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ABSTRACT: A theory for the viscoelasticity of block-copolymer molecule solutions in the free-draining limit has
been developed by modifying the bead-spring model theory of Rouse to take into account the existence of dissimi-
lar segments in block copolymers. The eigenvalue problem encountered in the theory has been solved numerically
by matrix computations. Furthermore, for the case of a diblock copolymer, a simple form of the secular equation
which is useful for extracting the eigenvalues has been obtained. The applications of the theory have been illus-
trated with calculations for the viscoelastic properties of poly(styrene-6-cis-l,4-isoprene) solutions. It is found that
the calculated properties for the diblock copolymer are nearly the same as those for the Rouse theory while the cal-
culated properties for the symmetric triblock copolymers deviate from those of the Rouse theory.

I. Introduction
In a previous paper1 hereafter referred to as paper I, one

of us has developed a theory for the dynamics of block-co-
polymer molecules in dilute solution by modifying the
bead-spring model theory of Zimm2 to take into account
the existence of dissimilar segments in block copolymers.
In the case of homopolymer molecules in solution, it has
been observed3 that the spectrum of viscoelastic response is
that of a free-draining chain at higher concentrations and
becomes more nearly nonfree-draining as the concentration
is decreased. These observations could be explained by the
concept of foreign molecules interfering with the hydrody-
namic interactions between parts of one chain. Wang and
Zimm4 have introduced such interference in a simplified
form and have found that it does, in fact, produce the ex-

pected change in viscoelastic spectrum with concentration.
The theory of paper I can be further extended by similarly
taking into account such interference from foreign mole-
cules. We discuss in this paper the viscoelasticity of block-
copolymer solution in the free-draining limit in which the
hydrodynamic interactions between parts of one chain are

completely screened out by such interference. Shen and
Hansen5 have recently treated the free-draining diblock co-

polymer numercially. Stockmayer and Kennedy6 have re-

cently solved the large molecular weight case exactly in the
continuum limit.

II. Characteristic Value Problem
The representation of the A-B-C type linear block-co-

polymer molecule by a bead-spring model has been dis-
cussed in detail in paper I. Here, we describe briefly the
bead-spring model in order to introduce the notations. The
block-copolymer molecule is represented as a chain of N
Hookean springs joining IV + 1 beads with complete flexi-
bility at each bead. The A block is represented by a chain
of (IVa — 1) springs joining IVa beads, each of which is char-
acterized by the translational friction constant pa. The
force constant of each of the springs is 3feT/6a2, where 6a2
is its mean-square length, and k and T are the Boltzman
constant and the absolute temperature. The symbols Nb,
Nc, pb, Pc, 6b, and bc are similarly defined. The beads of the
model for the A block are enumerated serially from 0 to
(IVa — 1), correspondingly from IVa to (7Va + Nb — 1) for the
B block, and from (IVa + IVb) to N for the C block. The (IVa
— l)th bead of the A block and the IVath bead of the B
block are connected by free joints to the ends of a spring
whose mean-square length 6ab2 is given by the arithmetic
mean of 6a2 and 6b2. Finally, the bead-spring model for the
block-copolymer molecule as a whole is formed by connect-

ing with free joints the (IVa + Nb — l)th bead of the B
block and the (Na + IVb)th bead of the C block to the ends
of a spring of mean-square length 6be2 which is defined in
the same manner as 6ab2.

As is known1™3 the dynamic properties of interest are de-
termined by the eigenvalues  * (k = 1, 2,. . ., N) of the ma-
trix B of order N defined by eq 28 of ref 1. In the limit of
negligible hydrodynamic interaction (the so-called free-
draining case2-3), the off-diagonal terms of the matrix H
(defined by eq 16 of ref 1) vanish and hence the matrix B
becomes tridiagonal with nonzero elements given as fol-
lows:

