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UC Center for Why Choose a Master of Science in Business Analytics Program at UC Online?

Business Analytics

The University of Cincinnati Online’s Master of Science in Business Analytics program is nationally recognized and has a proven track record with placing students at
successful, high-profile companies. Predictive Analytics Today named UC as the No.1 MS Data Science school in the country and Quacquarelli Symonds (QS) ranked us 18th
globally and 7th nationally among U.S. public universities.

The Master's of Science in Business Analytics online program at UC provides students with expertise in descriptive, predictive, and prescriptive analytics. Many of our
graduates are working as data scientists and business analysts at world-leading companies from larger corporations, to startups across the nation.

Note: The MS-Business Analytics program is recognized as a STEM (Science, Technology, Engineering, and Mathematics) program. According to the National Science Teachers
Association (NSTA), “A common definition of STEM education [...] is an interdisciplinary approach to learning where rigorous academic concepts are coupled with real-world
lessons as students apply science, technology, engineering, and mathematics in contexts that make connections between school, community, work, and the global enterprise
enabling the development of STEM literacy and with it the ability to compete in the new economy.” UC Online’s skilled faculty members bring valuable field experiences to
their courses to ensure that students have the skills necessary to excel in STEM positions.

What is Business Analytics?

According to U.S. News, Business Analytics Business “is the science of using data to build mathematical models and arrive at decisions that have value for a company or
organization, Bertsimas says. This is relevant in nearly every field, whether it's medicine, technology, retail or real estate”.

The University of Cincinnati’s online Business Analytics Master's program is designed to achieve several core objectives:

e Put you ahead of the competition when applying to the workforce
e Provide you with the skills and tools needed to collect data and analyze it to influence decisions in an organization

e University of Cincinnati's 100% online program will empower you with core business analytics skills, and technical skills for understanding and implementing descriptive,
predictive, and prescriptive analytics 1
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Data Analytics ~ Convert raw data (information) to actionable and useful assessments

At what price should gas be set as a function of time of day/day of week/month/year/stock market/oil price etc...
(this would use the IoT, data gathered at the local Speedway pump)

Decide what information is potentially relevant

Collect that data

Apply a model or use ML to draw new (illogical in the current model) relationships

Make predictions for future behavior and actions that will optimize results

Implement these suggestions

If these operations are conducted with limited or no human interaction it appears to be Al (really an algorithm)
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We know this works in some situations
Amazon suggests your next purchase (simple systems)

When it fails it can fail in embarrassing/frustrating ways
(automatic phone answering at the insurance company etc.)

Intellectual property issues: Who owns the data, who owns the results of data mining, who owns your choices



All are important to materials/polymer companies, research labs, academics

Types of Data Analytics

Data analytics is broken down into four basic types.

1. Descriptive analytics: This describes what has happened over a given period
of time. Have the number of views gone up? Are sales stronger this month
than last?

2. Diagnostic analytics: This focuses more on why something happened. This
involves more diverse data inputs and a bit of hypothesizing. Did the weather
affect beer sales? Did that latest marketing campaign impact sales?

3. Predictive analytics: This moves to what is likely going to happen in the near

ML term. What happened to sales the last time we had a hot summer? How many
weather models predict a hot summer this year?

4. Prescriptive analytics: This suggests a course of action. If the likelihood of a
hot summer is measured as an average of these five weather models is above
Al . . .
58%, we should add an evening shift to the brewery and rent an additional

tank to increase output.
https://www.investopedia.com/terms/d/data-analytics.asp
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Consider obvious problems that might be addressed by this approach:
-Selection of the best combination of materials for a super-conducting alloy
-Best metals for advanced manufacturing (rapid prototyping)
-Processing conditions/compounding for optimizing polymer pipe extrusion
-Optimize a better heterogeneous catalyst for polypropylene synthesis
(once you have the discovery by Ziegler/Natta)

And might not be addressed:
-Solution to global warming
-Solution to the plastics waste problem
-Discovery of room temperature super conductors
-Invention of the internet
-Invention of block-copolymers
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ML, Al, IoT are hammers, but everything isn't a nail
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Materials Informatics

-Identify superior materials from initial training sets and physics simulation scikit-learn,
keras; pytorch

-Tailor materials data using ML. Take multiple sources, images, diffraction, scattering,
spectroscopy, mechanical testing, electrical properties, thermal properties and generate
models for materials design

-High—throughput data acquisition. Synchrotron sources is a chief example. Robotics,
DFT.

-Post process STEM images.
-Use ML to optimize simulations e.g. modify atomic potential functions or use ML to

couple simulations at different length scales (molecular MD, coarse grain MD, Dissipative
Particle Dynamics).
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Getting Started  Release Highlights for 1.0

Classification

Identifying which category an object
belongs to.

