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ABSTRACT: The model presented in this paper describes simultaneously three different experimental
techniques applied to different monodisperse polymer melts: neutron spin-echo (NSE), linear rheology,
and diffusion. First, it shows that the standard tube model cannot be applied to NSE because the statistics
of a one-dimensional (1D) chain in a three-dimensional (3D) random-walk tube become wrong on the
length scale of the tube diameter, whereas all available NSE data are for scattering vectors in this range.
Then a new single-chain dynamic slip-link model on the basis of a recent network model by Rubinstein
and Panyukov is introduced. Instead of solving the model analytically, which would require uncontrolled
approximations, the model is formulated in terms of stochastic differential equations, suitable for Brownian
dynamics simulations. I perform these simple simulations, demonstrate that the model describes individual
experiments well, and then compare the results with experiments on monodisperse polyethylene,
polyethylene-propylene, polyisoprene, polybutadiene, and polystyrene. For all polymers, model parameters
from one experiment are obtained, and the others are predicted without fitting. The results show some
systematic discrepancies, suggesting possible inadequacy of the Gaussian chain model for some of the
polymers, and possible inadequacy of time-temperature superposition.

1. Introduction

Historically, the theory of polymer dynamics was
mainly driven by unique mechanical properties of
polymer melts, which are essential for polymer process-
ing applications. The most successful and elegant
theory, which was able to predict most qualitative
features of rheological behavior, is the tube or reptation
theory.1,2 Because of the success of the tube theory, a
growing number of experiments and computer simula-
tions are dedicated to direct and indirect verification of
the tube idea. Apart from linear and nonlinear rheology
of different molecular architectures, such experiments
include neutron scattering, neutron spin-echo (NSE),
dielectric spectroscopy, NMR, and self-diffusion mea-
surements.4,5 There are also significant advances in
molecular dynamics simulations,6-8 which can poten-
tially provide very detailed confirmation of any theory.

However, there is a major problem with most experi-
mental attempts of tube theory verification. Because of
the complexity of the modern tube theory, which in-
cludes contour length fluctuations and constraint re-
lease, almost no experiments can be directly compared
with the tube model. Instead, many mathematical and
physical approximations are needed to arrive at a
formula that can be compared to experiment. Usually,
such a formula contains a few fitting parameters, which
are adjusted to describe a particular experiment. This
approach has two drawbacks. To understand them, one
must make a clear distinction between the model and
solution of the model, known also as a “theory” or a
“fitting formula” to describe the experiment. First, the
disagreement between the formula and experiment does
not invalidate the model; it is possible that the solution
of the model is wrong. It is also possible that the
agreement with experiment is a consequence of cancel-
lation of errors of the model and approximations used.

And second, because theories for different experiments
contain different approximations, the parameters ex-
tracted by fitting different experiments may not agree
with each other.

In this paper I make an attempt to overcome these
two limitations. I propose a new single-chain slip-links
model, which is formulated in terms of stochastic
equations, suitable for Brownian dynamics simulations.
Then, I demonstrate that it is capable of describing all
mentioned experiments and does not suffer from inter-
nal limitations of the tube model, which are also
discussed. Then I focus on simultaneous description of
NSE, linear rheology, and diffusion. To avoid complica-
tions with mathematical approximations needed to solve
this model analytically, I concentrate on simulation
results, thus making direct comparison between the
model and the experiment. I deliberately stress existing
disagreement between the model and experiments,
concluding that some elements of this model and other
similar models are still missing. Here, I focus on
monodisperse linear polymers. However, the model can
be easily applied to branched and polydisperse poly-
mers.

2, Current “Standard” Tube Model and NSE

Neutron scattering provides the most detailed and
microscopic information about the structure and dy-
namics of polymer melts. SANS measurements demon-
strate that the static structure factor S(q) is not affected
by entanglements and is well described by the Debye
function, a result of random walk configuration of the
chain at all length scales larger than the Kuhn segment.
Neutron spin-echo experiments provide a normalized
dynamic structure factor in the q-range around the tube
diameter and in the time-range around τe, the Rouse
time of one entanglement segment, roughly described
as the time scale when the chain starts to feel the
entanglements. The example of such data on hydroge-
nated polybutadiene (close analogue of polyethylene) is
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presented on Figure 1 for two molecular weights and
three q-vectors. The dotted lines give predictions of the
Rouse model. One can see that the early time dynamics
are consistent with free Rouse motion, and then, after
a few nanoseconds, the dynamics slow down signifi-
cantly, and for a high-molecular-weight sample, S(q, t)
tends to a q-dependent plateau. The chain is completely
restricted by entanglements at large length scales
(upper curve) and relaxes more as q increases. One also
observes that, at late times, the low-molecular-weight
sample (which has about 8-10 entanglements) contin-
ues relaxing even after τe. This relaxation is attributed
to contour length fluctuations.14

Now we shall try to describe the standard tube model
and compare it to the data in Figure 1. The tube model
assumes that, at early t < τe, the motion of the chain
obeys Rouse dynamics, in accordance with experiment.
Then, at t . τe, the motion of the chain obeys one-
dimensional (1D) Rouse dynamics in a tube, which is a
three-dimensional (3D) random walk with the tube
persistence length a equal to its diameter. Then, con-
straint release is added in some consistent form. The
most detailed form of CR was given in ref 9 and
combined with the exact solution for 1D Rouse dynamics
in ref 19 in the context of linear rheology.

This standard model (without CR) was applied to NSE
by de Gennes.3 To obtain a tractable analytical solution,
he considered the case a , 1/q , Rg, where Rg is chain’s
radius of gyration and a is the tube diameter. We note
that the first condition qa , 1 is not applicable to the
data of Figure 1 (and indeed to any literature NSE data)
because the tube diameter is estimated to be a ≈ 46 Å,
and therefore, qa is changing from 1.4 to 5.3. However,
one may still hope (and indeed been hoping for a long
time) that this assumption is not crucial for validity of
the theory. In the Appendices A and B, I present
solution of the de Gennes model without relying on the
assumption qa , 1. The result of these calculations for
the dynamic structure factor is

where

and τ0 ) êb2/(3π2kBT) ) 1/(π2W) is the Rouse time of
one Kuhn segment (elementary time scale), and W is
elementary rate. Here ê is the friction of one Kuhn
segment of size b.

