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ABSTRACT: Dual polymer networks with stickers have a
reputation for enhanced modulus and toughness. We propose a
modified sticky Rouse model (SRM) from the single-chain
perspective for permanent and transient dual networks, aiming to
find a universal description of associative polymer dynamics. The
computational complexity of obtaining the analytical relaxation
spectrum is simplified by graph theory, implementing matrix
reduction of the Rouse−Zimm matrix based on the symmetry. The
analytical relaxation spectrum can also return to the case of linear
polymers and permanent networks. The modified SRM for dual
polymer networks predicts a Rouse-like scale of the linear
relaxation modulus G(t) ∝ t−1/2 in sticker relaxation, consistent
with the existing experimental results. In particular, the key
parameter in the SRM, namely, the effective friction coefficient, can be extracted from the lifetime of sticky bonds and diffusion of
chains, obtained by molecular dynamics simulations (MD). Based on that, the SRM model can predict the linear viscoelasticity of
dual polymer networks, quantitatively in agreement with our MD results. Our work strongly supports the applicability of the single-
chain molecular model SRM for polymer complex networks with reversible associative interactions.

1. INTRODUCTION
Polymer networks associated with stickers own excellent
mechanical properties, exhibiting linear and nonlinear
viscoelastic properties, which give them integral roles in
many practical scenarios, like tissue engineering, self-healing
materials, and shape memory functional materials.1−3 The
excellent mechanical properties come from two contributions,
one is the permanent polymer network in a long time scale,
and the other is the transient polymer network formed by
reversible stickers in a short time scale (seconds to hours in
experiments). In particular, the introduction of a small amount
of stickers realizes controlling the abundant rheological
behaviors of networks through constructing the target
structure, where a small change of stickers will raise significant
differences in the performance.4

Programmable synthesis of new materials with desired
mechanical properties is the final goal in polymer science.
However, owing to the multiple time scales in dual polymer
networks, most of current synthetic strategies can only explore
the local optimal structures in a wide parameter space. The
limitation of this approach drives significant demand for its
theoretical exploration, which completes the knowledge of
micro-scale mechanisms rooted in the molecular structures. In
most of the literature studies, the Maxwell model is the
simplest but most universal phenomenological method for
describing the dynamics and rheology of this polymer systems,
which combines the spring and dashpot in series.2,5 In the

relaxation process of dual polymer networks, the strands
dynamics are modeled following Rouse modes, and the
relaxation of physical cross-links is estimated as an exponential
decay. This can roughly draw out the physical picture of dual
polymer network relaxation while ignores the detailed behavior
over the whole rheological properties. Recently, Hui and Long
et al. developed a constitutive model of dual polymer networks
for the stress versus strain response with large strain, which was
originally proposed to draw out the breaking of chemically
cross-linked double network gels.3,6,7 The model can present
the hysteresis behavior based on the loading and unloading
rate, which shows excellent agreement with experiments.
Although many researchers have made profound studies that

successfully explain the rheological data observed in experi-
ments, theory adhered to the molecular model like classic
Rouse dynamic model has not been claimed. In fact, the
pursuit of establishing the concept serving as a molecular
model has continued for many years, especially in polymer
networks and linear associative polymers.8,9 In the 1960s,
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Chompff and Duiser et al. extended the Rouse model to
permanent networks and gave a general solution of the
relaxation spectrum.10,11 The series of papers focused on the
model with mesh-like networks, which contained numerous
local loops. The Rouse model can also describe the polymer
network dynamics based on the phantom network, treated as
simpler tree-like structures without loops.12,13 Graessley
developed a comprehensive treatment of tree-like Gaussian
networks and applied it for the calculation of linear viscoelastic
behavior. The analytical relaxation spectrum and modulus were
obtained without considering the contribution of strands,
namely, the length of strands Ns = 0.14−16 Kloczkowski et al.
extended Graessley’s work to the more realistic case, where a
broad relaxation spectrum for molecular internal dynamics and
more realistic description were obtained.17−19 Recently in our
work for linear associative polymers, the framework of the
sticky Rouse model (SRM) is derived and further verified
through molecular dynamics (MD) simulation.20,21 The
rheological properties like linear relaxation modulus were
predicted without fitting parameters and showed a quantitative
agreement with MD simulations. However, the complex
structure of dual polymer networks brings difficulties in
modeling and computing costs in simulations. To the best of
our knowledge, none have been able to construct a molecular
model for predicting the dynamics of dual polymer networks,
which acts as a direct liaison between microstructure and
macroscopic properties in various practical applications. The
permanent and transient dual polymer networks can serve as a
model system establishing a universal molecular model for
predicting viscoelasticity of sticky polymers. The linear
viscoelastic behavior is predicted based on the SRM and
phantom Gaussian networks; simultaneously, the affine
network model is also used for comparison. The MD
simulation is conducted to verify the theoretical results.
This paper is organized as follows: in Section 2, we give the

physical picture of dual polymer networks and review the
molecular model for sticky polymers and networks. Based on
graph theory, the deduction framework of eigenvalue solution
of the Rouse−Zimm (RZ) matrix in the SRM model is issued
for the relaxation spectrum,22−24 and the criteria in MD
simulation method is discussed. In Section 3, the static and
dynamic properties for polymer networks without stickers are
discussed based on the numerical solution and MD
simulations. In Section 4, the comparison between the
analytical and numerical solutions of the Langevin dynamic
equation of SRM is presented in the first place. Then, the
dynamics properties are studied systematically, establishing the
relationship between the structure and performance. A Rouse-
like scale of linear relaxation modulus G(t) ∝ t−1/2 in sticker
relaxation is revealed, and two prediction methods are
provided in a parameter-free style. Finally, the conclusions
are summarized in Section 5.

2. MODEL AND THEORY
The dual polymer network is composed of permanent and
transient networks. The transient network formed by the
introduction of stickers into the polymer chain and its
dynamics can be described by our previously proposed
modified single-chain SRM.20 The modified SRM is also
used to predict the dynamic behaviors of the permanent
network by considering the structure within the framework of
affine and phantom network models. We will describe how the
modified SRM is combined with the affine or phantom

network model to investigate the dynamics of dual polymer
networks.

2.1. Dual Polymer Network Model. The transient
network formed by stickers fits in the modified SRM, which
describes the sticky segments with distinct effective friction
coefficients and verified by MD simulations in our previous
work.20,21 Specifically in our model, the micelles formed by
stickers can be simply modeled as suffering a drag force from
the background, like a “sticky bead,” which has higher effective
friction coefficients than the normal beads, as shown in Figure
1.