Applications: Spam detection, image
recognition.

Dimensionality reduction

Reducing the number of random

variables to consider.

Applications: Visualization, Increased

efficiency

Algorithms:
n

%

News

On-going development: What's new
{Changelog

December 2021. scikit-learn 1.0.2 is available for
download (Changelog).

October 2021. scikit-learn 1.0.1 is available for
download (Changelog).

September 2021. scikit-learn 1.0 is available for
download (Changelog).

April 2021. scikit-learn 0.24.2 is available for
download (Changelog).

January 2021. scikit-learn 0.24.1 is available for
download (Changelog).

December 2020. scikit-learn 0.24.0 is available
for download {Changelog).

August 2020. scikit-learn 0.23.2 is available for
download {Changelog).

May 2020. scikit-learn 0.23.1 is available for
download
May 2020. scikit-learn 0.23.0 is available for
download (Changelog).

Scikit-learn from 0.23 requires Python 3.6 or
newer.

angelog).

« Simple and efficient tools for predictive data analysis
= Accessible to everybody, and reusable in various contexts
« Built on NumPy, SciPy, and matplotiib

e « Open source, commercially usable - BSD license

Regression Clustering

Predicting a continuous-valued attribute
associated with an object. into sets.

Automatic grouping of similar objects

Applications: Drug response, Stock Applications: Customer segmentation,
prices Grouping experiment outcomes

Model selection Preprocessing

Comparing, validating and choosing Feature extraction and normalization.

parameters and models. .
Applications: Transforming input data

Applications: Improved accuracy via such as text for use with machine
parameter tuning learning algorithms,

Algorithms: grid search, cr Algorithms: pre
validation, metrics, and m: extraction, and more

roc:

Community Who uses scikit-learn?

About us: See authors an -
.
lrrzia—~

More Machine Learning: Find related pro

ributing

Questions? See FAQ and
Mailing list:
Gitter: gitt

/e use scikit-learn to support leading-edge
sic research [...]*

Twitter: @scikit_learn

Twitter (commits): @sklearn_commits

Go

More testimonials

Instagram: @scikit
Communication on all channels should respect
s code of condu

Help us, donate!  Cite us!

Keras

Simple. Flexible. Powerful.

Get started APl docs

vision_model  keras. app

on westion - Layers. , 256) (a
encoded_qestion  layers. ) (embedded_quest

verged ke s (lencod

Iterate at the speed of thought.

Keras is the most used deep learning framework among top-5 winning teams on Kaggle. Because Keras
makes it easier to run new experiments, it empowers you to try more ideas than your competition, faster.
And this is how you win,

Deploy anywhere.

Take advantage of the full deployment capabilities of the TensorFlow platform. You can export Keras
models to JavaScript to run directly in the browse: TF Lite to run on i0S, Android, and embedded
devices. It's also easy to serve Keras models as via a web API.

Guides Examples

Deep learning for humans.

Keras is an API designed for human beings, not machines. Keras follows best practices for reducing
cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for
‘common use cases, and it provides clear & actionable error messages. It also has extensive documentation
and developer guldes.

Visualization Deep-learning
framework: framework:
TensorBoard Keras

Exascale machine learning.
Built on top of , Keras Is an industry-strength framework that can scale to large clusters of
GPUs or an entire . It's not only possible; it's easy.

A vast ecosystem.
Keras Is a central part of the tightly-connected TensorFlow 2 ecosystem, cavering every step of the machine
learning workflow, from data management to hyperparameter training to deployment solutions.




GetStarted  Ecosystem v Moble  Blog  Tutoris Docs v Resources v GitHb  Q

FROM
RESEARCH TO
PRODUCTION

An open saurce machine learning framework that accelerates the path from
research prototyping to production deployment.

KEY FEATURES &
CAPABILITIES

Production Ready Distributed Training Robust Ecosystem Cloud Support

INSTALL PYTORCH QUICK START WITH
CLOUD PARTNERS

Get up and runaing with PyTorch

met the prarequisites below (e.5., numpy),

recommended package mansgs

sogle
Your 05 Plsform
Package = Micrasoft * ¢
Language e

# Mac0S Conda binaries are for x86_64 only, for M1 p
lease use wheels
conda install pytorch torchvision torchaudio -c pyto

revious versions of PyTorch >

ECOSYSTEM o

FEATURE PROJECTS

skorch

To ansiyze traf




(a) PolyDAT scheme

Preamble Species Transformations
- metadata characterization - reaction info
« network data « procedures

