) 0.26 0.97
IV. Multiblock copolymers (a) BxAyBx (x + y + z = 50, center of A block

fixed at 13th position) -0.60 0.65
(b) BxAyB,AyBx (2* + 2y + z = 50, centers of

A blocks fixed at 13th and 38th positions) 0.34 1.01
(c) BjAByA (x + y = 48)
(d) BxAByAB, (x + 2y = 48, A’s equidistant

from center of chain)
0 Computed for/a//b = 185, except for lie.

spective beads divided by those of B beads. For example,

Hi

D =

‘ 

' 
c

(3)

where &a = /a//b, 5c = fc/fb,
To solve eq 3, we define a new set of coordinates r relat-

ed to x through

H matrix for hydrodynamic interaction. It has been shown
that the essential effect of that modification is on the ei-
genvalue spectrum.13 Thus it is believed that, since we are

mainly interested in the viscoelastic retardation (or relaxa-
tion) behavior of the block copolymers in comparison to
that of the homopolymers, our simplified analysis is valid
and the main results of the Rouse theory other than the ei-
genvalue spectrum remain unchanged.

In presenting our data, we shall use a normalized retar-
dation time defined by

renormalized) = 1 /(IV + l)2Xp (9)

r = Ax (4)

where the A matrix is defined by Z = ATA. Operating on
both sides of eq 2 with A, we get

r = -aBAD'1ATAx = -aBSr (5)

where
S = AD-‘AT (6)

is a symmetrical tridiagonal N X N matrix which differs
from the well-known Rouse matrix6 (R = AAT) by the
extra operation D-1. For a homopolymer, all of the ele-
ments in our D matrix (eq 3) are unity, and the S matrix is
reduced to the R matrix. In this instance, the Rouse model
predicts a discrete retardation spectrum given by11

 
p

= l/    = fb2/3kTXp (7)

where Xp’s are the N eigenvalues of the R matrix.6

Xp = 4 sin2 [ · /2{  + 1)] (8)

P= 1, 2, . . . , N

For our block copolymers, the eigenvalue spectrum of
the S matrix is more readily obtained numerically on a

computer. Computations are particularly expedited by the
availability of a subroutine12 at the University of California
Computer Center for determining the eigenvalues and ei-
genvectors of symmetric matrices. Using the computed ei-
genvalues, the corresponding retardation times are given
by eq 7. The relaxation times are just half of the corre-

sponding retardation times.11
The introduction of our D matrix into the equation of

motion is mathematically analogous to the operation by the

The use of the normalized retardation time removes the ar-

bitrariness of the choice of the value of N in the computa-
tion of maximum retardation times. We arrived at eq 9 by
noting that f = m£, where m is the number of monomers

per submolecule and £ is the monomeric friction coeffi-
cient. In addition, b2 =c ml2 where l is the length of the mo-
nomeric segment. For a fixed molecular weight M, m =

M/(N + 1). Therefore the retardation time (eq 7) would be
expected to be inversely proportional to (N + l)2. The use
of tp (normalized) does not eliminate the dependence on N
of shorter retardation times, as evidenced by eq 8 for the
case of homopolymers.

In carrying out our computations. We must first deter-
mine an optimum size for the S matrix. We arrived at this
number by carrying out the computations for values of N +
1 varying from 6 to 146 for several cases of different block
structures and different values of <5’s. It was found that for
N + 1 > 20, no significant changes in computed maximum
retardation times can be observed. Thus in all other com-

putations, a fixed value of N + 1 = 50 was used unless oth-
erwise specified.

Results and Discussion
Table I summarizes the ten different types of block co-

polymers that we have investigated in this work. These are

various diblock, triblock, alternating block, and multiblock
copolymers. Their structures are indicated in column 2.
The maximum retardation times (normalized) for two
block compositions (10 and 50% of A) are included in col-
umns 3 and 4 for the sake of comparison. In all instances,
except for case lie, 50 beads were used in the computations
and <5a was chosen to be 185. The latter value is the ratio of
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Figure 1. Distribution of retardation times for the diblock copoly-
mer AxBy (case I) computed on the basis of 50 beads (/a = 10,000,
/ b = 1).
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Figure 2. Distribution of retardation times for the triblock copoly-
mer AxByAx (case Ila) computed on the basis of 50 beads (/a =

10,000, /B = 1).