Numerous models for the molecular description of polymer
networks have been developed, which generally regard the
elasticity of the polymer network as entropy elasticity and
consider the highly coiled molecular chain as entropy
spring.14−16 The simplest model that captures the character-
istic of rubber elasticity is the affine network model proposed
by Kuhn, Wall, and Flory et al.25,26 It is essentially a single-
chain model, assuming that the cross-links are fixed in the
space and deform affinely with the whole network. However, in
polymer networks, each cross-link is attached to other strands,
which can fluctuate around the equilibrium position. These
fluctuations can reduce the cumulative stretching of the
molecular chain and thus decreasing the overall free energy.
One of the earliest models that incorporates the fluctuations
was developed by James and Guth in the 1940s, known as the
phantom network model.27,28 It considers that the cross-links
between strands are free to move, and the macroscopic
deformation transmits to the network bulk through the
peripheral strands attached to the fixed surface. The Rouse
model commonly for the linear polymer chain can be
straightforwardly extended to the case of the phantom network
by mapping the polymer network structure to a special matrix
representing the network topology, like the work of Graessley

Figure 1. Top: Schematic description for the dual polymer network
chain model, with only one sticker in the middle of each strand for
calculation simplicity. Bottom: The micelles formed by sticker
associations feel a drag force from the background imposed by
other sticker associations, just like a “sticky bead” with the higher
friction coefficient.
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and Kloczkowski.14−19 However, this matrix is unlimited
extension, and the equilibrium modulus can only be calculated
within the classical rubber elasticity theory. In this work, we
first introduce the modified SRM into the polymer phantom
network model, where the peripheral segments arched in the
space are described as the beads with infinite effective friction
coefficients.20

By introducing stickers on the above permanent polymer
networks, the dual polymer network can be constructed, as
shown in Figure 1 (for clarity, we only show the local network
structure here). We only consider the case with one sticker in
the middle of each strand for simplifying the calculation due to
too many variable parameters for the dual networks. Although
simplified, this complex dual network structure still plays a
representative role in understanding the physical pictures of its
dynamic motion. All analytical eigenvalues of the Rouse−
Zimm (RZ) matrix can be obtained through graph theory, and
thus, corresponding linear viscoelastic properties can be
presented. With the increased functional groups of cross-
links, the results from the phantom network approach to that
from the affine network.
2.2. Modified SRM from a Single-Chain Perspective

for Associative Polymers. The idea of SRM is mainly used
to study the linear stress relaxation of associative polymers,
which can be traced back to the work of Green and Tobolsky
in 1946.29 Usually, the relaxation time of stickers is much
larger than that of strands, and the linear relaxation modulus
can be divided into two parts in the limit case. One is the fast
relaxation mode of the strands, and the other is the slow
relaxation mode of stickers. Chen et al. applied the SRM into
ionomers, showing a perfect consistence with the key
parameter, namely, association lifetime determined by the
dielectric relaxation spectroscopic responses.30 However, this
SRM is based on the phenomenological descriptions, which is
not easy to bridge the molecular structure with the final
dynamical properties.

To construct the molecular model for predicting the
rheological data observed in experiments, we proposed a
modified SRM by introducing the concept of the effective
friction coefficient, and thus, the mechanical relaxation can be
understood from a single-chain perspective. Here, we only give
a brief introduction, and the details refer to our previous
paper.20 The calculation method is similar to that of the Rouse
model, but we need to modify the Langevin equation of the
Gaussian chain modeled as a bead-spring model as follows:

ζ
Ξ∂

∂
= − +−

t
i t

k T
b

i t i tR ZR F( , )
3

( , ) ( , )B
2

1

(1)

with the boundary condition =∂
∂ =

0
n n

R

0

n and =∂
∂ =

0
n n N

R n ,

where the friction matrix Ξ is a diagonal matrix with diagonal
elements of δi = ζi/ζ (i = 1, 2, ...N), which reflects the effective
friction coefficient of each bead i. δi = 1 is for normal beads,
and higher δi is for sticky beads representing the larger effective
friction. F(i,t) describes time-dependent random force acting
on each segment of the molecule, F(i,t) = [f1, f2, ..., fN−1, fN].
R(i,t) is the column vector reflecting the positions of beads at
time t, and the superscript −1 represents the transpose of the
matrix. Ξ−1Z is the sticky RZ matrix that reflects both the
information of the chain topological structure and the effective
friction of segments (beads). The key step to solve the partial
differential eq 1 is finding out eigen-polynomial of the sticky
RZ matrix Ξ−1Z and calculate its eigenvalues λp. Given the λp,
the relaxation time spectrum is thus obtained as τp = ξb2/
3kBTλp. Thus, we can obtain all linear viscoelasticity properties,
such as intrinsic viscosity, compliance, relaxation modulus,
storage modulus, and loss modulus.20

2.3. Our Modified SRM Combined with the Polymer
Permanent Network Model. In this work, we combine the
modified SRM with the affine or phantom network model to
describe the dynamic behavior of permanent networks.
Molecular bonds are treated as a Gaussian spring, where the

Figure 2. (a) Linear structure in the affine network model with its corresponding sticky RZ matrix and (b) tree-like structure in the phantom
network with its sticky RZ matrix, both of which have the same segment density.
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peripheral segments only receive the tension of one spring,
while the internal beads, including the strands and cross-links,
will be subjected to the tension of multiple springs. The
peripheral segments anchored to the fixed space are
represented as the sticky bead with the effective friction
coefficient δi = δ′ = ∞ according to the modified SRM above,
and all other beads still feel the normal frictional resistance. We
apply the Langevin dynamic equation to describe the force
balance being applied in the dual polymer network model,
which is the same as eq 1. Obviously, different network
structures have different sticky RZ matrices, while their
peripheral beads have the same infinite friction for describing
anchor in the space. For example, we consider the linear
structure in the affine network and the tree-like structure in the
phantom network, as shown in Figure 2, where the black solid
beads are anchored with the infinite effective friction
coefficient δ′ = ∞. The sticky RZ matrix Za of the affine
network model is the same as the normal linear chain but the
peripheral beads fixed in the space. The Zp of the phantom
network is partitioned into submatrices for clarity and grows
toward the right and downward as increased size of the
network. These sticky RZ matrices are real symmetric matrices
that can be diagonalized, and the solution of dynamical
equations is thus reduced to find its eigenvalues.
Obtaining the eigenvalues of the specific matrix through