- data provenance « synthesis

(b) BigSMILES scheme

Random copolymer

{8CC$, $CC(C)(C(=0)0C)$, $CC(CO)$, $CC(C)(C=0C)$}

Block copolymers
NN
T\
\/\/\)L}{/\/][\r\/\/\}

{CCCYO)IS], [SICC(cleeecc])} {[ZI0CCCCCC(=0)[<I}{[>]OCC[<]HI[>|OC(=0)CCCCCl<]}

Cencer MM, Moore JS, Assary RS Machine learning for
polymeric materials:an introduction Polym. Int. (2021) QOI
10.1002/pi.634



Polyn?er Genome

An informatics platform for polymer property prediction and design using 7 learning

Hom References Sign-in/up

Guide to User Input in Polymer Genome

1. Repeat Unit Guidelines

Polymer Genome accepts the repeat unit representation of polymers as one of the input types.
The repeat unit is used both for searching the Polymer Genome database and/or to perform
instant machine learning predictions. The polymers composed of the following building blocks are
available to use for writing the repeat unit: -CH2-, -CH- (must be paired, eg., -CH-CH-), -0-, ~CS~-,
-C4H3N~-, -CF2-, -CF~ (must be paired, eg., -CF-CF-), -
CHF-, -CC12~, -CC1- (must be paired, eg., -cC1-CC1-), ~CHC1~, ~CBr2-, ~-CBr- (must be paired,
eg., -CBr-CBr-), -CHBr-, -CI2-, -CI- (must be paired, eg., -CI-CI-)and -CHI-.

Examples of repeat units are CH2-CH2 (polyethylene), NH-CO-NH-C6H4, CH-CH-CH2, etc. Those
with chemically unstable bonds (such as NH-NH, CO-CO, CS-CS, 0-0) are not allowed, and will be
flagged. The following basic formatting rules should also be followed:

® Element symbols are case sensitive (C, B, etc.), and numerals are not sub-scripted (CH2,
PG VIDED TUTORIALS
* Building blocks in a repeat unit must be connected with "-'.
® Spaces are not permitted in a repeat unit. LEARN HOW TO USE PG
® CH, CF, CC1, CBr, and CI blocks must be paired. IN 60 SECONDS

Create your own repeat unit. Legitimate repeat unit will be converted to an equivalent SMILES.

2. SMILES Guidelines

SMILES (simplified molecular-input line-entry system) uses short ASCII string to represent the structure of chemical species. Because the SMILES format
described here is custom-designed by us for polymers, it is not completely identical to other SMILES formats. Strictly following the rules explained
below is crucial for having correct results. Details of the rules are given below, while the SMILES strings of some example polymer blocks and polymers
are provided in Table 1.

.

Spaces are not permitted in a SMILES string.
An atom is represented by its respective atomic symbol. In case of 2-character atomic symbol, it is placed between two square brackets [ ].
Single bonds are implied by placing atoms next to each other. A double bond is represented by the = symbol while a triple bond is represented
by #.

Hydrogen atoms are suppressed, i.e., the polymer blocks are represented without hydrogen. Polymer Genome interface assumes typical valence
of each atom type (see Table 2). If enough bonds are not identified by the user through SMILES notation, the dangling bonds will be automatically
saturated by hydrogen atoms.

Branches are placed between a pair of round brackets ( ), and are assumed to attach to the atom right before the opening round bracket (.
Numbers are used to identify the opening and closing of rings of atoms. For example, in c1ccccecl, the first carbon having a number "1" should
be connected by a single bond with the last carbon, also having a number *1". Polymer blocks that have multiple rings may be identified by using
different, consecutive numbers for each ring.

Atoms in aromatic rings can be specified by lower case letters. As an example, benzene ring can be written as clcccccl which is equivalent to
c(Cc=C1)=cC=Cl.

A SMILES string used for Polymer Genome represents the repeating unit of a polymer, which has 2 dangling bonds for linking with the next
repeating units. It is assumed that the repeating unit starts from the first atom of the SMILES string and ends at the last atom of the string. These
two bonds must be the same due to the periodicity. It can be single, double, or triple, and the type of this bond must be indicated for the first
atom. For the last atom, this is not needed. As an example, cC represents -CHy-CH,- while =CC represents =CH-CH=.

Atoms other than the first and last can also be assigned as the linking atoms by adding special symbol, [ *1. As an example, C(C=C1)=CC=C1



Zhu M-X, Deng T, Dong L, Chen J-M, Dang Z-M Review of machine learning-
driven design of polymer-based dielectrics IET Nanodielectrics 5 24-38 (2022).