monomeric friction coefficients of polystyrene and poly (a;-

methylstyrene) and was selected for the ease of subsequent
comparison with experimental data in a following paper.1

1. Viscoelastic Retardation Spectra. Although most of
our computations were carried out for ¿a = 185, it is in-
structive to first consider the retardation spectra for a more

extreme case of 5a = 10,000. Figure 1 shows the distribu-
tion of retardation times for diblock copolymers (AxBy,
case I) over the entire range of block composition. Distribu-
tions for 100% A’s and B’s (A and B homopolymers) are

also included for the sake of comparison. At 96% B (48 B
beads and 2 A beads), we note that the maximum normal-
ized retardation time (rm) of the copolymer is shifted to a

much longer time. However, from the T2 on until T49 (mini-
mum retardation time) the distribution is very similar to
that of a homopolymer, except that they are all proportion-
ally shifted to longer times. The 49th retardation time is
tn, since for IV + 1 beads in the model N retardation times
are expected. Now at 92% B (46 B’s, 4 A’s), the first three
retardation times seem to have formed a spectrum of their
own and the next 46 formed another. The trend persists for
all the subsequent compositions. The spectra for A beads,
because of their higher friction coefficient, are all shifted to
longer times. The number of retardation times in the A
spectrum is always x — 1, where x is the number of A beads
in the model (x + y = N + 1). At low B content, we see that
the B spectra in the shorter time regions clearly consist of y
retardation times, e.g., there are four short retardation
times for 8% B (4 B’s, 46 A’s) and two short retardation
times for 4% B (2 B’s, 48 A’s).

For the triblock copolymer AxByAx, we again note the
shift of rm to longer times for the composition of 2 A beads
and 48 B beads (96% B). The shift is more than three or-

ders of magnitude, much greater than in the case AxBy (a
little over one decade). Beginning with 92% B, there is not
only the clear splitting of the A spectra from the B spectra,
but also the occurrence of degeneracy in the A spectra. In
this case there are two equivalent A blocks separated by a

B block each giving rise to its own spectrum. However, this
degeneracy turns into doublets for the longer retardation
times as the content of A increases, such as  %  $ for 68% B,
etc. Since there is only one B block, neither degeneracy nor
doublet formation can be seen in the B spectrum. Again as
in the diblock case, for all compositons of AxByAx the num-
ber of retardation times in the A spectrum is always equal
to total number of A beads minus one.

Now in the case of BxAyBx, as one might expect, the
splitting of the A and B spectra and the formation of de-
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Figure 3. Distribution of retardation times for the triblock copoly-
mer BxAyBx (case lib) computed on the basis of 50 beads (/a =

10,000, /B = 1).

generacy are also observed. For this block copolymer the
degeneracy occurs in the shorter time region, since now

there are two equivalent B blocks separated by an A block.
However, the presence of degeneracy seems to persist
throughout the entire range of block composition. The
exact cause for the absence of doublet formation is not ap-
parent. In both AxByAx and BxAyBx, two presumably
equivalent blocks are connected to each other through one

foreign block. The presence of the sluggish (high friction
coefficient) end blocks in the chain seems to play a signifi-
cant role.

Figures 4 through 6 are for cases I, Ila, and lib (AxBy,
AxByAx, and BxAyBx) with 5A = 185. Here the splitting of
A spectra and B spectra is only apparent for lower B con-
tent. For these compositions, the presence of degeneracy
and doublets are also observable for the triblock copoly-
mers. At high B content (small number of A beads), there
seems to be some doublet formation for all three cases.
This is in contrast to the cases for 5a = 10,000, where only
the A spectra of the        system at low B content ex-

hibit this phenomenon. The doublets in Figures 4-6 are ap-
parently due to the lack of clean separation between the A
and B spectra, rather than the presence of equivalent
chains.

To further scrutinize this problem, we show in Figure 7
the retardation spectra for the tricomponent triblock poly-
mers (      , case lie) for three different sequences and
three different values of friction factors. Here x was fixed
at 16 for all systems. The first three spectra are for /a =
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Figure 4. Distribution of retardation times for the diblock copoly-
mer A*By (case I) computed on the basis of 50 beads (/a = 185, fb
= 1).
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mer AxByAx (case Ha) computed on the basis of 50 beads (/a =

185,/B = l).
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Figure 8. Distribution of retardation times for the evenly alternat-
ing block copolymer AXBXAXBXAXBX ... (case Ilia) computed on
the basis of 50 beads (x = 1, 5,10) (Za = 185, Zb = 1).