At time t ) 0, eq 1 gives the static structure factor

which is different from the Debye function, which for
qRg . 1 is just

The result in eq 1 is exactly the same as the de
Gennes result apart from the term (1 + q2a2/36) in the
denominator of the second term. After obtaining this
result, de Gennes argued that the first term of eq 1 was
calculated without corrections of order qa, and it has to
be corrected for that from the condition that the total
structure factor must be Debye function eq 3. This would
lead to the result

If I now omit the term (1 + q2a2/36), rearrange the
terms in the first part of the expression, and argue that
this first constant part must eventually relax by the
slower reptation process ψrep(t), I arrive at the de
Gennes expression

where I used Neb2 ) a2.
This expression, however, gives negative amplitude

for the reptation process for qa > 6, the fact which lead
authors of26 to replace (1 - q2a2/36) by exp(-q2a2/36),
arguing that 1 - x is just the first term in the Taylor
expansion of exp(-x). Thus, the final expression used
to describe NSE experiments for last 10 years was

I repeated this derivation here to demonstrate that
the formula of eq 6 does not correspond to the tube
model described above in the regime qa ∼ 1 because of
the number of unjustified approximations used. Note
also that the de Gennes limit qa , 1 has no practical
use because the experimental signal is very close to
unity for all times measured. In other words, comparing
NSE results with eq 6 is quite different from comparing
NSE with the tube model. The main reason the stan-
dard tube model is unsuitable for description of NSE
experiments is the fact that the static structure factor
of a 1D Rouse chain mapped onto a 3D random walk is

Figure 1. Normalized dynamic structure factor as measured
by NSE14 for two different molecular weights of PEB-2 at three
different q-vectors. Dotted lines are predictions of the Rouse
theory.

S(q, t) ) 12N
q2b2

+
NNe

3(1 + q2a2/36)
erfc(xt/τ̂) exp(t/τ̂) (1)

τ̂ )
36π2τ0

q4b4

S(q) ) 12N
q2b2

+
NNe

3(1 + q2a2/36)
(2)

SDebye(q) ) 12N
q2b2

(3)

S(q, t) ) (12N
q2b2

-
NNe

3(1 + q2a2/36)) +

NNe

3(1 + q2a2/36)
erfc(xt/τ̂) exp(t/τ̂) (4)

S(q, t) ) 12N
q2b2((1 - q2a2

36 )ψrep(t) +

q2a2

36
erfc(xt/τ̂) exp(t/τ̂)) (5)

S(q, t) ) 12N
q2b2(exp(q2a2

36 )ψrep(t) +

(1 - exp(q2a2

36 ))erfc(xt/τ̂) exp(t/τ̂)) (6)
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not a Debye function for qa ∼ 1, but significantly larger
and expressed by eq 2. Figure 2 shows the ratio of the
structure factor of eq 2 to the Debye structure factor
for qRg . 1. One can see that, in the experimental range
deviations reaching 50%, making any comparison quite
meaningless.

This contradiction leads one to recognize the rather
obvious fact that the model for describing the dynamic
structure factor for qa ∼ 1 must be more detailed than
the tube theory (in fact, the original de Gennes paper
stated this very clearly). In particular, it must contain
a transition to Rouse dynamics for short time scales and
obey unperturbed random-walk statistics at all length
scales (note that expression 6 does not contain a fast
Rouse relaxation for t < τe). In the next section, I
construct one such possible model.

3. Single-Chain Slip-Links Model

In this section I will develop a dynamic one-chain
model of entangled polymers. The original idea of slip-
links in the context of polymer networks was proposed
in ref 13 and further developed in ref 12. I start from
the free Rouse chain in three dimensions (which is a
good model for unentangled polymer melts), consisting
of N + 1 beads (from 0 to N), connected by N springs.
The Kuhn segment of the chain is b and the mean-
square end-to-end distance is Nb2. We assume that each
bead has a friction coefficient ê, arising from fast
collisions with other chains, but not from entangle-
ments. Now we have to introduce the influence of
entanglements, which is believed to be long-lived and
topological. The simplest way to introduce it is to argue
that the chain monomers experience some mean field,
and the simplest possible field is parabolic: U )
κ(ri - ai)2, where ri is the position of the monomer i, ai
is the center point of this potential, and κ is the strength
of the potential. It is useful to visualize this potential
as a set of additional springs, which connect monomers
to anchoring points ai. We can also imagine that these
additional springs are pieces of the same polymer, so
that the linear chain becomes a comb chain, attached
to the solid elastic background by its teeth. The potential
then has the form U ) 3kBT/(2Nsb2)(ri - ai)2, where Ns
is a number of monomers in the additional virtual
springs.

The next step is to introduce reptation-like motion by
recognizing that the additional springs should not be
permanently attached to a particular monomer, but can
slide from one monomer to another. This can be visual-
ized as slip-links attached to the anchoring points (see

Figure 3). Rubinstein and Panyukov considered this
case in their recent paper,10-12 applied to the deformed
network. However, they did not address the dynamics
of relaxation, and did not consider disentanglement and
reentaglement at the ends of the linear chains. These
two issues are crucial for the present model.