Evolution Searching (Inverse design method)
Generative Model (vs. Discriminative model)
Genome Approach

Identify Polymers with a linear notation (fingerprint)
simplified molecular-input line-entry system (SMILES)
Link fingerprint to properties (machine learning from training dataset)

Kernel regression (expected value within range of learned data)

Decision tree (various indications, some missing, predict answer from other examples)

Neural network (deep learning) (predictive modeling, adaptive control, or trained by dataset:
take handwritten “0’s from 1000 people break into pixels, correlate black and white
pixels (1 and 0) with presence of 0 to get an overall probability you have a “0”)



Zhu M-X, Deng T, Dong L, Chen J-M, Dang Z-M Review of machine learning-
driven design of polymer-based dielectrics IET Nanodielectrics 5 24-38 (2022).

Surrogate model (example gaussian)
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Pearson Correlation Coefficient

o SE-D -1

V@ - S -9

T = correlation coefficient

Ti = values of the x-variable in a sample
T =mean of the values of the x-variable
Yi = values of the y-variable in a sample

¥ = mean of the values of the y-variable

15



Dataset ﬁ

High-throughput computation
First-principles theory
Molecular dynamic simulation
Phase-field simulation

Experimental data

Online database
Handbook
Literature

~ Fingerprint

Chemical data
Structural data
Properties

Kernel-based regression
Decision tree

Neural network

Deep learning

Machine learning model
\

= (°C) 5 Ey (MV m™)

k(WmK™")
Glass transmission temperature
Thermal conductivity
Breakdown electric field
Permittivity
Energy density

g

Properties
{ U.(J cF:f‘) \

J X

A W

7~ Inverse design

Enumeration
Evolution searching
Active learning
Generative models

Encoder == Decoder

f
|0 10 Y T

Structure-property linkage =

Pearson correlation
Decision tree-based methods
Interpretability of neural network

FIGURE 1 The schematic of machine learning methods for the rational design of polymer-based dielectrics




Dataset for polymer dielectrics

Online libraries, experiments and high-throughput computations
PoLyInfo, CROW Polymer Property Database, Polymer Property Predictor, Database (NIST), Polymer Genome

A MaNavi [BIDICE  Registration  Login ~ JP /EN )\

4
@ pml‘ylnfm iwi Services v (@ About "% Guide @ News :}él Link 2 Contact ~
About Us

Polymerdatabase.com is built and maintained by a small group of accomplished polymer

HOME PLASTICS PHYSICS CHEMISTRY DATA

Polymer Database "PoLyInfo" systematically provides various data required for polymeric material design. The main data source is academic scientists. The motivation behind this project was to provide, in the absence of
literature on polymers. Information on polymers including properties, chemical structures, IUPAC names, processing methods of measured alternatives, a single p|ace for the bulk of knowledge and data that a chemist would need
samples, measurement it used and ization methods are stored in a object database. About 100 types of properties

to be a successful formulator of industry-grade polymers and plastic products. Our site
has steadily grown to become the destination for many types of inquiries in the field as our
visitors range from college freshmen to companies' CEOs.

including thermal, electrical and ical properties are covered. F , furthermore polymer blends, composites and

compounds that consist of homopolymers and copolymers are open to the public.

MatNavi user registration / authentication sy pdates : Needs re-registration We are actively working on adding new content and features. Thank you for your interest -
please, feel free to share any thoughts and ideas about improving the site by sending an

We updated the user registration and authentication systems of MatNavi to improve its security on December 1, 2020. " "
email to info@polymerdatabase.com.

The old regi: i { i and thus logging into the newly updated system with old information not be possible.
Users who have registered to the old system (registered before November 30) must register again on the newly updated system.

We apologize for the inconvenience caused by this update and ask for your cooperation. We Need Your Support
Suspend the use of the Service Your donation to Chemical Retrieval on the Web (CROW) will be supporting our efforts

to spread knowledge about polymer and plastic science.
We may suspend the use of the Service by Registrant without giving prior notice to, or obtaining prior consent of Registrant, if Registrant has
violated or may have violated "MatNavi Service Terms of Use", such as web scraping. We are very grateful for any support you can give. Your donation will help to keep CROW

thriving. If you wish to donate to this project, please click on the link below.

Number of open data

Donate
afe & secure 2. visa™3
Homopolymers 18,526 Monomers 19,136 sofe8secure 2. v~ R
Copolymers 7,442  Property points 492,645
Polymer Blends 2,465 Literature data 21,055
ow
Composites 3,062 Recorded data

March 10, 2022
Copyright © 2022 polymerdatabase.com 17



Dataset for polymer dielectrics

Online libraries, experiments and high-throughput computations

PoLyInfo, CROW Polymer Property Database, Polymer Property Predictor, Database (NIST), Polymer Genome
NIST ETE

Database ~

Materials Genome Project

Polymer Property Predictor and Database
CHIMaD

The Center for Hierarchical Materials Design (CHiMaD) represents a Chicago-based consortium of the University of Chicago,
Northwestern University, Northwestern-Argonne Institute for Science and Engineering (NAISE) that is a partnership between
Argonne National Laboratory and Northwestern, and the Computational Institute that is a partnership between the University of
Chicago and Argonne. It serves together with NIST and AFRL as a national resource for the verified codes and curated databases
that will enable proliferation of a materials-by-design strategy throughout US industrial partners. Numerous materials “use cases”
of industrial relevance drive purposeful method and tool development, while aiding transfer to industry of both the new principles
of computational materials design. Demonstrating a broad methodology for multicomponent, multiphase materials spanning
metals and polymers for structural and multifunctional applications.

