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ABSTRACT: The continuous limit of the bead-spring model of chain dynamics is applied for free-draining (Rouse-
Bueche) conditions to block copolymers, with illustrative calculations for diblock and symmetrical triblock struc-
tures. The basic mathematical problem is identical to that for heat flow in a nonuniform rod.

There is much current interest in the dynamic viscoelas-
tic behavior of block copolymers,2 and for this reason it
would be useful to have an appropriate adaptation of the
Rouse bead-spring model3® for the dynamics of flexible
chain molecules. A treatment of the problem is presented
here, with illustrative calculations for diblock and symmet-
ric triblock copolymers of the types BA and ABA.

At the time our work was done, previous calculations re-

lating to this question were apparently almost nonexistent.
Some years ago DeWames, Hall, and Shen3b had consid-
ered a Rouse chain in which the central bead has a friction
coefficient differing from those of all the other beads, but
their result for this special case is not easily generalized.
Our calculations are relatively simple because they are

based on the continuous limit of the free-draining Rouse
chain. This is known to be adequate4-6 for treating the
long-time portion of the relaxation spectrum and hence for
discussing the viscoelastic response under most conditions
of practical interest. The mathematical problem then close-
ly resembles that of heat conduction in nonuniform rods.7

In the course of preparing our work for publication, we

have learned of other related efforts. Shen and Hansen8
have made numerical calculations for free-draining copoly-
mers with finite but large numbers of submolecules. Where
the results can be compared, agreement between their work
and ours is good. More recently, we have found that Wang
and DiMarzio9 and Hall and DeWames10 have also dis-
cussed the problem. Finally, Wang11 has also treated block
copolymers in the more difficult nondraining situation ap-
propriate to dilute solutions.

Model and Method
The complex frequency-dependent intrinsic viscosity for

a solution of Rouse or Zimm chains can be written in the
form

[ ] = (RT/Mr<)   V(1 +     ) (1)
p>\

in which M is the molecular weight, r?o the solvent viscosity,
  the circular frequency, and rp the viscoelastic relaxation
time for the pth normal mode of the chain. The corre-

sponding relation12 assumed for the viscosity   of an undi-
luted liquid polymer is

  = (pRT/Nt)   V(1 + zW (2)
í» i

where p is the density. From the structure of the equa-
tions3-4 for the model, it can be ascertained that these rela-
tions are unaffected by heterogeneity of chain composition,
i.e., by variations in spring constants or friction coefficients
among the elements of the model; only the eigenvalue
problem associated with the relaxation times rp is altered
in detail. Since the effective potential energy of the model
is always quadratic, a set of normal coordinates always ex-

ists, and for the viscosity the relevant relaxations are al-
ways those of the quantities (XpYp), where Xp and Yp are
Cartesian components of the pth normal mode displace-

ment and the average refers to the nonequilibrium ensem-
ble described by the Rouse diffusion equation. Thus, in the
absence of a velocity gradient the above quantity relaxes
exponentially from any initial value (subscript zero):

(XpYp) = (XpYp) 0 exp(~t/r¿ (3)

Because of the separability in Cartesian coordinates, the
above relation is equivalent to

(Xp)/(Xp), = (Yp)/(Yp) o
= expH/2T>) (4)

so that it suffices to consider only the time dependence of
an average Cartesian component in order to arrive at the
relaxation spectrum. This is a well-known result, and ex-

plains13 the partial success of bead-spring treatments,14-15
that do not explicitly consider the Brownian motion.

We may now proceed to treat the general heterogeneous
chain. For the average x displacement xj of the jth bead we
have

^(dxj/dt) = -A,.!,,·(x, - XjJ ~ KjiM(Xj -

Xj+i) (5)

in which is the friction coefficient of the bead and the
K’s are the force constants of its two contiguous Gaussian
springs. In this and all subsequent equations the brackets
denoting averages ard suppressed but are always to be un-
derstood. As is easily shown,13 eq 5 results from integration
of the appropriate Rouse diffusion equation over the spa-
tial coordinates.