numerical methods seems straightforward and easy. However,
for some complex chain topologies like networks or
dendrimers, it is not easy to even express the sticky RZ
matrix, and the numerical method is not conducive to
understand the intrinsic physics, such as scaling relationship,
quantitative analysis, and so forth. The pursuit of analytical
solutions of RZ matrix eigenvalues is still significant.
2.4. Graph Theory for Solving Analytical Eigenvalues

of the Sticky RZ Matrix. The specific physical picture applied
in our modified SRM for the affine or phantom dual network
model is shown in Figure 3. The affine dual network model is

the same as shown in Figure 2a, focusing on the motion of
strands with two ends arched in the space, where the only
difference exists in the sticky segment. Consistent with the
above derivation, the effective friction of peripheral beads
(black solid beads, as shown in Figure 3) is assumed as infinity,
δ′ → ∞. The extra stickers introduced are shown as gray filled
beads, which have a finite but much larger effective friction
coefficient than normal beads. The phantom network can be
treated as the so-called tree-like structure. For ease of
calculation, we adopt dendrimers with well-defined topological
symmetry, thus following parameters in dendrimer studies for
our model, for example ϕ for the functional degree of cross-
links and g for the generation of dendrimer structures. Figure 3
shows the example with g = 3 and ϕ = 4, and the model
approaches network structures with increased g. In the
phantom network model, only the peripheral segments are
attached to the surface and deform affinely with the
macroscopic deformation. Each grid bead represents a cross-
link with ϕ functionalities, and the beads in strands are not
shown, where the chain length of each strand Ns = 2n + 1, and
n is the half strand length.
For slightly complex topologies, like branch or star chain,

Zimm and Kilb achieved to diagonalize the RZ matrix through
the continuum approximation. Although a certain extent error
exists in the assumption, the analytical solution is still a major
improvement.31 Cai and Chen got the exact eigen-polynomials
by solving the characteristic equation with the length of strands
Ns = 0. However, the analytical solution only exists in quite
simple topologies with low generations g, and the eigenvalues
were only obtained numerically for complex structures.32

Graph theory was developed by Yang et al. to deal with various
complex chain topological structures, which can simplify the
RZ matrix using the matrix reduction method by taking
advantage of symmetry.22,24 The method avoids the
complicated and tedious mathematical derivation and maps
the reduction operation to the topological splitting of chain
structures with simplicity and university. They obtained the
analytical eigen-polynomials of the RZ matrix for dendrimers
by graph theory and gave analytical eigenvalues in special cases.
The detailed graph theory method refers to the previous work
of Yang et al.22−24

According to graph theory, the diagonalization of the sticky
RZ matrix for affine and phantom dual networks can be
conveniently implemented. Analytical eigenvalues for stickers
can reduce to the Rouse form in the limiting case, and the
details can be seen in Sections 1 and 2 in the Supporting
Information.

2.5. MD Simulation. Simulation for the Network. We
adopt the Kremer−Grest (KG) bead-spring model for polymer
networks, without considering angular potential. The inter-
action energy between each unbonded monomer is the
Lennard-Jones (LJ) potential energy ULJ, where cutoff radius
rc = 21/6σLJ and the number density of LJ bead ρ = 0.85/σLJ.
We express all quantities in units of the LJ bead diameter σLJ,

intermonomer energy εLJ, and the LJ time τ σ ε= m /LJ LJ
2

LJ .

We model the covalent bond between neighbor beads with the
finitely extensible nonlinear elastic (FENE) potential

= − −

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
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Figure 3. Physical pictures of the affine (top) or phantom (bottom)
dual network structure. The peripheral segments arched in the space
are shown as black solid beads with the infinite effective coefficient,
and stickers are gray filled beads located in the middle of strands. The
grid bead is the cross-link with functionality of ϕ, and and normal
segments are not shown out for brevity.
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Following most bead-spring studies, we choose k = 30εLJ/σLJ
2

and maximum bond length R0 = 1.5σLJ. All simulations are
performed using the LAMMPS with canonical (NVT)
ensemble under periodic boundary conditions, maintaining
the temperature using the Langevin thermostat. Newton’s
equations of motion are integrated using the velocity Verlet
algorithm with a time step of δt = 0.005τLJ at a LJ temperature
T = 1.0εLJ/kB, where kB is the Boltzmann constant.
Many problems exist in the end-linked polymer network

starting from linear chains, such as spatial inhomogeneities of
the cross-link density and the formation of dangling chains and
loops, which do not contribute to the network elasticity.33−35

In our simulation, like divergent synthesizing methods, we
directly construct the mesh-like network through end-linking
of four-branched star chains (i.e., ϕ = 4 in this work) with each
arm length of n. The first-generation star chain generates
randomly like a multifunctional core, and one arm of the
second-generation star chain directly grows from one of the
end segments of the first generation, avoiding the defect of
primary loops. This procedure is then repeated M times, and
the unreacted peripheral beads will undergo the end-linking

during the subsequent relaxation process. The method
removes most of the structure defects leaving only a small
number of dangling chains, which has few effects on its
rheological properties. Fewer defects are helpful to compare
our model predictions and simulation results, and we study
four networks with M × (4n + 1) = 1500 × 25, 600 × 49, 500
× 69, and 300 × 101 beads in this paper. The simulation
system applies the periodic boundary conditions.

Simulation for Stickers. Sticky monomers have no differ-
ence with other LJ beads and are subject to the LJ interaction
potential under normal conditions, but they can reversibly
break and reconstruct under thermal fluctuations, like
hydrogen bonds in real systems. For dual polymer network
structures, we introduce a sticker on the middle of each strand,
and the two stickers can interact via the potential when they
form a reversible sticky bond,36,37

= − −U r h U r U r h( , ) ( ) ( )sb FENE FENE 0 (3)

where r0 ≈ 0.96σLJ is the equilibrium FENE covalent bond
length. The sticky binding energy h is independent of r and has
no contribution to the associative force, which can be written

Figure 4. Comparison of relaxation modulus G(t) between phantom and affine dual networks. The influence of (a) strands length, (c) functional
degree, and (d) generation in both networks. The results from affine and phantom networks are plotted as red dotted lines and black solid lines,
respectively. (b) Equilibrium modulus against the inverse of strand length.
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as Fsb = −∂Usb/∂r. However, h directly relates to the chemical
reaction equilibrium without altering the chemical kinetics,
namely, it determines the lifetime of sticky bonds. We employ
the hybrid MD/MC simulation method to draw the associated
and disassociated states of stickers. The formation of a sticky
bond between unbonded stickers brings the energy change
ΔE(r,h) = Usb(r,h) and that for breaking a sticky bond is
ΔE(r,h) = −Usb(r,h).