To introduce tractable dynamics, suitable for com-
puter modeling and analytical solution, I introduce a
continuous variable x ) 0...N along the chain, and allow
each slip-link to be anywhere on the chain, not neces-
sarily at some particular monomer. I argue that the
microscopic details should not matter for long-time
behavior, and thus, for simplicity, assume that the slip-
links travel along the straight lines between neighboring
monomers. The total potential energy of the chain is
then

where

is the position of the slip-link number j, trunc(x) is the
closest integer to x less than or equal to x. Here Z )
N/Ne is the number of slip-links per chain, Ne is an
average number of Kuhn segments between slip-links,
i is the monomer index, and j is the slip-link index. The
advantage of this particular potential is that we can
easily find the distribution of the anchoring points aj,
which will lead to unperturbed Gaussian statistics of
the original chain. To do this, I start by generating a
free Gaussian chain, then choose positions of slip-links
xj randomly from 0 to N and then generate positions of
the anchoring points aj distributed around sj according
to Boltzmann weight P(xa) ∼ exp(-3kBT/(2Nsb2)(sj -
aj)2). Now, for any dynamics of such a system, which
preserves Boltzmann distribution, the chains will obey
unperturbed Gaussian statistics. Indeed, the probability
distribution of ri for a particular aj and xj is

Figure 2. Deviation of static structure factor of the tube
theory (eq 2) from the Debye structure factor, eq 3.

Figure 3. Slip-links model of entangled polymer chain.
Spheres connected by the thin springs represent a standard
Rouse chain, thick springs are additional potentials, attached
to slip-links on a chain sj and to fixed anchoring points aj
(crosses).

U )
3kBT

2b2
∑
i)0

N-1

(ri+1 - ri)
2 +

3kBT

2Nsb
2
∑
j)1

Z

(aj - sj(xj, {r}))2 (7)

sj(xj,{r}) ) rtrunc(xj)
+

(xj - trunc(xj))(rtrunc(xj)+1 - rtrunc(xj)
) (8)
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We now can average over different realizations of
anchoring points aj by integrating eq 9 over them.
Because of the structure of the potential, the result will
not depend on xj:

This proves that the model indeed satisfies unper-
turbed Gaussian statistics on all length scales and thus
produces the correct structure factor, provided the
distribution eq 9 is satisfied at all times. We also check
chain statistics routinely in simulations by plotting
second and fourth moments of the distance between
different monomers and comparing them with the
theoretical values for the Gaussian chain; the deviations
are within 2% and decrease with decreasing the time
steps.

The potential eq 7 allows calculation of forces acting
on the chain monomers and the slip-links. To formulate
a stochastic equation of motion for the slip-links,
satisfying Boltzmann distribution for all variables, one
also needs to introduce random forces, acting on xj, and
associated friction ês. This leads to the following sto-
chastic equation of motion for the chain and the slip-
links position along the chain:

Here fi(t) and gj(t) are random forced with zero mean,
satisfying the fluctuation-dissipation theorem:

where I is the unit tensor. The set of two equations, 11
and 12, forms a complete description of the one-chain
model. The first equation for the chain has two Rouse
terms (regular and stochastic) and two additional forces
from the slip-links on the right and on the left of the
bead ri. The second equation for the slip-link position
xj has a regular force from the attached spring (projected
on the line between two neighboring monomers) and a
random force. The regular forces in both equations are
easily obtained by differentiating the potential eqs 7, 8
with respect to corresponding coordinate. I also do not
allow slip-links to pass through each other, which makes

a very small difference in the results but seems to be
more natural choice.

The only missing component is the constraint release,
which I introduce by the method used in most recent
slip-links simulations.16,17 I simulate an ensemble of
chains, keeping a table of binary correspondences
between the slip-links. When one chain gets rid of the
slip-link by passing its end through it, this and the
corresponding slip-link on the other chain disappear.
Then, two new slip-links appear in the system: one at
the end of randomly chosen chain, and another in any
place of another chain. This completes the description
of this rather simple model. The slip-link friction ês is
a new unusual parameter in the model, and I shall
discuss its origin and optimal choice in the next section.

4. Results
I shall start discussion of the results by presenting

model predictions for NSE, rheology, and self-diffusion
for one particular set of parameters (Ns, Ne, and ês),
which seems to be an optimal choice. After that, I will
discuss how this choice of parameters was made. I chose
to put slip-links every 4 beads on average, i.e., Ne ) 4,
and set a spring strength to Ns ) 1/2. Then I choose the
friction coefficient of the slip-links ês to be much smaller
than the friction of the chain segments (ês/ê ) 0.1).

To calculate the linear stress relaxation function G(t),
I calculate the off-diagonal stress-stress correlation
function, which is equal to G(t) by the fluctuation-
dissipation theorem. Note that Rubinstein and Panyuk-
ov12 proved that Ns must change with deformation
Ns ∼ Ns

(0)xλ. However, this effect is only important for
nonlinear deformations. Indeed, for small deformations,
λ ) 1 + ε, the stress will be σ ) εGN

(0)(Ns
(0)x1+ε).

Assuming that GN
(0)(Ns) is a smooth function of Ns, we

get G ) limεf0 σ/ε ) GN
(0)(Ns

(0)).
Figure 4a shows stress relaxation for different chain

lengths (N ) 8...128). Stress here is given in units of

P({ri}, {xj}, {aj}) )
1

N
exp(-

3kBT

2b2
∑
i)0

N-1

(ri+1 - ri)
2 -

3kBT

2Nsb
2
∑
j)1

Z

(aj - sj(xj, {r}))2) (9)

∫ P(rj, xj, aj) daj )
1

N′
exp(-

3kBT

2b2
∑
i)0

N-1

(ri+1 - ri)
2)

(10)

ê
dri

dt
)

3kBT

b2
(ri+1 - 2ri + ri-1) + fi(t) +

3kBT

Nsb
2

∑
j:trunc(xj))i

(1 - (xj - trunc(xj)))(aj - sj) +

3kBT

Nsb
2

∑
j: trunc(xj))i-1

(xj - trunc(xj))(aj - sj) (11)

ês

dxj

dt
)

3kBT

Nsb
2
(rtrunc(xj)+1 - rtrunc(xj)

)(aj - sj) + gj(t) (12)

〈fi(t)fj(t′)〉 ) 2kBTêIδ(t - t′)δij;
〈gi(t)gj(t′)〉 ) 2kBTêsδ(t - t′)δij

Figure 4. Linear relaxation modulus G(t) (a) and loss and
storage modulus (b) for N ) 8, 16, 32, 64, and 128.
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G0 ≡ FRT/M0, where M0 is molecular weight represented
by one bead. This is a natural simulation unit of stress
and should not be confused with the plateau modulus
GN

(0). One can see that at N ) 8 (not shown in Figure 4b
for clarity) stress relaxation is almost Rouse-like (dotted
line), and then the characteristic plateau develops with
increasing N. By fitting G(t) with a spectrum of equi-
distant Maxwell modes, we transform it to the complex
modulus, G′ and G′′, which are shown in Figure 4b. The
shape of G′ and G′′ looks consistent with experimental
observations; for example the intermediate slope of G′′
approaches to -1/4 for large N.