In the interior of a given block within a block copolymer,
or in a homopolymer chain, all friction coefficients and
force constants are identical, and under these conditions eq
5 reduces to the standard Bueche10 form

t(dx¡/dt) = -K(2x¡ -

Xj_t
- xM) (6)

Also, the force constant may be written4

K = 3 kT/b2 (7)

where b2 is the equilibrium mean square length of a spring.
In preparing to pass to the continuous limits of eq 5 and

6 it is well to recall the limited physical significance of the
beads and the springs (“submolecules”), which has often
been discussed. The slow part of the relaxation spectrum (p
« N), which is of major interest for discussions of visco-
elasticity, is independent of the number N of submolecules
into which the chain is considered to be divided. For exam-

ple, provided only that N is much larger than unity, the
longest or “terminal” relaxation time for the homogeneous
Rouse chain is given2 by

 1 = (Ar£)(iV&2)/6772£-r (8)
where kT has its usual meaning. The quantities    and
Nb2 describe the chain as a whole, and are of course each
proportional to the true number n of links in the chain
backbone, but the proportionality factor N/n can be varied
at will, provided interest is confined to the modes with p «
N. We may emphasize this assertion by recalling the free-
draining expression for the translational diffusion coeffi-
cient of the chain, D = kT/  , and the expression for the

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

IN
C

IN
N

A
T

I 
on

 M
ar

ch
 3

1,
 2

02
2 

at
 1

5:
09

:0
0 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.



352 Stockmayer, Kennedy Macromolecules

equilibrium mean square end-to-end distance, <r2) = Nb2;
these permit eq 8 to be rewritten as

Ti = (t2)/6h2D (8')
Moreover, the slow part of the free-draining relaxation
spectrum follows the law

tp = rjp2 (9)
whatever the value of N.

We may therefore pass to the limit of a continuous chain,
letting N become indefinitely large while keeping fixed the
true number of chain links and hence the quantities (r2>,
D, and n. The numerical bead index j is replaced4·5 by the
continuous contour variable

s = {2j/N) - 1 (-1 < s < + 1) (10)
and eq 5 is expanded about any chosen point; that is, xj(t)
is replaced by x{s,t) and

xjtí = x ± 2N-1(8x/9s) + 2N'2{B2x/Bs2) + . . . (11)

Making this substitution in eq 6 and using eq 8, we find the
familiar “heat equation” or Fick equation

Bx/Bt = {2/TiHi)32x/3s2 (12)
which holds for homopolymer chains, or for homogeneous
sequences within block copolymers. In the latter case,    is
to be interpreted as the terminal relaxation time for a ho-
mopolymer of the same chemical composition as the block
but with the same number of links n as the entire block co-

polymer. In later equations we write tia or tib, the second
subscript denoting the chemical nature of the block.

At a junction between two blocks a different equation
obtains. Letting B and A denote the blocks at the left and
right, respectively, of the junction bead j, we find by the
foregoing procedure:
2H2NmiKBTlB(3x/3t) = -Kb{Bxb/Bs) + KA{BxA/Bs) +

2N-l[KB(32xB/3sí) + KA{32xA/3s*)) (13)
If A and B are identical, this reduces to eq 12. If they are

different, we recall that each K is 0(1), so that passage to
the limit then gives

KA{BxA/Bs)s=e = KB(BxB/Bs)sae (any t) (14a)
at the junction point s =  , where of course we also have

*a(M) = *b(M (14b)
A familiar special case of eq 14a is found at a free chain
end, where one of the K’s is necessarily zero; then4

(Bx/Bs) end
= 0 (s = ±1, any t) (15)

Physically, the condition 14a states that the mean net force
on the chain element at the junction point is zero, so that
the displacements in the two regions (“springs”) immedi-
ately adjacent to the junction adjust themselves in inverse
ratio to the spring force constants. It is evident that the
above considerations closely resemble those previously ad-
vanced by Zimm and Kilb5 and by Ham16 in treating the
viscoelastic behavior of branched homopolymers.