Bik = (62p/6a2pa)(-t5,+1_* + 2 ,* ™ 5,. i,*) (la)
for

1 < k - K - 1

= (b2p/b 2)ab /
6i*Uk

L Pa ™G3a
+ i ) 5,* 1

1_1

(lb)
for

k =   
B}k = (62p/6i2pb)(™"5,ti,* + 25,* - 5,. i,*) (1c)

for
Va H 1 < k ^iVa + Nb - 1

Bjk = {b2p/b
Pb

+ ( —

\ Pb
+ —

^

Pc /  »
Pc /

for (Id)
k = Na + Nb

 » = (62p/6c2pc)(-~  + 25,* ~

5, -i,*) (le)
for

   + Nt + 1 < k < N

where p is an arbitrary friction constant and 6 is the root-

mean-square length of an arbitrary spring. For the case of a

homopolymer molecule with pa = Pb = Pc = P and 6a = 6b =

bc = b, the matrix B reduces to the A matrix that Rouse
uses.7

For the case of an A-B type block-copolymer molecule
with pc = pb and bc = 6b, we can reduce the characteristic
determinant of the matrix B given by eq 1 to a simple ex-

pression. The nonzero elements of the characteristic deter-
minant det W, where W is tridiagonal, are given in eq 2 and
3. We can find an explicit form for the characteristic deter-
minant by reducing the above N X N determinant to an (IV
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where

and

det W

Wa 1

1 W, 1 . . .

1 Wa. . .

1 ...

Wa 1

1 Wa {b2/bj)
1 ^ (6a2pa/6b2pb)

(&b70 Wb 1

1 wb 1
1 Wb

... Wb 1

... 1 wb

Wa = [XbJ-pJtfp) - 2

Wb = (X&b2pb/62p) - 2

Wab = (X&a2pa/62p) -

(6a2/6^2Kl + pa/pb)

(2)

(3a)

(3b)

(3c)

— 1) X (N — 1) determinant, and then reducing this to an

(N — 2) X (N — 2) determinant and so on. To reduce det W
to an (N — 1) X (N — 1) determinant we first multiply the
second column by Wa and then substract the first column
from it

det W

~wa wa
-

1 1 Wa2 1

wa Wa wa 1. . .

1

$ o

. L

1 1 (Wa2 -

Wa Wa

1

Wa
1

(4)

/(0) = 1
'

/(l) = w,
f( 2) = WJ (1) - 1

/(3) = WJ(2) - /(l) (7)

/(4) = WJ(3) - /(2)

fU) = WJ(j - 1) - f(j - 2)

After (!Va — 2) such reductions we obtain eq 8, where the N
X N determinant now has been reduced to an (N — (7Va —

2)) X (N — (Na — 2)) determinant. In a like manner we can
work up from the bottom right to obtain eq 9-11:

det W =

f(Na - 1) (b^/b^)
f(Na - 2) W* daW^Pb)

(V/O Wb 1

1 Wb 1

1 Wb 1 . . .

... 1 Wb 1

 . . . 1 wb

(8)

We now expand along the first column to obtain

det W =

(wa2 - 1) 1

wa Wa 1
(5)

det W -

'f(Na - 1) (b2/bj) 0

f(Na - 2) Wa (&a2Pa/&b2Pb)
0 - 2) g(Nb* - 1)

(9)

Thus we have reduced the order of the determinant by 1.

To reduce it again by one we multiply the second column
by (Wa2 — 1) and subtract the first column from the sec-
ond. Expanding along the first column we obtain

det W
[Wa(Wa2 - 1) - Wa] 1

(Wa2 - 1) Wa
1

(6)

which is of order (N — 2) X (N — 2). Note that in this pro-
cedure the second column of the new determinant is always
1, Wa, 1 while the first column is f(j), f(j — 1). The pre-
scription for determining f(j) is f(j) = WJ(j — 1) — f(J —

2). Thus we have

where
Nb* = Nb + Nc = (N + 1) - Na

and
¿K0) = 1

giD =
W?b

gi 2) = tfrjgi 1) - 1

g(3) = W^) - sKl)

(10)

(11)

gil) = Whgd - 1) - g{i - 2)

The secular equation can now be written explicitly
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det W = WSaf{Ni - 1 )g(Nb* - 1) -

{KWbMfiN* ~ 1 )g{N* - 2) -

(^,2MgiNb* - 1 )/(Va - 2) = 0 (12)
It can be shown8 that the recurrence relations (eq 7) give

/(fe) = (r2*+1 - r,*+1)/(r2 - rx) (13)
where the distinct roots   and r2 are given by

ri = [Wa + (Wa2 - 4)1/2]/2 (14a)

r2 = [Wa - (Wa2 - 4)1/2]/2 (14b)
When r i and r2 are complex, we have

f{k) = sin [{k + l)9a]/sin 9a (15)
where

cos 9a = V2Wa (16)
When ITa = 2

Ak) = 1 + k (17)
The expressions for g{k) are identical in form to the above
with Wb and 9b replacing Wa and 9a.