Browse the Database

Chi (x) Values Tg Values Binary Solution Cloud Points

Polymer Applications

Flory-Huggins Phase Diagram

Random Phase Approximation Structure Factor

Binary Solution Cloud Point Estimator

STANDARD REFERENCE For over 50 years, NIST has developed and distributed Standard Reference Data in Chemistry, Engineering, Fluids
DATA and Condensed Phases, Material Sciences, Mathematical and Computer Sciences and Physics.

SHOP + >
SRD Catalog

Free SRD

SRD Sorted by Topic
Public Law B attwase/Deta Version
SRD Defini e
Critical Evaluation Criteria
Journal of Physical and
Chemical Reference Data
National Standard
Reference Data Series
Related Data Products -+ New Database
and Links

S,

Comimnzy,,

o Mass Spec: NIST/EPA/NIH Mass NIST INORGANIC CRYSTAL REFPROP: NIST Reference Fluid
Spectral Library STRUCTURE DATABASE (ICSD) SRD3  Thermodynamic and Transport
Properties

Crystal Structure Database, for more information visit https://icsd.nist.gov

NIST produces the Nation’s Standard Reference Data (SRD). These data are assessed by experts and are trustworthy such that
people can use the data with confidence and base significant decisions on the data. NIST provides 49 free SRD databases and 41
fee-based SRD databases. SRD must be compliant with rigorous critical evaluation criteria. Send questions to data@nist.gov & or

call 1(844) 374-0183 (Toll Free).

POPULAR DATA PRODUCTS

Recent Update. NIST ICSD SRD3 s currently available, visit https://icsd.nist.gov

« REFPROP: Reference Fluid Thermodynamic and Transport Properties FAQ

 Mass Spec: NIST/EPA/NIH Mass Spectral Library MS Data Center
ICSD: The NIST Inorganic Crystal Structure Database (ICSD) is a comprehensive collection of crystal structure data of inorganic
compounds containing more than 210,000 entries and covering the literature from 1913.

TDE: NIST ThermoDataEngine
PIV Cards: NIST Test Personal Identity Verification Card

 PED: NIST-ACers Phase Equilibria Diagram Database 4.5 demo= and PED Editor

 SESSA: NIST Simulation of Electron Spectra for Surface Analysis. Now Free!
o Special Databases - Biometrics
Selected NIST- Practice Guides in Material Sciences

Download NIST Si: of Electron Spectra for Surface Analysis at no cost. The surface databases provide data for surface



Dataset for polymer dielectrics

Online libraries, experiments and high-throughput computations
PoLyInfo, CROW Polymer Property Database, Polymer Property Predictor, Database (NIST), Polymer Genome

Polymer Genome

An informatics platform for polymer property prediction and design using machine Ieamg

Guide References Sign-in/up

$= To make predictions please Sign-in/up.

nit, SMILES ’ Predict Properties

ts or SMILES string

Draw Polymer

Polymers may be queried either using the drawing tool, or by specifying common names, r

Advanced experimental features
Copolymer Genome /& (Please Sign-in/up)

S “
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Dataset for polymer dielectrics

Online libraries, experiments and high-throughput computations
PoLyInfo, CROW Polymer Property Database, Polymer Property Predictor, Database (NIST), Polymer Genome

[|||| |] O\ Browse State-of-the-Art Datasets Methods More We are hiring! . 4 ;i'- SignIn

QM9 (Quantum Machines 9) e

QM9 provides quantum chemical properties for a relevant, consistent, and comprehensive chemical space of small o b

organic molecules. This database may serve the benchmarking of existing methods, development of new methods, such

as hybrid quantum mechanics/machine learning, and systematic identification of structure-property relationships.