Figure 5 shows viscosity and self-diffusion coefficient
predictions as a function of chain length N. Note that I
will use reduced quantities η/N3 and DN2 in all com-
parisons below. This has several advantages: it greatly
reduces the scale of the vertical axis, and the transition
between slopes 0.4-0.6 and 0 in experimental data
becomes clearly visible. Naturally, viscosity is also
normalized by G0τ0 and the diffusion coefficient by
bsim

2 /τ0, where Nbsim
2 ) 〈R2〉 is the end-to-end distance of

the chain, and bsim is a Kuhn segment of the chain in
simulations.

Note several features of these plots. For small N, both
the viscosity and diffusion coefficients follow Rouse
model predictions. Than, there is a rather sharp transi-
tion to approximately η ∼ N3.6 behavior, with crossover
around Nc ) 16 (with CR). This is slightly different from
our earlier analytical model,19 which goes through
higher slope around 3.8-3.9 before smooth transition
to slope 3. Similarly, the diffusion coefficient shows
-2.4 slope (-0.4 on this graph). Unfortunately, it is not
yet possible to determine where this model predicts
transition to pure reptation behavior, which would
correspond to horizontal lines in both plots. Diffusion
predictions without constraint release (open symbols in
Figure 5b) correspond to diffusion of linear chain in a
network or in a matrix of much longer chains. The error
bars on last 2 points are quite big, which prevents me
from making the definite conclusion that transition to
zero slope is predicted.

Figure 6 shows predictions for zero shear-rate compli-
ance JN

(0). Again, contrary to our early predictions,
there is no pronounced maximum in this plot, and the
Rouse regime JN

(0) ) 2/5 N smoothly goes to the plateau,
predicted by reptation.

Figure 7 compares prediction of the model for dynamic
structure factors with NSE data on monodisperse
polyethylene (PEB-2).14 To fit all three molecular
weights simultaneously, we used (ês/ê ) 0.01), whereas

(ês/ê ) 0.1) were used for all other plots. This is a little
unsatisfactory and introduces about 30% difference in
viscosity and diffusion data. However, it makes it
consistent with our follow-up paper,21 where we show
that this choice of parameters allows fitting of NSE data
for a variety of binary bleeds. It is evident that the
agreement in Figure 7 is good, and the model fits all
q-vectors and all molecular weights with the same
parameters. The square roots of mean-square distance
between experimental points and simulations are 0.025,
0.021, and 0.017 for 12, 25, and 190 K molecular
weights, respectively. This can be compared with fits
by modified tube theory from ref 14, which give 0.0221,
0.0191, and 0.0197, respectively. Clearly, the quality of
fits is very similar. Good agreement is also achieved for
binary mixtures of different molecular weights.21 Here
I used τ0 ) 0.07 ns as a fitting parameter. More details
on the fitting procedure of the NSE data is given in the
next section.

Now we can discuss how the model parameters affect
predictions described above. Unlike the tube theory, the
slip-links model seems to have three entanglement-
related parameters (Ns, Ne, and ês) instead of a single
Ne of the tube theory. However, only the combination
of the first two defines a plateau modulus12 and terminal
properties, whereas their particular values have very
little effect, mainly on the shape of transition between
the Rouse and the plateau region. This is a nontrivial
numerical result. To illustrate this point, I set Ne ) 1,
2, and 4 for N ) 64 and adjusted Ns so that the plateau
modulus is the same (correspondingly Ns values were

Figure 5. Normalized viscosity (a) and self-diffusion coef-
ficient (b) predictions with and without constraint release
(filled and open symbols correspondingly). Rouse model predic-
tions are shown by dotted lines, -0.4 and 0.6 slopes by dashed
lines.

Figure 6. Zero shear-rate compliance as a function of chain
length with and without constraint release (filled and open
symbols correspondingly).

Figure 7. Comparison of normalized dynamic structure factor
predicted by the model and measured by NSE for three
different molecular weights of PEB-2 at three different
q-vectors (see legend).
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Ns ) 4, 1.75, and 0.5). Figure 8 shows that G(t) and
S(q, t) for qbsim ) 0.25, 0.5, 1, 2, 4 are almost indistin-
guishable.

The third parameter ês is an additional artificial
friction of slip-links along the chain. As we do not want
any physical parameters to depend strongly on it, we
chose ês , ê0. In this limit, dependence on ês is
logarithmic and may be ignored in most cases. Note that
it is not possible to set ês ) 0, as this will result in zero
escape time of the slip-link from the chain. On the
contrary, for nonzero ês, this escape time is exponen-
tially dependent on the potential of virtual springs and
only linearly on ês. Figure 9 demonstrates that viscosity
for N ) 32 changes with ês slowly for ês e 0.1, in
particular, between ês ) 0.1 and 0.01, it drops only 30%
for factor of 10 change in ês.

Now I will briefly make a connection with our previ-
ous analytical solution for the “standard” tube model.19

Figure 10shows comparison of the linear rheology
predicted by the single-chain slip-link model with and
without constraint release with our previous analytical
model.19 The fitting parameters for the analytical model
are

Looking at the left graph, one can conclude that if both
models do not have constraint release, the agreement
is satisfactory even for N ) 48, which corresponds to
about Z ) 7 entanglements in analytical model. When
one adds constraint release, there is an additional choice
of constraint release parameter in the analytical model

cν (see ref 19 for details). It appears that cν ) 0.1 is the
best choice to fit data for the longest chains (see Figure
10), but agreement gets worse as the chain length
decreases. The constraint release algorithm used in the
slip-links model is different from the Rubinstein-Colby
algorithm used in ref 19, thus the difference in predic-
tions is not surprising. The Rubinstein-Colby model
assumes that the mobility of the tube segment due to
the entanglement constraint is fixed to the particular
tube segment, whereas in the slip-link model (and
probably in reality) the constraint diffuses along the
chain, thus speeding up the disentanglement process.17

Our previous finding that cν ) 0.1 fits experimental
data slightly worse than cν ) 1 is probably connected
with polydispersity. Indeed, I found that polydispersity
PI ) 1.03 is enough to change the shape of G′′ from cν
) 0.1 to cν ) 1.