The solution of eq 12 with the conditions 14 and 15 can

now be pursued by standard methods,7 e.g., separation of
variables or Laplace transform. We proceed to do this for
several examples.

Symmetric Triblock Polymers
Let a symmetric triblock ABA polymer be specified by a

B region extending between s = —  and s = +6; the A re-

gions lie beyond. By symmetry, it is sufficient to confine at-
tention to the half-chain with s > 0, and furthermore there
must be either a node or an extremum in xb at s =0. By
separation of variables, we then obtain for any normal
mode

xB = exp(-f/2r)(CB sin /3s + DB cos /3s)

xA = exp(-f/27)(CA sin as + DA cos as)
with

  =  1 ( /2 )2 =  1 ( / 2/3)2 (17)
The condition at the middle of the chain (s = 0) further re-

quires either Cb = 0 (even modes) or Db = 0 (odd modes).
Now upon application of conditions 14 and 15, the charac-
teristic equations are found to be

tan [ (1 - 9)] = - µ tan     (a) (even modes)
(18)

= + µ cot     (b) (odd modes)
where we have abbreviated

  = ß/  = ( 1 / 1 )1/2
(19)

µ =   /   = (bA/bB)2
In general, the transcendental eq 18 have, of course, to

be solved numerically, but some limiting cases are easy to
discuss analytically. If the B block shrinks to zero,   = 0, we
obtain a =   /2 for both even and odd p, as for a homopo-
lymer of type A. Similarly, for   = 1 we recover ß =   /2,
appropriate to a B homopolymer. If the central block is
small (  « 1), expansions lead to

2a/pH = 1 + 9(1 - µ*1) + . . . (odd modes)
^

= 1 + 9(1 -  2µ) + . . . (even modes)

By use of eq 9, 17, and 19, these results can be transcribed
to

  / pA = 1 + 29y + . . . (odd modes)p p
(20')

= 1 + 295 + . . . (even modes)
where

y = (bB2 - 6a2) Aa2 = µ*1 - 1

5 = (£b - £a)Aa =  2µ - 1

At this point we can make contact with the special calcula-
tion of DeWames, Hall, and Shen3 for a Rouse chain with
all spring constants the same (7 = 0) but with the central
bead having a different friction coefficient, thus corre-

sponding to   = 1/N. As they worked with an approxima-
tion of a continuous distribution of eigenvalues, they could
not distinguish between odd and even modes. The average
of our relations (eq 20') for their model gives   /    = 1 +
( / ), which corresponds exactly to their result.

Limiting forms of eq 18 can also be found when the dy-
namic flexibilities of the blocks differ greatly. If the central
B block is far less mobile than the ends,   » 1, and in this
case we find (assuming   to be noninfinitesimal)

lim    = lim ß = pn/29 (all modes) (21)
x- ® x·»®

This is just the Rouse spectrum for the central block alone,
as   would be predicted if the end blocks became ecto-
plasmic. In the other extreme, that of a highly mobile cen-

ter block as compared to the wings (  « 1), the limiting re-

sults are:

a(l - 9) = tan-1 (µ/  ) (odd modes)
(22)

=   /2 (even modes)

showing that the distribution of relaxation times in this
case differs somewhat from Rouse behavior. However, the
even modes alone are always distributed á la Rouse, as can

again be understood physically when virtually all resistance
is in the wings. For finite µ, each of the higher odd eigen-
values tends toward an adjacent even root, either the previ-
ous or subsequent one, depending on the value of  . This
produces a pairing of relaxation times, but a Rouse-like
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Figure 1. Roots an of eq 18 for symmetric triblock ABA copoly-
mers with µ = 1 and X = 'As, corresponding to a relatively mobile B
block, plotted against the fractional length   of the inner block.
The corresponding relaxation times vary as an~2· For even n, the
same roots also apply to diblock BA copolymers.

spectrum at higher frequency in any case.