37 At each MC step, the eligible pairs of
stickers are chosen first, and then, the attempt of creating a
sticky bond is made if the chosen pairs do not reach the
maximum saturation and consistent with the setting atom type.
However, if the chosen pairs are bonded, the attempt of
breaking bonds will be made. The successful probability of
each step is the smaller numerical value between 1 and
exp[−ΔE(r,h)/kBT]. We should note that these MC steps are
only based on the topology of stickers, which will not change
their spatial and velocity distribution. Our simulation is carried
out with the small MC time step τMC = δt = 0.005τLJ, which
means that MC attempt will be implemented for every MD
time step, for reducing the systematic errors in calculating the
dynamic properties of dual polymer networks.37

Each simulation will experience four equilibration stages.
First, the initial network structure is constructed and
equilibrated, and this stage lasts multiple Rouse times of the
unentangled strand. Second, the unreacted peripheral beads
are end-linked, until the unsaturated cross-linkers are within
1%. Then, the simulation system equilibrates multiple of the
terminal relaxation time. At last, stickers are introduced and
equilibrated, and the stage continues considerably longer due
to the much longer relaxation time of stickers. The static and
dynamic properties of the reversible network are calculated on
the fly over an equilibrium run of the whole polymer dual
networks.

3. NETWORK PROPERTIES WITHOUT STICKERS

This section considers the static and dynamic properties based
on the modified SRM for the permanent network chain
without stickers, which served two purposes. First, we choose
MD simulation to verify the validity of the single-chain model.
Second, our SRM model ignores the chain entanglements, so
in this section, suitable chain length parameters for the
network without entanglements should be chosen.
The analytical solution of SRM dynamics equation for the

network seems to be difficult, while it can be deduced in
specific cases. Graessley analytically calculated the stress
relaxation modulus through the recurrence formula of the
RZ matrix while ignoring the relaxation of strands.16 Under the
same assumption, Yang et al. also calculated the eigenvalues of
the RZ matrix for dendritic chains and analytically obtained the
similar relaxation spectrum by the graph theory method.23 As
shown in our analytical eigenvalues of eq S.29 in Supporting
Information, the eigenvalues can reduce to the same results as
in the Graessley and Yang et al. study when Ns = 0 and δ = 1,

λ ϕ ϕ ϕ≈ − − +πi
k
jjj y

{
zzz( )2 1 cos / 2k

gs,k , which confirms the

reliability of our model from another point of view.
In the framework of the modified SRM for polymer

networks, the eigenvalues of the RZ matrix can be directly
obtained by the numerical method, and thus, we choose linear
relaxation modulus G(t) to show the overall performance. In
the following calculation, we consider the reduced temperature
kBT and characteristic time ζb2/3kBT to be unity, and the

density of segment ρ = 0.85. The G(t) is thus simplified as
ρ λ= ∑ −=

−G t N t( ) ( / ) exp( 2 )p
N

s 1
1

p , where Ns is the strand

length and λp is the eigenvalues with the p mode. We will
discuss the predictions from phantom and affine networks,
where the relaxation modulus profiles for different Ns,
generation g, and functionality ϕ are shown in Figure 4a−d.
Consistent with the previous studies, a permanent rubber

network platform appears after strand relaxation, which
decreases with the increase in Ns (increasing Ns corresponds
to decreasing the number density of elastically effective
strands), as shown in Figure 4a.16,35 With the same Ns,
differences between affine and phantom networks become
obvious when reaching the permanent network region, where
the G(t) of the affine network remains higher than that of the
phantom network. Both equilibrium moduli show G(t → ∞)
∝ Ns

−1, as indicated in Figure 4b, which is in mutual agreement
with the classical rubber network theory. Meanwhile, the scale
relationship can be quantitatively obtained in our model. The
affine network model, as shown in Figure 2a, has two fixed
ends that cannot fluctuate, corresponding to one normal
motion mode whose relaxation times tend to be infinite. Based
on that, the normalized equilibrium moduli can be directly
obtained as Gaffine

t→∞ ≈ ρ/Ns when t → ∞, which is the same as
the classical rubber network theory. In contrast, for the
phantom-based network, the deduction is little tedious and
follows the concept of elastically effective strands, Gphantom

t→∞ ≈ v,
where v is the number density of elastically effective strands
after all strands relaxing. The phantom-based network is
constructed from the dendrimer structure, and only peripheral
fixed segments behave as permanent elastically effective
strands. The total segments can be obtained from the
recurrence formula.

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ
ϕ

= [ + × − + × − +

+ × − ]

≈ −
−

−

N N

N

( 1) ( 1) ...

( 1)
( 1)

2

g

g

s
2

1

s

m

m

(4)

The number density of permanent elastically effective
strands can be directly calculated as,

ν ϕ ϕ ρ ϕ
ϕ

ρ= × − ≈ −
−

−

N N
( 1) 2

( 1)

g 1

s

m

(5)

where the scale relationship and the dependence of
functionality are analytically obtained. It is clear that the
phantom network chain can degenerate to that of the affine
network when the functional degree becomes large enough, as
shown in Figure 4c and eq 5. The generation gm represents the
maximum generation in the polymer dual network model, as
shown in Figure 3, and larger generation corresponds to more
realistic network in qualitative respect. When the generation is
small, the relaxation modulus will decrease with increased
generation until it reaches to a certain level, where the modulus
remains basically unchanged, as shown in Figure 4d. The
interesting phenomena of generation influence cannot be
explained thoroughly in the current numerical method, which
will be further studied analytically in the next section. Different
from the results of Graessley et al.,16 the modified SRM for
polymer networks takes into account the local relaxation
dynamic of polymer strands and thus can reproduce the fast
mode of strands.
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MD simulations are further performed for four polymer
networks, as depicted in the above section of MD simulation
with strand lengths Ns = 12, Ns = 24, Ns = 34, and Ns = 50,
whose motion of individual junctions is studied (see the
Supporting Information). As shown in Figure S4, strands in
networks are Gaussian-like in our simulations, showing
⟨R2(Ns)⟩ ∝ Ns as expected, where ⟨R2(Ns)⟩ is the mean
square end-to-end distance of strands on both the time average
and the ensemble average. Besides, the mean square displace-
ment (MSD) of the cross-link in the network with Ns = 12 is in
well agreement with the prediction of Erman et al., illustrating
that no entanglements exist at this parameter.17 However, due
to the uncrossability of chains, the deviation between them
becomes significantly large with increased Ns.