The viscoelastic properties and parameters of interest
are given2,3 in terms of the eigenvalues Xk of B as follows:

, v- (WT1)2(X1/Xft)2
R £i 1 + (    ,/ ,,)2 (18)

/r,, \ __  ' (   )(   *>)(G   )  -   ! + (   )2(  / ^ (19)

Si =  Ai/Xfc) (20)
feal

Ar =   (VA)2/^2 (21)
feal

Here Gr' and (G" —   )  are the reduced shear moduli3
when the strain varies sinusoidally with the angular fre-
quency  ,    is the longest relaxation time of the chain mol-
ecule, and Jer is the reduced steady state compliance.3

In order to illustrate the applications of the theory, we
shall present in the next section the viscoelastic properties
predicted by our theory for some block copolymer solu-
tions. The procedure for the evaluation of the parameters
that appear in our theory is identical to that described in
paper I, so we may write down the results with a minimum
of comment.

We shall use the symbols St and Ip to designate respec-
tively the polystyrene block and the cis-1,4-polyisoprene
block. For example, ABA poly(styrene-5-cts-l,4-isoprene),
a block copolymer consisting of one block of cis-l,4-poly-
isoprene in between two blocks of polystyrene, will be des-
ignated as St-Ip-St. The contour lengths of the blocks, Lcv
(v = a,b,c), for each of the block copolymers under consid-
eration are given in Table I. These polymers are chosen to
have the same number of skeletal carbon atoms.

Table II gives the bead-spring model parameters for
poly(styrene-fe-c¿s-l,4-isoprene) of Table I in methyl isobu-
tyl ketone at 35°. Methyl isobutyl ketone at 35° is nearly a

9 solvent for polystyrene and cis-1,4-polyisoprene.9 We
have therefore used, in the evaluation of these parameters
for block copolymers, the homopolymer properties at 9
temperatures that are given in Table I of ref 1.

III. Results and Discussion
Table III gives the calculated values of the reduced

steady state compliance JeR and the constants Si, Xi, and
Xk/   for the block copolymers listed in Table I. In the
preparation of Table III as well as Figures 1 and 2 to be

Table I
Contour Lengths of the Blocks, Lca, LCb, and Lcc, for

Polymers Whose Viscoelastic Properties Are
Calculated from the Present Theory

Polymers
Lb ax 10-3,

A
4* x 10-3,

A
4c x 10-3,

A

St-Ip-Ip 10.4 5.3 5.3
Ip-St-Ip 5.2 10.4 5.4
St-Ip-St 5.2 10.6 5.2

Table II
Bead-Spring Model Parameters Calculated for
Poly(styrene-6-cis-l,4-isoprene) of Table I in

Methyl Isobutyl Ketone at 35°a

b2/ b2/ b2/
Polymers A'a Nb Nc p/pa p/p„ p/p0 b2 b2 b2

St-Ip-Ip 40 42 42 1.00 1.97 1.97 1.00 4.25 4.25
Ip-St-Ip 42 40 42 1.97 1.00 1.97 4.25 1.00 4.25
St-Ip-St 20 84 20 1.00 1.97 1.00 1.00 4.25 1.00

a The values of N, p/ j, and b are 123, 380 Á, and 70 Á,
respectively. Symbols employed are defined in the text.

Table III
Calculated Values of the Reduced Steady State

Compliance Jer and the Constants Si, Xi, and X*/Xi
for the Poly(styrene-6-cis-l,4-isoprene) of Table I

in Methyl Isobutyl Ketone at 35° when N
is Taken to be 123°

St-Ip-St Ip-St-Ip St-Ip-Ip

Free-
draining

case, homo-
polymer

Si 1.83 1.51 1.60 1.64
4r 0.342 0.464 0.418 0.400
Xj x 103 2.58 1.61 1.96
X2/Xj 3.03 4.86 4.46 4

^3 Al 6.78 12.3 9.14 9

X4A1 13.5 21.6 17.4 16

\5a, 20.3 31.6 26.0 25

x6Ai 27.6 44.4 38.1 36

X7Ai 39.3 62.4 52.0 49

XsAi 52.3 84.0 66.6 64

 ß   63.3 105.2 86.1 81

      78.3 125.8 103.7 100
a Equations 20 and 21 express Si and Jeu in terms of the eigen-

values X* of B.