Note again that the standard tube model does not
allow prediction of the dynamic structure factor using
the same assumptions as used in rheology theory. It is
also usually assumed that the number of entanglements
is sufficiently large, thus the transition from unen-
tangled to entangled dynamics cannot be accurately
described. Thus, we now proceed to direct comparison
of the single-chain slip-links model with experiments
for five different polymers.

5. Parameter Mapping and Comparison with
Experiment

In this section, I will make an attempt to compare
model predictions simultaneously with several experi-
mental techniques (NSE, rheology, and self-diffusion)
using the same parameters for chemically identical
samples. Note that this is very rarely done in the
literature, and usually, one does not expect perfect
agreement (even the same experiments done in different
groups sometimes differ significantly). An additional
complication is uncertainty in the time-temperature
superposition procedure, which is needed because the
three techniques use quite different temperatures.
Nevertheless, I will show that potentially much can be
learned from such systematic comparison and will try
to stimulate more work in this direction. Table 1.
summarizes all parameters used in the fitting, where
the first three columns give time-temperature super-
position parameters according to log10(at) ) -C1(T - T0)/
(T + C2) and the fourth chain dimension expansion
coefficient κ ) d ln(〈R2〉)/dT. The next two columns
contain elementary times extracted from NSE and
linear rheology correspondingly. Then, bsim value is

Figure 8. Rheology (a) and NSE (b) predictions for different
sets of Ns/Ne.

Figure 9. Viscosity of the chain N ) 32 as a function of slip-
link friction.

Ge ) 0.134G0, τe ) 79τ0, and Me ) 7 (13)

Figure 10. Linear rheology predictions of the slip-links model
(symbols) compared with the “standard” tube model from ref
19 (lines). Left graph is comparison without constraint release
in both models, right graph, with constraint release included
in both models.
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obtained from either fitting of NSE data or linear
rheology, elementary stress G0 from fitting the linear
rheology data. The last three columns are values of M0,
which is roughly proportional to Me of the tube model
(see eq 13), extracted from NSE, from the form of G′/G′′
spectra and from the value of the plateau modulus.

5.1. Polyethylene (PE). Monodisperse polyethylene
is available as hydrogenated polybutadiene and is often
referred to as PEB-2. It is the only polymer that is
extensively studied by NSE for times well over τe and
for a variety of molecular weights (see ref 14 and
references therein). Thus, I will fit the model to NSE
experiments first and then predict rheology and diffu-
sion. As already discussed, this fitting is done in Figure
7, giving model parameters bsim ) 15.3 Å, τ0(T )
509 K) ) 0.07 ns. Here, bsim is the unit length of the
model, and it is proportional to the “tube diameter”
because we have the same number of beads between
entanglements for all polymers. Knowing the mean-
square end-to-end distance per unit mass from ref 20,
K ≡ 〈R2〉/M ) 1.08A2 mol /g, we determine the unit mass,
represented by one bead M0 ) bsim

2 /K ) 216 g/mol. We
thus used 57 and 116 beads to simulate 12.4 and
24.7 K polyethylene in Figure 7.

Figure 11 shows comparison of the model predictions
for the incoherent structure factor measured in ref 15
for the same high Mw sample as in Figure 7 at the same
temperature T ) 509 K. I give this comparison in two
representations, one is actual measured data and
another represents the mean-square monomer displace-
ment for some models (this is shown not to be strictly
valid for the tube model in ref 27). One concludes that
the agreement is satisfactory, and in some sense, the
incoherent structure factor provides information about
entanglements similar to that of the coherent one.

Now we predict plateau modulus, viscosity, and
diffusion coefficients to compare them to the data by
Pearson et al.18 All stresses calculated in simulations
must be multiplied by G0 ) FRT/M0, viscosities by G0τ0,
and diffusion coefficients by bsim

2 /τ0. The data in ref 18
are given for T ) 448 K, and we calculate τ0(T ) 448 K)

) 0.14 ns using shift factors given in the same paper.
Calculating all prefactors mentioned above, we arrive
at Figure 12, denoted by solid lines. The dotted lines
are best fits of the data using M0 as a fitting parameter.
One can see that diffusion data are predicted rather well
(dotted line correspond to M0 ) 206 g/mol, to be
compared with 216 g/mol from NSE), but viscosity data
is significantly off and requires a large adjustment of
M0 ) 180 g/mol. With our choice of model parameters,
the plateau modulus (defined as 3.56 times maximum
value of G′′ for long chains) is about GN

(0) ) 0.1G0. Thus,
for polyethylene, we predict the plateau modulus to be
about 1.3 MPa, but the experimental value is about
2.2 MPa. We conclude that, for polyethylene, diffusion
may be well predicted by knowing the dynamic structure
factor, but rheology predictions requires smaller M0 or
equivalently more entanglements. This conclusion is
similar to the conclusion of ref 7, where authors showed
that the plateau modulus of polyethylene gives smaller
Me values than any other definitions. Each separate
experiment, however, can be well fitted by the model,
including the slope and the shape of viscosity and
diffusion curves. Unfortunately, it was computationally
prohibitive to run the model for higher chain lengths
to establish whether a transition to horizontal lines in
Figure 12 is captured.