34,35,38

In the polymer network, the entanglement mainly comes
from the uncrossability of strands, where topological
constraints are imposed by the surrounding strands. The
modulus is supposed as GN

t→∞ = vkBT + TeGN
0 ,35,38,39 where

vkBT (v is the strand number density) is the rubber elasticity
without topological constraints, and TeGN

0 is the trapping
contribution from entanglements. Te is the trapping factor, and
GN
0 is the asymptotic plateau modulus with long enough

strands. However, the origins of entanglements for linear
chains and polymer networks are essentially different. For

linear counterparts, the critical degree of polymerization (DP)
for the entanglement effect has been thoroughly studied,40

which is supposed to be around 65. The entanglements
imposed by neighboring chains restrict their motion, which has
a characteristic relaxation time for releasing the topological
constraints. For polymer networks, the entanglements root in
the formation process for polymer networks, which are
permanent trapping at the time when cross-links were formed.
In the construction of networks, the reacted ends will retard
the motion of the whole chains, and thus that will reduce the
critical strand length. According to the work of Grest and
Kremer,35 the GN

t→∞ ∝ Ns
−1 only holds for short chains, which

has a deviation at Ns = 25−35, that is, the entanglement length
in polymer networks.
On the basis of confirming the accuracy of network

simulation, we construct each polymer network with six
different initial fields, namely formation of six different
dendrimers. We calculate the linear viscoelasticity of each
dendrimer and then obtain the average results to avoid the
sample deviation. Each relaxation moduli G(t) is obtained
through fly calculation of time correlation functions by
Likhtman et al.41 As shown as hollow squares in Figure 5a−
d, our simulations run up to 6 × 108 time steps and are
sufficient to reach the plateau regime for the permanent rubber

Figure 5. Comparison linear relaxation moduli G(t) between SRM theoretical predictions and MD simulations with (a) Ns = 12, (b) Ns = 24, (c)
Ns = 34, and (d) Ns = 50. The predictions from the modified SRM are expressed as red and black lines, and the predictions from the classical
network model are indicated as dashed lines.
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networks. The results conform to the previous conclusion, and
we present these findings in Table S1. The background friction
coefficient ζ is determined by fitting, which is approximately
equal to 24 for four simulations, basically unchangeable with
invariant number density. The case of Figure 5a with Ns = 12 is
consistent with the prediction of the modified SRM for the
phantom network. The network in this case has few
entanglements and behaves like a perfect network, whose
modulus locates between the two classical affine and phantom
network theories. Moreover, our MD simulation has a perfect
consistent modulus with our modified SRM prediction and
deviates from the predicted modulus of the classical phantom
network deducted within the assumption of parallel strands.
The topological constraints will inevitably increase with
increased strands. As a results, the case with Ns = 24, as
shown in Figure 5b, has the modulus that is slightly higher
than the predicted value based on the phantom model, but it
still locates in a reasonable error range within the affine
network framework, where trapping contribution from
entanglements is only 0.003ε/σ3. The chain uncrossability
limits the motion of cross-links, causing the relaxation of the
whole network contributed by that of one strand. With a
continuous increase in the strand length, the degree of
intertwining between strands will follow up, and the trapping
contribution from entanglements TeGN

0 becomes notable. For
the simulation with Ns = 34 and Ns = 50, the trapping
contributions are 0.016ε/σ3 and 0.009ε/σ3, which locate in a
range of entanglement chain length from the work of Grest and
Kremer, as supposed to be 0.017ε/σ3 for the asymptotic
plateau modulus GN

0 .35 With the obvious entanglements effect,
the moduli, as shown in Figure 5c,d, even exceed the
prediction of the affine network.
The main purpose in Section 3 focuses on the available

single-chain model in the polymer network and suitable
parameters for MD simulation. The agreement in Figure 5a
shows a perfect applicability of the modified SRM for polymer
networks, describing the linear relaxation process within the
whole rheological frequency range. We should note again that
the entanglement constraints will complicate the stress
relaxation mechanism, and this work focuses on the short-
chain system Ns = 12 with negligible entanglement effect. With

the analytical solution of relaxation spectrum obtained, the
more interesting dynamics can be obtained.

4. DUAL POLYMER NETWORK PROPERTIES
From the modified SRM, we can obtain the analytical
eigenvalues of dual polymer networks through graph theory,
as shown in the Supporting Information, which can provide the
whole relaxation modes, reflecting all microscopic relaxation
mechanisms in such polymers. The accuracy is presented first
from the linear relaxation modulus G(t), as shown in Figure 6a.
The setting of reduced temperature, characteristic time, and
segment density is the same as mentioned above. Intuitively,
we find that the analytical results are in perfect agreement with
the numerically solved SRM results, whether obtained from the
affine or phantom network. The relaxation time of stickers
becomes large with increased δ, and the height of the modulus
platform remains unchanged, demonstrating that only the time
span of the linear relaxation modulus is affected by the
association strength of stickers, which is consistent with the
results of previous studies in associative polymers.20,42,43 The
G(t) shows two characteristic relaxation times corresponding
to strands and stickers, respectively. Obviously, the dual
polymer network first experiences the strand relaxation and
reaches a modulus platform at the Rouse relaxation time τR,
that is, the transient network composed by stickers. When the
relaxation behavior lasts long enough, stickers begin to diffuse
during the association−disassociation process, and the G(t)
deviates from the plateau region, which is the characteristic
relaxation time of stickers. Interestingly, a scale of G(t) ∝ t−1/2

exists in the relaxation process of the transient network
according to our model predictions, which indicates that the
sticker relaxation process in dual polymer networks also follows
the Rouse relaxation mode, and this has not been carefully
studied before. As early as 1989, Baxandall et al. proved that
the sticker relaxation behavior in linear chains is consistent
with the Rouse relaxation mode using the probability
distribution and characteristic time of the sticker reaction.9