considered in the next paragraph, the eigenvalues of B
have been calculated by using a routine10 which is based on

the Q-R algorithm. Table III shows that, for the block co-

polymers Ip-St-Ip and St-Ip-Ip, the values of Si are

smaller than the values of Si for the homopolymer in the
free-draining limit (the Rouse theory), while the values of
Jer and X,i¡/Xi, the spacings of eigenvalues, are larger than
the corresponding values for the Rouse theory. However,
the deviation from the predictions of the Rouse theory is
rather small in the case of the diblock copolymer St-Ip-Ip.
For the block copolymer St-Ip-St, there is also a departure
from the predictions of the Rouse theory. However, the de-
viations are in the opposite directions; for St-Ip-St, the
value of Si is larger than that for the Rouse theory while
the values of JeR and Xk/   are smaller than those for the
Rouse theory.

In Figures 1 and 2, the calculated values of the reduced
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Figure 1. Log-log plots of the reduced loss modulus (G" -   ) 
against the dimensionless frequency    5  calculated with N =

123 for the poly(styrene-6-a's-l,4-isoprene) of Table I, where    is
the longest relaxation time of the chain and   is the angular fre-
quency. (G" —   )  and Si are given by eq 19 and 20 of the text.
The curve of long dashes and the curve of short dashes represent
respectively the predictions of the present theory for the block co-

polymers St-Ip-St and Ip-St-Ip. The solid curve represents the
prediction of the free-draining case for a homopolymer and the
prediction of the present theory for the block copolymer St-Ip-Ip.
The difference in the value of log (G" —   )  obtained for the last
two polymers is less than the width of the solid curve.

shear moduli (G" - oj?j)r and Gr' for the block copolymers
of Table I are compared with those predicted by the Rouse
theory. We observe in Figures 1 and 2 that the curves for
St-Ip-Ip are nearly coincident with those for the Rouse
theory. The curves for the block copolymers St-Ip-St and
Ip-St-Ip both deviate from those for the Rouse theory, but
the deviation exhibited by St-Ip-St is in opposite direction
to that exhibited by Ip-St-Ip. However, even with the
aforementioned deviations, the curves for the block copoly-
mers in the limit of vanishing hydrodynamic interaction re-

semble the predictions of the Rouse theory more than they
resemble the predictions for a homopolymer in the non-

free-draining limit.
An application of eq 12 is illustrated in Table IV where

some values of the secular determinant for the diblock co-

polymer St-Ip-Ip of Table I are given. We observe in Table
IV that the value of det W at   equal to  #,, the ktb. eigen-
value from the matrix computation previously described, is
negligibly small in comparison with the value of det W at X

which deviates slightly from X* toward the next eigenvalue.
Equation 12 is therefore very useful for checking the preci-
sion of the eigenvalues obtained by matrix computation.
Alternatively, the eigenvalues for a diblock copolymer in
the limit of vanishing hydrodynamic interaction may be
obtained from eq 12 by numerically determining the roots
of the equation.

The close resemblance shown in Figures 1 and 2 between
the reduced shear moduli for St-Ip-Ip and the reduced
shear moduli for the Rouse theory suggests that it might be
useful to represent a diblock copolymer by an equivalent
bead-spring model consisting of identical springs with ef-
fective mean-square length fce2 and identical beads with ef-
fective friction constant pe. The eigenvalues Xp for the
equivalent bead-spring model are of course determined by
solving eq 12 with the conditions pa = pp = pe and ba = bp =

ba. They are given by the expression

X„ = 4(62p/&e2Pe) sin2 [nk/(2N + 2)] (22)
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Table IV
Values of the Secular Determinant, det W, for the

Diblock Copolymer St-Ip-Ip of Table Ia

k X det W

1 1.95 x IO’3 T X io-2
2.02 x 10-3 4.7
2.09 x 10-3 9.1

2 8.71 x 10-3 3.5 X io-3
30 1.676 3.6 X o

1.677 1 o
1.678 -0.2

31 1.775 oxh1 X io-4
57 3.9760 -2.2 X io-2

3.9935 3.7
3.9937 2.1

58 3.9939 9.2 X io-2
a A number k is used to indicate that the assumed value in the

next column is the ftth eigenvalue obtained for St-Ip-Ip by the
matrix computation described in the text.