10,000, /b = 1, and fc — 100. Here because of the wide dif-
ferences in values of /, three distinct spectra can be ob-
served. The second three spectra are for /a = 100, /b = 1,
and fc = 50. Since there is only a factor of 2 difference in
friction factor between A and B blocks, their spectra be-
come merged and difficult to distinguish. For the final
three spectra, values of f’s for A beads and C beads were
made nearly the same (100 and 80, respectively). Now the
AXCXBX and CXAXBX cases approach that of the diblock,
and there are only two separated spectra. The AXBXCX case
is similar to the triblock    },  , complete with the dou-
blet formation. These spectra again demonstrate the fact
that for block copolymers with widely different friction fac-
tors, distinct splitting of the spectra can be expected. As
values of f’s become closer, these spectra are superposed
onto each other. The appearance of the superposed spectra
depends on the block configurations.

Retardation spectra for the alternating block copolymers
AXBXAXBXAXBX . . . (case Ilia in Table I) are shown in Fig-
ure 8. These polymers contain blocks of A’s and B’s of
equal size (x = 1, 5, and 10). Only one composition (50% B)
is possible here, except for x = 10, in which case the poly-
mer contains three A blocks and two B blocks (40% B). For
the x = 1 case, the A spectrum is almost unperturbed, as if
the presence of the lower friction coefficient B beads is all
but ignored by the A beads in the chain. The B spectrum
on the shorter time scale, on the other hand, is split from
the A spectrum and contains one retardation time plus an-

other one with 24-fold degeneracy. It seems that the alter-
nating single B beads separated by the high friction coeffi-
cient A beads are acting as single beads. Now when the
lengths of the alternating blocks are extended to five each,
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Figure 9. Distribution of retardation times for the unevenly alter-
nating block copolymer              . . . (case Illb) computed
on the basis of 50 beads (/a = 185, /b = 1).

both A and B spectra take on a more complex appearance.
Quinteplets and retardation times with fivefold degenera-
cies are seen, reflecting the presence of five equivalent A
and B blocks. Finally, for the case of x = 10, triplets and
threefold degeneracies are found in the A spectrum as a

consequence of the existence of three equivalent A blocks,
and twofold degeneracies are observed in the B spectrum
because of the two equivalent B blocks.

Figure 9 shows the retardation spectra for the other al-
ternating block copolymer AxByAxByAxBy . . . (case Illb).
The 90% B chain consists of five B blocks of nine beads
each and five A blocks of one bead each. We note that the
A spectrum consists of four retardation times, and the B
spectrum contains a number of quadruplets. The trend is
continued with increasing A content. Generally the number
of retardation times in the A spectra is related to the num-

ber of A beads. The fact that the B spectra appears as a se-

ries of groupings of a singlet and a quadruplet may be due
to the fact that the chain is not symmetric.

2. Maximum Retardation Times. In Figure 10 we show
the normalized maximum retardation times (rm) for vari-
ous block copolymers as a function of block composition.
Three values for ¿a, namely 10,000, 185, and 10, were cho-
sen for these computations. First we consider the interme-
diate case of <5a = 185. As we start to interchange A beads
for B beads in the AxByAx chain, there is an immediate in-
crease in Tm. The increase is very large at the high end of B
content. At 50% of B in the chain, the maximum retarda-
tion time has reached a plateau. Further addition of the
high friction coefficient A beads produced no more change
in the value of rm. By contrast, in the case of BxAyBx the
presence of the initial 5% of A beads has little effect. Sub-
sequent addition of A beads, however, brought about a

steady rise in the value of rm throughout the entire range of
composition. This observed difference is due solely to the
block configuration. Apparently the presence of high fric-
tion coefficient blocks on the ends is more effective in in-
hibiting the retardation behavior of the block copolymer
than if they are in the chain middle.

The curve for the AxBy diblock copolymer is a composite
of the AxByAx and BxAyBx. At high B content, it follows
the former curve. However, after the initial steep rise in rm
the curve levels off and undergoes a “transition” to the
BxAyBx curve. The same is true for the uneven triblock co-

polymer BxAyBx (case IVa), but the “transition” occurs

more rapidly. By placing the “slow-moving” A blocks on

Figure 10. Maximum retardation times of diblock, triblock, and
alternating block copolymers (cases I, Ha, lib, Ilia, Illb, IVa, and
IVb) as a function of copolymer composition computed for ¿a =

10,000, 185, and 10 and /b = 1.