Computed roots from eq 18 are shown in Figures 1 and 2

for µ = 1 and two different values of  . In Figure 1 the pair-
ing of eigenvalues for the case of a mobile inner block is
clearly visible, while Figure 2 reveals an amusing oscillation
of the roots about smooth curves. A check on these and our
other computations (briefly described in the Appendix) is
afforded by a sum rule

3 < 2 = 2J/(1 + 95) (23)
p* 1

=7=1+ (39/2)(y +  ) + 3   2 +

93(  - y + 2 2 - 2yó + 2y62)/2
which can be obtained, independently of any direct appeal
to eq 18, through an extension of Debye’s14 familiar calcu-
lation of the steady-flow free-draining intrinsic viscosity:

Mo =
na   £/< > —

NAN^UbA2J (24)6'
"

36Mt70(1 + 9 )
In this expression, NA is Avogadro’s number and (Rj2) is
the equilibrium mean-square distance of bead j from the
molecular center of frictional resistance. Comparison of eq
24 with eq l for   = 0 leads to eq 23.

The shapes of the normal mode displacement amplitudes
x„(s) are easily found from eq 16, and are shown in Figures
3 and 4 for the first two modes for the case µ = 1 and   = %,
which means that all three blocks have the same length.
For the terminal mode (Figure 3) the effect of high central-
block mobility on the shape of the curve is very small; for
example, the curve for   = 1 (not shown, corresponding to a

homopolymer) is only slightly displaced from that for   =

0. On the other hand, when the terminal blocks become
highly mobile (X large), the central portion of the curve be-
comes dominant, in accord with eq 21.

It is important to ask whether the deviations from a pure

Figure 2. Roots an, as in Figure 1, for µ = 1 and X = 3, correspond-
ing to moderately enhanced mobility in the terminal blocks.

+1

X,

0

-I

-I -.5 0 „
+.5 +1

S

Figure 3. First normal relaxation mode of symmetric triblock
ABA copolymers with three blocks of equal length (  = (A). The
relative displacement is shown as a function of chain contour posi-
tion, with dotted curves for the B block and full curves for the A
blocks. Relative flexibility of the terminal blocks increases with X.

Rouse spectrum produced by eq 18 .will lead to observable
effects on the frequency dependence of the viscoelastic
properties. We made a number of calculations of the re-
duced storage and loss moduli12 and found that in general
the deviations are not large but possibly just detectable. A
similar conclusion has been reached by Wang and DiMar-
zio.9 In consequence, methods for extracting the terminal
relaxation time   from experimental measurements need
not be modified for block copolymers.

The remaining major question is then the dependence of
   on the copolymer structure and composition. To illumi-
nate this question, we define a reduced terminal relaxation
time f i as follows:

~i = V[(l - 6)t1a + 9t1b]
= (77/20?!)2/[l + (X2 - 1)9] (25)

This dimensionless quantity is seen to be just the ratio of
  to a linear average value calculated from the relaxation
times of the related homopolymers in the same medium. A
few values of fi are shown in Figure 5, for selected values of
X, and it is seen that    can stray quite far from a simple
linear average. For large X, both eq 21 and Figure 3 show
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-.5 0 s *.5

Figure 4. Displacement X2 of second relaxation mode for symmet-
ric triblock copolymers with   = The curves for positive contour
variable r also describe the first mode for analogous diblock BA co-

polymers.

Figure 5. Reduced terminal relaxation time    from eq 25 for sym-
metric triblock ABA copolymers as a function of   for various
values of  , with µ = 1.

that in fact for such cases n will vary as  2. On the other
hand, for small   the shape of the terminal mode is almost
invariant (Figure 3) and t\ should be more nearly constant.

An alternative quantity, inspired by the above observa-
tion for large  , is defined by

Ti* = V[(l - 6)t1a1/2 + 9t1b1/2]2 (26)
and indeed it is more nearly constant for large  , but it is
useless when   is small. These remarks are illustrated in
Figure 6, where both ñ and ?i* are plotted as functions of
log   for   = %. On this graph we have also shown a reduced
steady-flow viscosity, defined in accordance with eq 2 as

  = (  #)/[(1 - 9)     +      ] (27)
and evaluated from eq 23. It is seen in Figure 5 that for
small   there is not too great a difference between    and  ,
while in fact for   > 1 the two curves are essentially indis-
tinguishable. This emphasizes again that the deviations

Figure 6. Reduced terminal relaxation times    and tt* and re-
duced viscosity   for symmetric triblock ABA copolymers with µ =

1 and   = l¿¡ (blocks of equal length) for various relative flexibilities
X. See eq 25-27.

from Rouse behavior in the eigenvalue spectrum are hard
to detect.