This finding has been widely applied in linear sticky chains,
while no existing theory can clarify the sticker relaxation mode
on the dual polymer networks, which will establish a unified
theoretical framework for all sticky systems. Experimentally,
Sheiko et al. constructed master curves of time-average

Figure 6. Comparison between the G(t) obtained from analytical and numerical calculations of our modified SRM dual networks under variable
(a) effective friction coefficient δ and (b) generation g. The dotted and solid lines represent analytical and numerical solutions of SRM, respectively.
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Young’s modulus from the stress−strain curves at different
strain rates for dual polymer networks,5 where the temperature
ranges from 3 to 37 °C, and all master curves have the G(t) ∝
t−0.5 in the time scope between 10−3 and 10−2 s. However, the
scale of G(t) ∝ t−0.5 with the temperature higher than 3 °C is
no longer caused by the strand motion because of a quick
motion at the higher temperature. According to our model
prediction and the experiments results, this G(t) ∝ t−0.5 in
higher temperature case represents the relaxation of stickers
followed by exponential decay relaxation, which is also
consistent with our findings. It should be noted that the two
Rouse relaxations are coupled with transient and permanent
networks, respectively, leading to a little deviation on G(t) ∝
t−1/2, as observed in our previous work.20 Similar to the results
of Figures 4d, Figure 6b concludes that a certain deviation
between the numerical and analytical results exists when
generation g for the phantom network is small, which becomes
negligible with increasing g.
In this section, we start from the analytical eigenvalues in the

modified SRM of the phantom dual polymer network model
and explain the reason for the existence of scaling and
convergence (with g) from the dynamic properties. The overall
linear relaxation modulus can be directly calculated from
contributions of subgraphs (for details, see the Supporting
Information). The analytical eigenvalues are divided into the
general solution λp of strands and λs,k(λs) of stickers, where λs
is calculated from the sticker in P(0)B(x) without translational
symmetry. Without considering the relaxation of peripheral
arched segments, the analytical solution of G(t) can be drawn
out as the function of five different characteristic relaxation
times based on the above assumptions. See the Supporting
Information for the detailed derivation, where the G(ϕ,t)
converges with large generation g,
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where ρ is the density of segments. When ϕ = 2, eq 6 can
reduce to the linear relaxation modulus of linear chains,
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which is consistent with the linear relaxation modulus
expression of SRM by Chen et al.30 The G(t) can be divided
into two parts. One is the fast relaxation mode of the strands,
and the other is the slow relaxation mode of stickers. So far, the
above convergence with g is described from the dynamical
properties of dual networks, whose analytical linear relaxation
modulus is directly obtained. Moreover, the scale of G(t) ∝
t−1/2 existing in the relaxation process of both strands and
stickers, which explains our numerical and analytical results of
G(t), is shown in Figure 6. The corresponding experiment in
the Supporting Information can be found in the master curves
of the modulus by Sheiko et al.5

Figure 7. When n = 20, δ = 1000, and g = 10, changes in (a) G(t) and (b) its characteristic time with functionality ϕ. Results from affine and
phantom networks are presented as red dotted and black solid lines, respectively.
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Figure 8. Changes in the storage modulus G′(ω) and loss modulus G″(ω) for dual polymer networks are shown with (a) effective friction
coefficient δ and (b) half strand length n. Changes in the loss tangent G″(ω)/G′(ω) with (c) δ and (d) n. Comparison between the characteristic
time determined from the maximum of loss modulus and eq 10 under different values of (e) effective friction coefficient δ and (f) half strand length
n. Arrows direct the increase in δ or n.
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As shown in eq 6, characteristic relaxation times are
obtained with the assumption of characteristic time ζb2/3kBT
to be unity.

τ
π

= +n( 1)
R

2

2 (8)

τ
π

′ = +n(2 1)
4R

2

2 (9)

where the two strand relaxation times tend to be the same with
large n, τR ≈ τR′ , which represents the relaxation of both half
strands separated by stickers, respectively.

τ ϕ δ
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τ ϕ δ
ϕ ϕ
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− −

n
2 1sb
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τsb and τsb′ are the characteristic time and truncation time of
stickers, respectively. When the relaxation time far exceeds the
characteristic time of stickers τsb and approaches the truncation
time τsb′ , stickers will relax following the exponential decay. In
addition, eq 6 also describes the influence of functionality on
the linear relaxation modulus G(ϕ,t), where the modulus tends
to be determined by subgraph B (P(0)B(x)) with large
functionality. Thus, the fluctuation of cross-links is suppressed,
and the phantom network approaches to the affine network
during the relaxation, as shown in Figure 7a with n = 20, δ =
1000, and g = 10, where the characteristic relaxation times are
reduced to τR and τsb″ .

τ δ″
= n

2 4
sb

(12)

However, the characteristic time of stickers τsb are
approximately consistent with τsb″ accidentally at the chosen
parameters. A transition in the scale of the relaxation process
also happens with increased ϕ, which changes from Rouse
relaxation to an exponential decay during the sticker relaxation
drawn out analytically in eq 6, same as the existing
experiments.5 As ϕ becomes larger, the difference between
τsb and τsb′ is decreasing, which accelerates the transition of
scales, that is, the Rouse relaxation mode of stickers will
disappear when the functionality reaches a high degree, as
shown in Figure 7b. However, it should be noted that the
transition of scales is covered in Figure 7a because of the
existing permanent networks.
For achieving the target rheological properties by the design

of molecular structures, we can further calculate other
mechanical properties of dual polymer networks, like the
storage modulus G′(ω), loss modulus G″(ω), and stress−
strain relations. The results are simplified similar to the method
mentioned above, where reduced temperature kBT and
characteristic time ζb2/3kBT are set to be unity, as shown in
Figure 8a,b. Furthermore, the changes in the loss tangent
G″(ω)/G′(ω) with ω are shown in Figure 8c,d for describing
the relaxation mode at different parameters. Generally, the
storage modulus G′(ω) is always greater than the loss
modulus, and no intersection between them exists in the full
frequency region, indicating the nature of solid elasticity. Two
plateau regions of the storage modulus G′(ω) occur, one of
which locates at the intermediate frequency caused by the
transient network, and the other is due to the permanent

