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Polymer Physics 
HW 11 

April 1, 2022 (Due April 5) 
 
Luo D, Wu H, Li H, Zhang W, Zhang L, Gao Y, Effect of shape and size of nanofillers on the 
viscoelasticity of polymer nanocomposites The Rouse model is composed of beads and springs. 
Polymer 246 (2022) present coarse grain molecular-dynamics (MD) simulations of nanoparticles 
in low-molecular weight polymers that follow the Rouse model.   
 

a) The Rouse model is based on describing a polymer as a series of beads and springs called 
Rouse units.  The Rouse unit is large enough so that Gaussian statistics describes the size 
a2 = nl2 but smaller than the chain.  The drag coefficient is given by Stokes law using this 
size.  The spring displays entropic spring constants kspr = 3kT/nl2.  Compare this structure 
with the coarse grain model used by Luo in equations (2-4) using the spring equation F = 
kspr x.  Remember that dE/dx = F.  In a molecular-dynamics simulation the temperature is 
related to the average kinetic energy, ½ mv2, of the particles, a force balance based on F 
= ma and the potential using equation (1) is made for each time step.   

b) For the Rouse model the motion of Rouse units that make up a polymer chain are broken 
into modes of vibration, p, as in equation (7).  Luo indicates that the relaxation time in the 
Rouse model depends on p2.  Strobl G Physics of Polymers Concepts for Understanding 
Their Structures and Behavior Springer Verlag Freiburg im Breisgau, Germany (2007), 
p. 317-330 derives the Rouse model using “m” for the mode of vibration rather than “p” , 
equation (8.77) p. 328 for instance.  This can be obtained from equation (8.28) p. 319 
using the cyclic closure relationship equation (8.37) and realizing that m/NR is a very 
small number and that sin(x) ~ x for a very small value of x.  Copy Strobl’s derivation in 
your own words and equations to obtain equation (8.44) that the Rouse relaxation time 
for the polymer chain is proportional to N2.  This expression leads to the Rouse viscosity 
dependence of equation (8.84) h0 ~ N, z ~ h0 ~ N, D ~ kT/z ~ kT N-1. 

c) Luo finds that the autocorrelation function for different modes of vibration for the 
polymer chains change significantly with the addition of nanoparticles and with the shape 
of the nanoparticles (clusters, rods, sheets), Figure 5.  The relaxations are slowest for rods 
and fastest for pure polymer.  Luo indicates that this reflects interaction between particles 
and the polymer.  The interaction in the MD simulation arises from equation (1).  Does 
this make sense?  With the different energies of interaction used by Luo (epp = 1; enn = 1; 
epn = 3) do you expect interaction between filler and polymer to slow down the polymer 
vibrations?  What other issues could be important?  (A similar effect is seen in Figure 6a 
and Tables 1 and 3.) 

d) The Payne effect is what happens when you stretch a balloon before you blow it up.  You 
are breaking up a filler network which lowers the modulus for a short period of time.  
This network reforms.  Figure 3 shows that the simulated nanocomposites display a 
Payne effect in that at large amplitude deformations the filled systems decrease in 
modulus, the unfilled system is unchanged with strain amplitude.  Figure 2 shows that the 
Payne effect only impacts the storage modulus and not the loss modulus.  The effect is 
largest for rods and sheets, smallest for clusters.  How would the Payne effect impact the 
dynamics of the polymer chains?  Luo explains the behavior in Figures 7 and 8 for Rg to 
the Payne effect.  Does this make sense? 
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e) The simulation is subject to oscillatory shear and the average interaction energy between 
polymer, and filler can be calculated as a function of time, Figure 9.  The difference 
between the peaks and valleys for pp, nn, pn interactions under this shear are plotted as a 
function of shear amplitude in Figure 10.  It is seen that all three types of interaction are 
impacted.  Explain how the pp interactions can be impacted in this way given the 
energies used in equation (1). 