Source: [) QMO Dataset udoaldl ol i o
Homepage Source: https://pubs.acs.org/doi/pdf/10.10
Usage &
Benchmarks wea 2
o
E 6
S 4
Trend Task Dataset Variant Best Model Paper Code g
E 2
5
: Il [
B Formation Energy QM9 MXMNet 1] (y] 0
2018 2019 2020 2021 2022
Drug Discovery QM9 MXMNet ™ 0 ® aom9
NMR J-coupling QM9 Ensemble of top 400 submissions 1] (9]
License ® @ Edit
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Dataset for polymer dielectrics

Online libraries, experiments and high-throughput computations

NanoMine for nanocomposites
-

Duke ‘ gg’:ig& GROUP E

Welcome Research v  People » Publications Funding News Contact

NanoMine: an Online Platform of Materials
Genome Prediction for Polymer Nanocomposites

Materials science is founded on the processing-structure-properties (p-s-p) paradigm. Understanding of
mechanisms have built up over decades leading to a rich tapestry of knowledge which is used to select and
design materials for applications. Unlike metallic alloy systems where databases and predictive tools have
been built to up and can enable more rapid materials design, the polymer nanocomposite data/design space
is considerably less developed due to the heterogeneity of constituent combinations as well as complexity in
polymer and interphase behavior.

RESEARCH

o Overview
~ Materials Genome Prediction
(MaterialsMine)
o NanoMine: Online MGI Prediction
Platform

°

Predicting Polymer Nanocomposite

Properties
Because of the complex mechanisms involved in nanocomposite formation and response, and the isolation

of data sets from each other, both the fundamental understanding and the discovery of new
nanocomposites is Edisonian and excruciatingly slow. We address this issue by creation of a living, open- o MetaMine

source data resource for nanocomposites. NanoMine is built on both a schema and an ontology to provide a » Polymers and Nanostructured Polymers
robustness to the FAIR (findable, accessible, interoperable and reusable) principles. Nanomine also allows
for the registration of materials resources, bridging the gap between existing resources and the end users
and making those existing resources available for research to material community. The data framework
together with the module tools like microstructure characterization and the FEA simulation tools forms the
nanocomposite data resource. Searching and visualization tools are being developed for user to query,
visualize, and compare their data with the existing data in our system for design purposes. Tools and models
utilizing data sciences and optimization concepts are being developed with the goal of data-driven materials
design.

o ChemProps

o Education Research (NRT)

» Previous Projects

Our lab is making continuous efforts to improve the data curation experience by allowing customized Excel
templates uploading in the front end and to ensure the data quality in the back end by developing
autonomous agents to detect possible errors. We are now transitioning the back end system to a more
extensible ontology-based system while maintaining an API to the Material Data Curator developed at NIST
under the grand objective of the Materials Genome Initiative (MGI). A corresponding new front end javascript
based user interface is also under development with more powerful dynamic features available.

You can access the prototype by clicking the button m Users without a Duke

NetID can apply for a Duke Onelink account for access.


https://github.com/Duke-MatSci/nanomine

Dataset for polymer dielectrics

Manual search of the literature
High-throughput computations using first principles; MD simulations

High-throughput computation

y/‘_ . . \\ - . .
Finite element ]_' Temperature distribution,

I
.
I ’ - . -
| = L model space charge distribution
/
= T l Phasefield |  Breakdown electric field,
: re"ira::l):;:’ : : 2 [ = effective permittivity,
2 gel 2 9 > ® /) electron density distribution
polymers or
: SR,
hanocomposites : 2 Molecular | _ Glass transmission temperature,
| dynamics thermal conductivity
' - /
| Quantum Bandgap. trap states, charge
n . wOm . . AR
| =] Mechanics injection barrier, permittivity
| >
| A nm pum mm Length

Desired or proxy
properties

'

Dataset
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Dataset for polymer dielectrics

Density functional theory (DFT) for charge injection barrier from electrode to polymer, trap depth in polymer;
ionic electronic and total dielectric constant

(b) (c)

Metal slab
s |- =
Vacuum level [—
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: : =
: ' =184 eV
E Vin E [ === LUMO
. -
' L vIp N o s PR
' . - ole trapping
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.
' E Ep=-2.78 ¢V
v £ T
ot 2 ’
= F $=9.83 eV ot
. MO of LUMO
- I s, HOMO
E Electron trapping
e s s = . sites
o i 77 =
¢c _:Wm VEA+A® | Determined r ===
¢h=‘\— Y, +VIP - AD) Wy EEL 0 - =

MO of HOMO
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Dataset for polymer dielectrics

d) Non-equilibrium molecular dynamics for thermal conductivity
e) Phase field model for dielectric breakdown in polymer nanocomposites (free energy as a function of
composition; composition is subject to diffusion; dynamic model with energy minimization at an interface)

(d) (e)

Ab Heat Flux AE
1 E— — r 3 C E, (kV/mm)
Fixedwy'wf,lﬁxed ¢ NANOPAMCIE o s
. ~ S = = Nanofiber
ource in -
315 : : o § 2 E,
- L
310| fittinglinearportionforg g S A @
305) p 8 :
' ;L'E"' PR oo atod e (T 1 200
g 300 S ™
b~ 295 = g S 13 1 150
290 e 3 :
‘ )
o S 04 .
285 Before I After
280 breakdown y  breakdown