network platform at a low frequency. For the loss modulus
G″(ω), three transitions exist in the relaxation process. The
first transition happens when strands begin to relax from the
“frozen” state at a high frequency, where the loss tangent
locates at the higher level and then decreases with the transient
network dominating. The second transition occurs when
stickers begin to disassociate, and the loss modulus reaches a
minimum value at this transition point. The third transition
locates at the low-frequency region, where the loss modulus
and tangent both reach a maximum, and thus, the dual
polymer network begins to show the nature of solid elasticity.
We further consider the changes in G′(ω) and G″(ω) with δ

and n. As shown in Figure 8a,c, large δ only affects the
dynamics of the stickers, which increases both elastic
characteristics and relaxation time of stickers with a decrease
in the minimum values of loss modulus and tangent. The
transient network formed by stickers lasts longer with large δ,
which contributes to the modulus by increasing the lifetime
between stickers. However, G′(ω) under all δ tend to converge
to a constant in the low-frequency region, demonstrating that
the permanent network is not affected by δ. Compared with
the change in δ, the influence of n is slightly complicated,
which affects the structure of the permanent network, leading
to the non-convergence of G′(ω), as shown in Figure 8b,d.
From the perspective of the loss tangent, the minimum value
during the intermediate-frequency region decreases with
increased n, indicating more viscous flow characteristics.
Although both large δ and n can extend the relaxation of
stickers τsb, they have a contrary effect on the dynamical
performance (elasticity or viscous characteristics). Moreover,
we construct the stress−strain curves of small deformations
based on the mechanical properties of G(t), measured at
different strain rates, where the tensile stress increases with
time at a constant strain rate ε:̇

∫ ∫σ ε ε τ τ= − ′ ′ = ̇t G t t t G( ) ( )d ( ) ( )d
t t

0 0 (13)

Figure S5 shows the stress−strain curves of small
deformations with strain rates ranging from 1.5 × 10−7 to 5
× 10−3 s−1. The theoretical results agree with the existing
experiments in the linear region, where the linear relaxation
modulus of the dual polymer network becomes larger with the
increased strain rate.5 This means the dual polymer network
can translate from the soft network to the rigid network with
the increase in the strain rate.
With the assumption that the characteristic relaxation

frequency locates at the maximum of loss modulus, we
compare their reciprocals (namely, relaxation time) in different
δ and n with the analytical expression of characteristic
relaxation time deduced above in eq 10, as shown in Figure
8e,f. The estimated sticker characteristic relaxation time shows
a good one-to-one correspondence with our analytical
characteristic relaxation time, meaning that the analytical
expression (eq 10) can be directly used to estimate the
rheological properties of the dual polymer network. To further
confirm the conclusion, we further carry out the related MD
simulations.
Here, we focus on the predictive power of our modified

SRM for the dual polymer network model, offering the
supporting results of MD simulations. We propose two ways to
obtain the effective friction coefficient δ in SRM, by
calculations from MD simulations. The specific simulation
details, including the parameters and MC process of sticker
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simulation, are shown in Section 2.5. Here, we should note the
method of our initial field setting. The polymer networks with
the half strand length n = 6 are chosen without entanglements,
which is proved above. We place stickers with a functionality of
2 in the middle of stands and perform with sticky binding
energy h ranging from 9 to 11, each of which is pre-equilibrium
1 × 109 steps and run up to 2 × 1010 time steps for the final
equilibrium. Similar to the simulations of the polymer network,
we obtain its linear relaxation moduli G(t) through fly
calculation of time correlation functions, as scatters shown in
Figure 9c. The overall rheological properties are mutually
consistent between the experiments, MD simulations, and
analytical solutions of SRM prediction, where the transient
network platform modulus appears in the intermediate
relaxation time, followed by the chemical network platform
as discussed above. The characteristic relaxation time increases
with increased δ. The scales of G(t) ∝ t−1/2 are observed in
both relaxation processes of strands and stickers, which

perfectly agrees with our deduction of the phantom dual
polymer network model.
For the systems of ionomers or other polymers, the lifetime

of stickers τb can be obtained through characterizations like
dielectric spectra. Based on the assumption of the lifetime of
stickers τb = πτsb, we can find all the parameters needed in the
modified SRM for dual polymer networks, namely, n, ϕ, and δ.
Thus, the model can predict the linear relaxation modulus with
the characteristic time ζb2/3kBT obtained from the fitting with
experiments or MD.30 In our MD simulations, the lifetime of
stickers τb can be directly obtained through the bond
information by defining the density of sticky bonds alive
after time t as,

ϕ =t
n t
n

( )
( )
(0)sb

sb

sb (14)

where nsb(t) represents the number of surviving sticky bonds
between stickers at time t, and nsb(0) is the initial number of
bonds. With the sufficiently high bonding energy in our

Figure 9. Quantitative comparison between predictions and simulation results through two methods. (a) Lifetime before a sticker finds new
partners. (b) Arrhenius relationship between the binding energy h and the bond lifetime τb. For avoiding the influence of τb0, we present the ratio
between τb and τb,h=9. (c) Linear relaxation modulus obtained from SRM predictions and MD simulations. (d) Characteristic relaxation times
determined from fitting against that from predictions.
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simulations, the recombine process between the open stickers
and their old partners is most likely to occur.43,44 Therefore,
we define the existing time before a sticker finds new partners
in its lifetime when considering the breaking and reforming
process. Figure 9a shows the curve of ϕsb(t) against t by MD
simulations, fitted by an exponential decay function ϕsb(t) = A
exp(−t/τb) in the red-dotted lines, where A is the prefactor.
Figure 9b shows the lifetime of stickers τb for different values
of binding energy, obtained from the fitting ϕsb(t) against t by
MD simulations. The increase in binding energy h directly
leads to the higher lifetime, which is in agreement with the
Arrhenius relationship,