5.2. Polyethylene-propylene (PEP). This is an-
other polymer for which existing NSE data15 allows
fixing of all model parameters, although only high
molecular weight is measured. Figure 13 shows the best
fit of the data using two parameters: τ0(T ) 492 K) )
0.39 ns, bsim ) 19 Å. The quality of fit, defined in the
previous section, is 0.0257, compared with the 0.0329
fit by the tube theory expression.

One great advantage of PEP as compared to PE is
that PEP does not crystallize at low temperatures, and
thus whole G′/G′′ curves can be measured and compared
to the model. Figure 14 shows rheology data shifted to
reference temperature 298 K for the same sample
(Mw ) 243 K), as was used in ref 15, compared with the
model predictions using parameters obtained by NSE
(thick lines). One should pay attention only to the high-

Figure 11. Incoherent dynamic structure factor of long
polyethylene chains at T ) 509 K from (ref 15) compared with
the model predictions.

Table 1. Parameters for Mapping Slip-Links Model to Different Experimental Techniques

C1 C2 (°C) T0 (°C) 103κ τ0
nse (T)(ns) τ0

rheo (T)(ns) bsim (Å) G0 (MPa) M0
NSE M0

Z M0
G

PE -1.1 0.07 (509) - 15.3 21 216 - 130
PEP 6.27 132 25 -1.1 0.35 (492) 0.02 (492) 19 11 480 214 246
PI 4.8 113 25 0.4 130-400 (298) 18 4.3 590, 770 520
PBd 3.52 139 25 ≈ 0 2.6 (298) 4.5 (298) 14.8 11.2 250 193
PS 5.53 -52 170 ≈ 0 2800 (453) 29.4 2.2 2000 1600

Figure 12. Normalized viscosity and diffusion coefficient
compared with the data of ref 18. Solid lines: predictions using
parameters from NSE; dotted lines: best fits using M0 as
fitting parameter.
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frequency region, as it was not possible to simulate such
large chains (thus the terminal region is not shown).
The high-frequency region shows that the predictions
are totally wrong; τ0 is off by a factor of 16, and the
plateau value by a factor of 2.5 (see Table 1). Thin lines
show best fit of the data with our analytical model.19

One concludes that the model fails to describe NSE and
rheology of PEP simultaneously, similarly to PE.

Figure 15 shows the only existing data on viscosity
of PEP as a function of molecular weight.23 Unfortu-
nately, the narrow range of molecular weights does not
allow determination of M0 from these data, but strangely,
enough existing data are in relatively good agreement
with the model predictions, maybe because the temper-
ature used was quite high.

5.3. Polyisoprene (PI). As no long-time NSE data
is published for polyisoprene at the moment, we use
linear rheology to fit the model parameters. However,
the rheology data in the literature are quite contradic-
tory, especially at high frequency/low temperature.
Figure 16 shows the data from ref 24 for polyisoprene
of Mw ) 75 K compared to older data for Mw ) 500 K
from ref 25. The first dataset is fitted by the model with
G0 ) 4 MPa, τ0(T ) 298 K) ) 180 ns, and M0 )
586 g/mol, and the second by an analytical model using
eq 13 (because the number of entanglements is too high
to be simulated by slip-links). By using mapping of an
analytical model to the slip-links model eq 13, I get G0
) 4 MPa, τ0(T ) 298 K) ) 400 ns, and M0 ) 767 g/mol.
One can see that the difference in τ0 is significant, which
is clearly visible in the high-frequency part of Figure
16.

We now use obtained parameters from both datasets
of Figure 16 to predict viscosity and diffusion coefficients
reported in refs 22, 23, 24, as shown in Figure 17. Both
viscosity and diffusion are captured rather well, taking
into account the large scatter. More measurements on
polyisoprene are highly desirable.

5.4. Polybutadiene (PBd). Unfortunately, NSE data
for polybutadiene is available only for short times and
unentangled samples.29 Also, very little diffusion data
is available. Besides, the rheology data is published for
well-entangled samples Mw > 50 K, which are difficult
to simulate at the moment. Thus, I fit parameters to
one dataset31 for Mw ) 48 K at reference temperature
T ) 25 °C, which is shown in Figure 18. The fitting

Figure 13. Normalized dynamic structure factor as measured
by NSE from ref 15. Solid lines: best fits by the model.

Figure 14. Linear rheology of the same PEP sample as used
in ref 15. Solid lines: predictions with parameters obtained
from NSE; dotted lines: best fits by the model. Only the high-
frequency region can be compared.

Figure 15. Normalized viscosity data from ref 23 (star is
viscosity of sample from Figure 14) compared to the model
predictions with parameters obtained from NSE.

Figure 16. Linear rheology data for polyisoprene of Mw )
75 K from ref 24 (squares) and of Mw ) 500 K from ref 25
(circles). Squares are fitted by slip-links model, and circles,
by analytical model.

Figure 17. Normalized viscosity and self-diffusion data for
polyisoprene as a function of molecular weight. Viscosities are
from ref 23 (squares), ref 24 (circles), and ref 25 (star); diffusion
from ref 22. Solid lines are predictions by the model using
linear rheology from ref 25, dotted lines from ref 24.
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parameters are τ0 ) 3.5 ns, G0 ) 12 MPa, and M0 )
250 g/mol. The M0 value leads to prediction of G0 )
9 MPa, smaller than the fitted value by 30%, which is
2 or 3 times bigger than the typical experimental error.

Using the obtained parameters, we make predictions
for viscosity and diffusion and compare them with data
from refs 28 and 22 correspondingly, as seen in Figure
19. The agreement is quite satisfactory, but more
diffusion data is highly desirable. One can also compare
an elementary time scale τ0 to unentangled NSE data
from ref 29 for Mw ) 1.6 K. Fitting the Rouse model to
three datasets with the lowest q (at higher q, Rouse
theory breaks down as discussed in ref 29), I get
τ0 ) 0.3 ns at T ) 353 K. Taking into account glass
transition temperature dependence on molecular weight
for small molecular weights, I get an estimate
τ0(298 K) ≈ 2.6 ns, which is 80% different from rheology
estimate (see Table 1). This difference is, however,
nowhere near the dramatic difference of PEP time
scales.