100 200 300 400
Coordinate (Angstrom) 100

150 200 250 300

Thermal conductivity k =—(J /dT / dx) A, Easei. Emid (erimm)



Dataset ﬁ

High-throughput computation
First-principles theory
Molecular dynamic simulation
Phase-field simulation

Experimental data

Online database
Handbook
Literature

~ Fingerprint

Chemical data
Structural data
Properties

Kernel-based regression
Decision tree

Neural network

Deep learning

Machine learning model
\

= (°C) 5 Ey (MV m™)

k(WmK™")
Glass transmission temperature
Thermal conductivity
Breakdown electric field
Permittivity
Energy density

g

Properties
{ U.(J cF:f‘) \

J X

A W

7~ Inverse design

Enumeration
Evolution searching
Active learning
Generative models

Encoder == Decoder

f
|0 10 Y T

Structure-property linkage =

Pearson correlation
Decision tree-based methods
Interpretability of neural network

FIGURE 1 The schematic of machine learning methods for the rational design of polymer-based dielectrics




Machine Learning Strategies

Fingerprinting: Numerical representation of the materials in the datasets
Learning: Map between target property and fingerprint



a) Fingerprint based on a group contribution method; b) Simplified Molecular-Input

Line-Entry System (SMILES) and Extended-Connectivity Fingerprints (ECFPs)

(a)
(g iy gl

Example polymers

; é S E ; é ¢ E
< s 3 < 13 3

Possible blocks

CH,, CO.CS,O.NH, CH,.

C4H,S, metal-cages, etc.

{CH,-O-CO-CHS1-

{C5-0-C5-CHy 1=

(b)

C=CC1CCC(CC1)C(0)=0
(I e
/ SMILES
] R RS N=-0 o
v n ’ » v >‘
Bl oolo[ollolofo[olo N
- " v
23y
e
ECFP
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RDKit converts SMILES to numerical vectors

RDKIit: Open-Source Cheminformatics Software
Useful Links

* GitHub page
o Git source code repository
o The bug tracker Open-Scurce Cheminformatics
o Q&A’ Discussion and Machine Learning
« Sourceforge page
o The mailing lists
o Searchable archive of rdkit-discuss
o Searchable archive of rdkit-devel
« RDKit at LinkedIn
« The RDKit Blog
* Online Documentation
o Python API
o C++ API
o Downloadable version of the full HTML documentation
o Japanese translation of the documentation
Materials from the 2012 UGM
Materials from the 2013 UGM
Materials from the 2014 UGM
Materials from the 2015 UGM
Materials from the 2016 UGM
Materials from the 2017 UGM
o Materials from the 2018 UGM
o Materials from the 2019 UGM
o Materials from the 2020 UGM
o Materials from the 2021 UGM
« Other Stuff
o Conda binary packages for the RDKit
o RDKit Knime nodes
o recipes for building using the excellent conda package manager Contributed by Riccardo Vianello.
o homebrew formula for building on the Mac Contributed by Eddie Cao.

°

o

°

°

o

°



BIOVA gives hierarchical fingerprints

SYSTEMES

= D7S DASSAULT

|
) ~)
4 _
T

Free Download: BIOVIA

Discovery Studio Visualizer

c En

Drive Discovery with the Leading Molecular Graphics Environment

H2-C1-H2 C (1 | 02-Q2-01 | (1-C1-H1 | H2-(1-(1 | (1-Q2-01
S [ ey ) (O [

X

Molecular visualization is a key aspect of the analysis and communication of
modeling studies. If you need a commercial-grade graphics visualization tool for

viewing, sharing, and analyzing protein and modeling data, complete the form
below to receive the free Discovery Studio Visualizer for interactive 3D

visualization.
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(d)

Atomic level
descriptors

Hierarchical fingerprints

+ QSPR
descriptors

+ Morphological
descriptors

Higher length-scale descriptors

Q Dim. reduction

@ + RFE

Atom-triples
G5y Gy
S
\c/ \c/ H,-N;-C,
H
!
NG AT

T

Molecular quantum numbers
Fraction of sp? C atoms
Molecular surface area
Van der Waals surface
Fraction of aromatic rings
Fraction of aliphatic rings
Fraction of rotatable bonds

Distance between rings (d,)
Length of side-chain (/)
Length of main-chain (/,,)

E.. largeremor —

v
N*¥ 7]
Number of features

More features eliminated
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Nanocomposite fingerprint for dielectric properties

(e)