τ τ≈ h k Texp( / )b b B0 (15)

where τb0 reflects the reaction rates of stickers in the hybrid
MD/MC simulation. Based on the assumption of τb = πτsb, the
key parameter δ in our model can be directly obtained using eq
10. Specifically, we calculate δ as 56.81, 266.37, and 1205.3 for
h from 9 to 11. The prediction is shown as dashed lines in
Figure 9c, showing a quantitative consistence. Here, a revision
is needed on n, which seems to be corrected as n = 5. The
essential reason is the partial coupling between the dynamics of
backbones and stickers, which brings a reduction in adjacent
segment motions, equivalent to a longer Kuhn length of
stickers.30 The next method also follows this revision. The only
fitting parameter is the characteristic time of the unit bead ζb2/
3kBT, that is, the background friction coefficient ζ. Comparing
to that in the simulations of networks, the existing stickers
bring the decrease in diffusion capacity, and thus, ζ becomes
smaller. However, for a basic invariant molecular system, such
as the number density and segment types (sticky or non-
sticky), ζ is basically unchangeable that equals to 37. This
invariant feature is also shown in Figure 9c that Rouse
relaxation processes converge with different h at short time.
We will give the additional evidence based on the diffusion
results in simulations in the following discussions.
However, for most of the experiments, the lifetime of

stickers under the reforming mechanism cannot be easily
obtained directly, where the tracing method seems a better
characterization.21,45,46 The key parameters δ and ζ are
essentially the friction coefficients, which will be reflected in
the time-dependent MSD in the Fick regime. Different from
the linear chains, the dual polymer network cannot move to
the Fick regime because of the chemical network restriction,
and thus, we put the focus on the relaxation of strands with
stickers for simplicity, constructing the relative linear tracer
chains. In the MD simulation, we introduce linear chains with
the length of N = 2n + 1, calculating the background friction
coefficient ζ with the normal tracer and the effective friction
coefficient δ with the sticky tracer. We introduce five normal
tracer chains and five sticky tracer chains without influencing
the rheological properties of the matrix. According to the
Einstein relation, DCM is inversely proportional to the friction
coefficient acting on the whole tracer. The details can refer to
our previous work, here, we only give main points for
understanding.21 To avoid the confusion, we regard DCM,S as
the diffusion coefficient of the tracer chains with stickers and
DCM,N for another, and the effective friction coefficient δ can be
directly expressed as

δ = + − ≈ +n
D

D
n n

D

D
(2 1) 2 (2 1)CM,N

CM,S

CM,N

CM,S (16)

when two diffusion coefficients are equal, meaning stickers and
normal beads have the same friction coefficient, and the
effective friction coefficient can be calculated as δ = 1, which
agrees with its definition δ = ζi/ζ. The characteristic time can
be determined from the diffusion coefficient, while the Kuhn
number must be revised by the characteristic ratio C∞. The
corresponding MD simulation results are shown in Figure S6.
Diffusion behaviors of the normal tracer are negligible with
different binding energies, indicating that the surrounding
friction coefficient remains almost the same as the unchanged
molecular structure. Based on the deduction above, all
parameters can be found in the diffusion motion of tracers.
For binding energy h from 9 to 11, the effective friction
coefficients δ are supposed to be 63.7, 382.9, and 539, and the
background friction coefficient ζ is calculated as 34.62, 36.9,
and 51.9. Predictions are indicated as solid lines in Figure 9c,
where a quantitative agreement exists in these modulus
profiles. In the tracing method, we provide only five tracers
for avoiding influencing the background friction coefficient. In
this case, some tracers may not relax enough at higher h value,
leading to the sample deviation. However, limited by the
computing power, the overall number of segments cannot be
enlarged, and the deviation exists between MD and tracing
predictions, which is roughly consistent without the magnitude
error.
Characteristic relaxation time can be calculated using eq 10.

Figure 9d shows the predictions of characteristic relaxation
time from two methods mentioned above, namely, to obtain
the sticker lifetime τb and the tracer chain diffusion coefficient
DCM,S(DCM,N) from MD experiments, and the fitting character-
istic relaxation time according to the MD simulations. The
one-to-one correspondence strongly suggests that our modified
SRM can directly provide an independent prediction of the
characteristic relaxation time, which is the key rheological
property in practice.

5. CONCLUSIONS
In summary, we aim to propose a universal molecular model
SRM for predicting dynamic and linear viscoelastic properties
of complex associative polymers through constructing
permanent and transient dual polymer networks. The idea of
the single-chain model for the network and associative polymer
is inspired by and based on previous work. Following the
single-chain description of permanent networks for studying
linear viscoelasticity by Chompff, Graessley, Kloczkowski et al.,
we further introduce the idea of effective friction coefficients,
which is supposed to be infinite for the peripheral segments
anchored to the space. Different friction coefficients can reflect
the hindered motion by chemical reactions and the drag force
by normal segments. In this way, classic Rouse dynamics can
be further extended to the complex dual polymer networks.
Section 3 verifies the rationality of the single-chain model for
permanent networks, where the supporting results of MD
simulations are in well agreement with the prediction of the
phantom network at strand length Ns = 12. For stickers, our
previous work has already confirmed that the linear associative
polymers can be described using the single-chain model, where
the model prediction is consistent with the MD simulations
under no fitting parameters. The dual polymer network model
provides the whole relaxation mechanism with the analytical
solutions of relaxation spectrum, solved by graph theory
through simplifying the calculation of the eigenvalues of the
sticky RZ matrix. Thus, the analytical expression of the linear
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relaxation modulus G(t) is further obtained, which can return
to the case of linear polymers and permanent networks. The
analytical results are consistent with experiments, revealing the
scale of G(t) ∝ t−1/2 for the relaxation of stickers at
characteristic time τsb, which becomes an exponential decay
beyond its truncation time τsb′ .
To establish the universal correlations between the

molecular architecture and specific mechanical properties, we
study the storage modulus G′(ω) and loss modulus G″(ω)
with frequency and present the effect of intrinsic parameters
like effective friction coefficient δ and half strand length n. The
sticker characteristic relaxation time τsb becomes larger with
increased both δ and n. However, the increase in δ leads to the
magnified solid elastic characteristics, and the increase in n
strengthens viscous characteristics. The relaxation times
estimated from the maximum of loss modulus show well
one-to-one correspondence with our analytical results from
SRM.
Finally, this work focuses on the prediction role of our

modified SRM model for dual polymer networks, where we
propose two methods to determine the effective friction
coefficient δ. In the dual polymer network with measurable
lifetime of stickers, the existing time before a sticker finds that
new partners can be used for calculating the effective friction
coefficient δ from our deduced expression in eq 10, showing a
prefect agreement with our simulation results of linear
relaxation modulus. Another tracing method has more
universality for most experiments. The effective friction
coefficient δ can be extracted from the diffusion coefficient
of tracer chains according to the diffusion equation in eq 16,
and the quantitative agreement with MD simulations verifies
the effectiveness of our SRM model. In conclusion, the present
work depicts the physical picture of dual polymer networks and
is convenient to predict its dynamics with the SRM at
molecular levels, which presents a unified framework for
associative polymers..
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