5.5. Polystyrene (PS). Polystyrene has a signifi-
cantly larger molecular weight between entanglements
than compared to that of the previous polymers, and
the linear rheology data for mildly entangled polymers
is available.30 In Figure 20, we plot G′ and G′′ from ref
30 of Mw ) 34, 61, and 125 K, measured at T ) 180 °C
and the model predictions using fitting parameters τ0
) 2800 ns, G0 ) 2.2 MPa, and M0 ) 2 K. First, note
that these fits are good, given that previous theories
failed to describe polymers with such few entangle-

ments. Also, the value of G0 is consistent with M0;
indeed, using F ) 959kg/m3, we get G0 ) FRT/M0 )
1.8 MPa, which is within typical differences between
the data in different papers.

In Figure 21 we plot viscosity data for all six samples
reported in ref 30, together with viscosity and diffusion
data on polystyrene collected by Watanabe4 from dif-
ferent sources. The agreement for polystyrene seems to
be quite satisfactory, although experimental viscosity
data seem to have slightly smaller slopes than that of
the model predictions.

6. Conclusions
To conclude, in this paper I stressed the distinction

between a model and the theory, describing a particular
model. I demonstrated that the standard tube model
(one-dimensional Rouse chain in three-dimensional
random walk tube) is not complete and cannot be
directly compared to the dynamic structure factor
measured by NSE. Instead, for each experiment, dif-
ferent interpretations (“theories”) of the tube model were
used. For example, for linear rheology, fast 3D Rouse
modes were added rather empirically, whereas they
were ignored in the NSE comparison. But an even more
important problem of the standard tube model is its
failure to describe the static structure factor at the
length scale of order of the tube diameter. In other
words, the tube model violates random walk statistics,
a fact that is not easy to fix empirically.

These considerations led to the development of the
new single-chain slip-links model, on the basis of

Figure 18. Storage and loss moduli of polybutadiene with
Mw ) 48 K, measured in ref 31, compared with the slip-links
model (solid lines).

Figure 19. Normalized viscosity and self-diffusion data for
polybutadiene as a function of molecular weight. Viscosities
are from ref 28, diffusion from ref 22. Solid lines are predictions
by the model, with parameters obtained from the fit of linear
rheology data; dotted line: predictions of our earlier analytical
theory.19

Figure 20. Storage and loss moduli of polystyrene with
Mw ) 34 K, 61 K, and 125 K, measured in ref 30, compared
with the model (solid lines).

Figure 21. Normalized viscosity and self-diffusion data for
polystyrene as a function of molecular weight. Viscosities are
from ref 30 and ref 4, diffusion from ref 4. Solid lines are
predictions by the model, with parameters obtained from the
fits in Figure 20.
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Rubinstein’s and Panyukov’s model for polymer net-
works.12 The main difference of this model from the tube
model is that an effective field, representing entangle-
ments, is introduced in a discrete fashion as a set of
additional parabolic potentials (slip-links). In this way,
it is possible to construct this field so that the chain
exactly satisfies random walk statistics at all length
scales. The model automatically contains reptation,
contour length fluctuations, fast Rouse, and longitudinal
modes, and constraint release is added in the usual
manner.

Acknowledgment of the difference between the theory
and the model suggests the importance of direct com-
parison between the model and experiment, which
would avoid approximations involved in an analytical
solution of the model. Thus, in this paper, I performed
Brownian dynamics simulation of the constructed model
and compared it with NSE, rheology, and diffusion
experiments. Because the nature of all slip-links models,
the new model has three new parameters instead of one
of the usual tube model. However, I showed that the
number of slip-links and their strength enter the results
only in combination, and that dependence on slip-link
friction is insignificant, providing it is much smaller
than the monomer friction. The detailed role of these
parameters needs further investigation.

I demonstrated that each separate experiment can be
well described, but also attempted the more challenging
task of obtaining all fitting parameters from one experi-
ment and predicting all other with the same param-
eters.

This procedure was quite successful for polybutadiene,
polystyrene, and polyisoprene, although no NSE data
is available yet for these polymers. The data for poly-
isoprene22 are contradictory at the moment, and more
experiments are needed to clarify the situation with PI
parameters. For polyethylene and polyethylene-pro-
pylene, however, it seems that fitting rheology requires
a smaller M0 (roughly proportional to Me in the tube
model), compared to that of NSE and diffusion. This
probably suggests that these polymers cannot be de-
scribed by the Rouse model at small time and length
scales. Indeed, the validity of the Rouse model was
demonstrated for short PE chains to hold only for large
enough q in NSE experiments and break down for q >
0.15nm-1. In linear rheology, the Rouse model predicts
parallel G′ and G′′, which is never observed for any
polymer melt. Thus, at the moment, one cannot be sure
about the area of applicability (if any) of the Rouse
model. The dependence of these discrepancies on pack-
ing length is an intresting subject for further investiga-
tion, which requires more accurate diffusion, rheology,
and NSE data.

Another possible reason for strong disagreement of
time scales in PEP data is the change of chain dimen-
sions with temperature. I note that the temperature
expansion coefficient κ ) d ln(〈R2〉)/dT is very different
for the polymers under consideration (see Table 1).
Nonzero κ makes time-temperature superposition not
strictly valid (because tube diameter or M0 will also
change), and the low-temperature estimate of τ0 may
be so much different from NSE results.

One should note a smaller but noticeable discrepancy,
which concerns linear rheology only. Last two columns
of Table 1 suggest that for PI, PBd, and PS, M0 (or Me)
obtained from a plateau modulus is lower than the one

obtained from fitting G′/G′′. This was also noticed in ref
33 for atactic and head-to-head polypropylene.
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Appendix A. Structure Factor of 1D-Stretched
Rouse Chain.

In this appendix, I repeat de Gennes’s calculations of
the dynamic structure factor for a one-dimensional
stretched Rouse chain,32 but avoiding the approximation
made in this paper. The result will then be applied in
Appendix B to the chain in a tube. We consider a Rouse
chain of N segments of Kuhn length b with friction ê,
which is stretched by the ends so the average length of
Kuhn segment is l. In terms of a chain in a tube
l ) a/Ne ) b/xNe, i.e., l , b.