Figure 11. Maximum retardation times of multiblock copolymers
BxAByA (case IVc) and B,AByABx (case IVd) containing 2 A
beads and 48 B beads as a function of the number of B beads be-
tween A beads (y) (/a = 185, /b = 1): circles, B*AByA; squares,
BxAByABx.

one end of the chain (diblock), or even near one end (unev-
en triblock), there is an immediate effect in slowing down
the retardation behavior, although its effectiveness does
not increase at the same rate as the AxByAx case with in-
creasing A content.

The unevenly alternating block copolymer AxByAxByAx-
By . . . (case Illb) has an intermediate behavior between
AxByAx and BxAyBx. The unevenly alternating block co-

polymer              . . . (case Ilia) falls on the same

curve at 50% point, as expected. Another kind of unevenly
alternating block copolymer is BxAyBzAyBx (case IVc).
The initial A beads were positioned in the 13th and 38th
positions of a B chain, further additions of A beads were

accomplished by simultaneously placing new A-bead neigh-
bors to the initial A beads. The resulting curve closely fol-
lows, though it is not completely identical to, the case Illb
curve.

All of the above discussed behavior applies to the curves

for <5a = 10,000 and c>a = 10. However, in the former case
the trends are further enhanced in magnitude, but dimin-
ished in the latter case. In particular the “transition” for
the diblock copolymer is delayed with an extended plateau,
when the friction coefficient ratio is low. The plateau is
however almost nonexistent when the ratio is very high.

Finally to further demonstrate the difference in retarda-
tion behavior due to the position of A beads, we show in
Figure 11 the computed rm’s for cases IVc and IVd (see
Table I). In both instances, only 2 A beads were used along
with 48 B beads. For case IVc, one of the A beads was fixed
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Figure 12. Comparison of the ratio of retardation times of block
copolymer and homopolymer as a function of percent B. Dotted
line, eq 10; solid lines, computed by the methods of this work by
varying x (25 < x < 76) for BXA2BX and AB2xA (/a = 185, /b = 1).

Figure 13. Comparison of the ratio of retardation times of block
copolymer and homopolymer as a function of log (/a//b). Dotted
line, eq 10; solid lines, computed by the methods of this work for
B*A2B* and AB2xA by fixing the percent of A beads at 1.3% (2x =

76) and varying the ratio of friction coefficients (1 < Sa < 10,000,
/b = 1).

at one end, and the other one was permitted to move far-
ther and farther away. The formula for this case is BXA-
 ^ , and y varies from 0 to 48. As the second A bead moves

away from the initial one at the end (y increases), the re-
tardation time first takes a very slight drop then increases
monatomically with increasing y. For case IVb, two A
beads are initially positioned in the chain middle and then
permitted to move away from each other. Thus for this
polymer BxAByABx, and y varies again from 0 to 48. Here

as y increases, there is a steady increase in rm. This differs
from case IVa only because of the initial position of the A
beads. At y > 8, there is very little difference between these
two cases. At y = 48, of course, they are identical.

3. Comparison with Previous Work. In the previous
work, the dynamics of a block copolymer chain containing
only one foreign bead was treated by a more elaborate
mathematical derivation. The main result from this treat-
ment was9

rm = V(1 +  / ) (10)
where

A = (/a ~~  ß)//ß (11)

and Tm° is the maximum retardation time of the homopo-
lymer B. In order to compare eq 10 with results from the
present computation, we first note that the model for this
treatment is BXA2BX. We choose an arbitrary value of ¿a,
say 185, and then let x vary between 25 and 76. For the
sake of comparison, we also compute for AB2XA. The re-
sults are shown in Figure 12. The curve for eq 10 is seen to
deviate from that for BXA2BX, but approaches the AB2xA
curve.

Another method to compare with eq 10 is to fix the total
number of beads at a constant percent of A, and vary ó a-

Figure 13 shows the results obtained by fixing the A con-

tent at 1.3%, and 1 < 5a < 10,000. Again similar deviations
can be seen. It should be noted that although eq 10 was de-
rived by a more rigorous mathematical treatment, a num-

ber of approximations were used because of the very low
copolymeric block in the model. Thus for a more meaning-
ful comparison, our numerical computation should be com-

pared with analytical results from a rigorous derivation
without approximations.14·15
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