Diblock Copolymers
Consider a two-piece block copolymer with the B block

at the left. By a simple adjustment of scale, the previous
calculations for the even modes of symmetrical triblock
ABA polymers give the eigenvalues for the two-block case,
because the extremum condition in the middle of the tri-
block chain is replaced by the free-end condition at the B
end, which is mathematically identical. For the diblock
chain, let the contour variable be redefined as

r = j/N (0 s r < 1) (28)
in place of eq 10, and let the B block correspond to the re-

gion 0 < r <  . Repetition of the earlier procedure then
gives, within each block

Bx/Bt — {l/2ir2T1)B2x/Brz (29)
The appropriate solutions are found to be

xB = exp(-f/27)CB cos    
(30)

xk = exp(-f/2 r) CA(tan a sin ar + cos ar)
where the relaxation times are given by

r =  1  2/ 2 (31)
and

CB/CA = (sin    - tan a cos   )/ µ. sin     =

(tan a sin    + cos   )/cos     (32)
The two last equalities lead to

tan (a -   ) = - µ tan     (18a)

which, as expected, is identical to that for the even modes
of the symmetric diblock polymer.

Some values of the reduced terminal relaxation time   
for diblock polymers, defined as in eq 25, are shown in Fig-
ure 7. As in the triblock case, there is no simple algebraic
formula for relating    to copolymer composition.

Discussion
The foregoing theory and calculations are restricted to

free-draining hydrodynamic conditions, and therefore are

expected to apply only to molten copolymers or to suffi-
ciently concentrated solutions. Fortunately, these are also
the conditions for minimizing excluded volume effects. In
practice, a further consideration relates to the values of the
friction coefficients and chain dimensions to be assigned to
the elements of the blocks. If the extent of microphase se-

gregation is large, it would be natural to choose the model
parameters for an A block as identical to those for a pure
homopolymer of type A under the same conditions of tern-
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Figure 7. Reduced terminal relaxation time n for diblock BA co-

polymers with µ = 1. Curves are shown only for X > 1, since for this
case   ( ,  ) =   ( _1, 1 —  ).

perature, pressure, and concentration. If, on the other
hand, the melt is essentially homogeneous in composition,
the model parameters would have to be evaluated in a dif-
ferent way. A recent study of dielectric relaxation in con-

centrated polymer solutions18 suggests that a combination
of the free-volume approach12 with a theory of polymer so-

lutions such as that of Flory19 can be used to make useful
approximate predictions of frictional coefficients in binary
mixtures from those of the pure components. This proce-
dure will be discussed elsewhere.18 Its extension to the case

of well-mixed block copolymers would be straightforward.
Although our calculations have been restricted to simple

tractable examples, the basic relations are in principle ap-
plicable to flexible linear block copolymers of arbitrary
structure. It would also be perfectly feasible to perform cal-
culations for model graft copolymers under free-draining
conditions, making contact with the appropriate theory for
branched homopolymers.5
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Appendix
The roots of eq 18 were found numerically by the fol-

lowing simple algorithm based on the Newton-Raphson
technique

Q,(í + 1) — qJO _ a   >

  ( >    FU)/{dF/da)U)
(Al)

where is the ith approximant to a given root, and

F(a) = cos (   ) sin  (1 -  ) +

 µ cos a(l -  ) sin (   ) = 0 (A2)
for the even modes, and

F{a) = sin (   ) sin  (1 - 0) -

 µ cos a(l -  ) cos (   ) = 0 (A3)

for the odd modes, as can easily be established by rear-

rangement of eq 18. Further details of these and the other
calculations can be furnished on request.
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