The coherent structure factor is

where summation is over all monomers of one molecule.
Neglecting end effects, the sum can be rewritten as

where yn ) rn - ln is the deviation from the mean
monomer position. The average in brackets now can be
rewritten using a Gaussian approximation

where I introduced notation

To calculate φns(t), I use transformation to Rouse
modes

and the known correlation functions for Xp (see the Doi-
Edwards book,2 eqs 4.23-4.26). Substituting them into
the equation for φns(t) we get

S1d(q, t) ) ∑
m,n

〈exp(iq(rn(t) - rm(0))〉

S(q, t) ) ∑
n,s

eiqls〈exp(iq(yn+s(t) - yn(0))〉

S1d(q, t) ) ∑
n,s

eiqls exp(-
q2

2
〈(yn+s(t) - yn(0))2〉) )

∑
n,s

eiqls exp(-
q2

φns(t)

2 )

φns(t) ) 〈(yn+s(t) - yn(0))2〉

yn(t) ) X0(t) + 2∑
p)1

∞

Xp cos(πps

N )
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For long chains N . 1 and t , τR, the result must be
independent of n. One can check numerically that it
approximates perfectly with

As expected, for s ) 0, we recover eq 6.103 from the
Doi-Edwards book,2 and for t f ∞, we get correct
asymptotic 2kBTt/N. For t < τR, we can also neglect the
center of mass diffusion the term 2kBTt/Nê and replace
summation by integration because the major contribu-
tion to the sum will come from p . 1:

where

The structure factor is then

We first calculate its values at t ) 0:

The de Gennes answer was NNe/3, which is the same
for qa , 1, but differs significantly in experimental
range of qa ) 1...5.

The time dependence was evaluated numerically
using eq 15 and is perfectly described by single expo-
nential given by de Gennes:

which is the final result for the problem considered. The
conclusion of this Appendix is that de Gennes calcula-
tions for the scattering function of 1D stretched Rouse

chains are confirmed, but for qa ∼ 1 must be divided
by 1 + q2a2/36.

Appendix B. Structure Factor for the Rouse
Chain in a Tube.

I now follow de Gennes’s 1981 article3 and implement
result eq 18 into the standard tube model. The aim is
to calculate the structure factor of a Rouse chain in a
tube, which is

where averages are taken over tube segments orienta-
tion r(s) and over monomer position in the tube n(s).
Here s is a contour variable along the tube. Equation
19 can be rewritten as

where I have defined the 1D density correlation function

and decoupled the two types of averages. Here i(s, t) is
the index number of the monomer that resides in the
tube segment s at time t. One can easily see that Σ is
related to the structure factor of the 1D stretched Rouse
chain, calculated in Appendix A. Indeed

This means that, to calculate Σ(s, t), one needs to
calculate the inverse Fourier transform of eq 18:

where the first constant term is the equilibrium density
Σ(s, t f ∞). The second average in eq 20 can be replaced
by its Gaussian approximation:

This approximation contains the postulate that [(r(s) -
r(0))2] ) sa on all length scales, even if s < a, which
causes random-walk statistics violation. Avoiding this
assumption is not easy and requires introduction of
additional parameters into the model.

Substituting results of eqs 21, 22 to eq 20, we get

φns(t) )
2kBTt

Nê
+ ∑

p)1

∞ 2Nb2

3π2p2
× (cos2(πp(n + s)

N ) +

cos2(πpn

N ) - 2 cos(πpn

N ) cos(πp(n + s)

N ) exp(-
p2t

τR
))

(14)

φns(t) )
2kBTt

Nê
+ ∑

p)1

∞ 2Nb2

3π2p2(1 - cos(πps

N ) exp(-
p2t

N2τ0
))

φns(t) ≈ 2b2s
3π2

h( t
τ0s

2) (15)

h(R) ) ∫0

∞ dy
y2

(1 - cos(πy) exp(-Ry2)) )

{π2

2
, R f 0

xπR, R f ∞ }(>)

S1d(q, t) ) ∑
n,s

exp(iqls -
q2

2

2b2s

3π2
h( t

τ0s
2)) ≈

2N ∫0

∞
exp(iqls -

q2b2s

3π2
h( t

τ0s
2)) ds (16)

S(q, 0) ) 2N ∫0

∞
exp(iqbs

xNe

- q2b2s
6 ) ds )

2N q2b2/6
q4b4/36 +q 2b2/Ne

)
NNe

3
1

q2a2

36
+ 1

(17)

S1d(q, t) )
NNe

3
1

q2a2

36
+ 1

exp(- q2a2t
π2τe

) (18)

S(q, t) ) ∑
m,n

〈[exp(iq(rn(t) - rm(0)))]tube〉monomers (19)

S(q, t) ) ∫0

L
ds ∫0

L
ds′Σ(s - s′, t)[exp(iq(r(s, t) -

r(s′, 0)))]tube (20)

Σ(s - s′, t) ≡ 〈di(s, t)
ds

di(s′0)
ds′ 〉

monomers

S1d(q, t) ) ∫0

N
dm∫0

N
dn〈exp(iq(s(m, t) - s(n, 0)))〉 )

∫0

L
ds∫0

L
ds′Σ(s - s′, t) exp(iq(s - s′)) ) LΣ(q, t)

Σ(s, t) )
Ne

b2
+

Ne
3/2

6xπb(1 + q2a2/36)xπ2τe

ta2
exp(-

s2π2τe

4a2t )
(21)

[exp(iq(r(s, t) - r(s′, 0)))]tube )

exp(-
[(q(r(s, t) - r(s′, 0))2)]

2 ) ) exp(-q2a
6 |s - s′|)

(22)

S(q, t) ) 12N
q2b2

+
NNe

3(1 + q2a2/36)
erfc(xt/τ̂) exp(t/τ̂)

(23)
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where

and τ0 is the Rouse time of one Kuhn segment (elemen-
tary time scale).
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