Figure 2. Log-log plots of the reduced storage modulus Gr'
against the dimensionless frequency   5  calculated with N =

123 for the poly(styrene-6-c¿s-l,4-isoprene) of Table I, where    is
the longest relaxation time of the chain and   is the angular fre-
quency. Gr' and Si are given by eq 18 and 20 of the text. The
curve labels are the same as for Figure 1. The difference in -the
value of Gr' obtained for the homopolymer in the free-draining
limit and for the block copolymer St-Ip-Ip is less than the width
of the solid curve.

which becomes identical to that given by Rouse7 when the
arbitrary constants b and p are chosen to be be and pe, re-

spectively. An approximate additive rule for the calculation
of be2pe is suggested by the form of eq 12.

&e2Pe = Ar-2[Ara(6a2Pa)1/2 + ( „2  ,)1'2]2 (23)

In Table V, the values of Xi obtained for four-block copoly-
mers by applying eq 22 and 23 are compared with the
values obtained by calculating the eigenvalues of the ma-

trix B. With the exception of Xi for the last copolymer, the
values of Xi obtained by the two methods described above
differ by less than 6%. In Figures 3 and 4, the reduced shear
moduli calculated for the last copolymer of Table V by use
of the eigenvalues from eq 22 and 23 are compared with
those calculated for the same copolymer by use of the ei-
genvalues of the matrix B. Since (   ) is given by2

TjXj = pb2/6kT (24)
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Table V
Bead-Spring Model Parameters and the First Eigenvalues for Diblock Copolymers0

x 104,  , x 104,
Copolymer ^a AV P/Pa p/pb 62/6a2 62/»b2 bWPe from B from eq 22

I 40 84 1.00 1.97 1.00 1.00 1.54 9.3 9.9
II 62 62 1.00 1.97 1.00 1.00 1.37 9.2 8.8
III 40 84 1.00 1.97 1.00 4.25 3.23 19.6 20.7
rv 62 62 1.00 1.97 1.00 4.25 2.21 12.5 14.2

° The values of N, p/ , and b are 123, 380 Á, and 70 Á, respectively. Symbols employed are defined in the text.

Figure 3. Log-log plots of the reduced loss modulus (G" —   ) 
against       calculated for copolymer IV of Table V. The solid
curve represents the prediction obtained by using the eigenvalues
from eq 22 and 23. The dashed curve represents the prediction ob-
tained by using the eigenvalues of B from matrix computations.
Symbols employed are defined in the text.

Figure 4. Log-log plots of the reduced storage modulus Gr'
against       calculated for copolymer IV of Table V. The curve

labels are the same as in Figure 3. Symbols employed are defined
in the text.

(     ) is proportional to   when p, b, and T are kept con-
stant as in the preparation of Figures 3 and 4. It is seen in
Figures 3 and 4 that the reduced shear moduli calculated
by the aforementioned two methods differ from each other
only slightly. We have also calculated the reduced shear
moduli for the first three diblock copolymers of Table V.
For each of these copolymers, the curves for (G" —   )  or

Gr' obtained by the two methods are practically coinci-
dent. Therefore, eq 22 and 23 may turn out to be useful for
estimating the viscoelastic properties of diblock copoly-
mers in the limit of vanishing hydrodynamic interaction.

IV. Concluding Remarks
We have calculated the viscoelastic properties of some

styrene-czs -1,4-isoprene block copolymers by applying the
previously described theory1 in the limit of vanishing hy-
drodynamic interaction. It is found that the calculated
properties for the diblock copolymer are nearly the same as
those for the Rouse theory while the calculated properties
for the symmetric triblock copolymers deviate from those
for the Rouse theory. For the case of a diblock copolymer,
we have obtained a simple form of the secular equatioi)
which is useful for extracting the eigenvalues as well as for
checking the precision of the eigenvalues which may be ob-
tained by matrix computations. Although the predicted de-
viations from the Rouse theory are not very pronounced, it
is hopeful that some of them, those involving (G" — cut¡)r

and Jer, for example, may be observed experimentally at
higher concentrations where the present treatment is appli-
cable and measurements are easier than at very high dilu-
tion.
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