Physical parameter Shape parameter

Distribution parameter

Shell parameter

Permittivity &¢: 4~1000

Electrical conductivity o+ ‘
107"°~10"
Band gap E;: 3~10

I/l=1, IJ1,=1
particle

Ib/l:=1, IJ1:=10
nanowire

I/1=10, I/1,=10
nanosheet

30900

3

b =~

90 90 0

Permittivity &,.: 4~1000
Electrical conductivity o s:
107"°~10"

Band gap Eg: 3~10
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Inverse space nanocomposite fingerprint for structure

()

e

Fourier- | ‘ |
transform | ' Construction

| )

I R

A

Xy(D)
Xy(K)

Autocovariance g Two-phase
: Spectral density B
function material
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Convolutional neural network (CNN)

Neural network (decision tree type algorithm) with classification optimization
using matrix multiplication for images to identify patterns, require GPUs.
-Convolution layer (Initial layer, image)

further convolution layers for color, edges, etc. o
. Sy
-Pooling layer CéVO -

-Fully connected (FC) layer (Final layer) o ‘ZV = .
. Image (height, width, depth RGB)
Convolution, check if a feature 1s present such as an ”O” using a kernel or filter

Process by rastering across image with dot products resulting in a feature map,
activation map or convolution feature

nw >

Number of filters; Stride (step of raster); zero padding (background) decides the
complexity



For PNCs interfacial regions can be important

This 1s a major stumbling block



Dataset ﬁ

High-throughput computation
First-principles theory
Molecular dynamic simulation
Phase-field simulation

Experimental data

Online database
Handbook
Literature

~ Fingerprint

Chemical data
Structural data
Properties

Kernel-based regression
Decision tree

Neural network

Deep learning

Machine learning model
\

= (°C) 5 Ey (MV m™)

k(WmK™")
Glass transmission temperature
Thermal conductivity
Breakdown electric field
Permittivity
Energy density

g

Properties
{ U.(J cF:f‘) \
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A W

7~ Inverse design

Enumeration
Evolution searching
Active learning
Generative models

Encoder == Decoder

f
|0 10 Y T

Structure-property linkage =

Pearson correlation
Decision tree-based methods
Interpretability of neural network

FIGURE 1 The schematic of machine learning methods for the rational design of polymer-based dielectrics




Machine Learning (ML) Algorithm

Fingerprint => ML => Property

Linear and non-linear regression algorithms
Fingerprint ~ property (linear)
Radial basis function: Property ~ SUM(f(fingerprint-x.))
Polynomial: Property ~ SUM(k,, fingerprint™)

Kernel based algorithms (alternatives to least squares routines)
Kernel ridge regression (KRR)
Support vector machine (SVM)
Gaussian process regression (GPR)

Artificial neural networks (ANN)



Surrogate model (example gaussian)

=== Test Function

@ Global Minimum

@ Training Data

— GP Prediction

@ Estimated Minimum

X

Fig. 6 The initial GP model failed to capture the true global minimum. (image by Author)
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X

Fig. 7 Due to the GP prediction uncertainty, there is an improvement potential even when the nominal prediction
i larger than the current minimum. (Image by Author)
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: _ . Fig. 11 The second iteration. (Image by Author)
Fig. 10 The first iteration. (Image by Author)
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Fig. 12 The third iteration. (Image by Author)

Fig. 13 The final iteration. (Image by Author)
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Gaussian process regression
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Decision tree algorithms, random forest (RF)

Decision trees with many levels tend to learn irregular patterns

By randomly grouping sets from the input fingerprint irregular patterns can be
removed

(b)

Input layer FCx12 Output
(ECFP) layers layer

¢
R
>

Artificial neural network

0[O0} ]

ILIOILI--
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(c)

Convolution neural network

Convi1D, Pool x2

Layers

Input layer
{ ECFP )
|\_n

o
o
O.;
o

Conv

Feature.maps

Output
layer
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Convolutional neural network (CNN)

Neural network (decision tree type algorithm) with classification optimization
using matrix multiplication for images to identify patterns, require GPUs.
-Convolution layer (Initial layer, image)

further convolution layers for color, edges, etc. o
. Sy
-Pooling layer CéVO -

-Fully connected (FC) layer (Final layer) o ‘ZV = .
. Image (height, width, depth RGB)
Convolution, check if a feature 1s present such as an ”O” using a kernel or filter

Process by rastering across image with dot products resulting in a feature map,
activation map or convolution feature

nw >

Number of filters; Stride (step of raster); zero padding (background) decides the
complexity



TABLE 1 Compatison of different ML algorithms

ML algorithm

Advantages

Disadvantages

Linear regression

KRR, SVM

GPR

RF

ANN

Deep neural network

Simplest method

Low computational cost

The uncertainty for objective values can be
well predicted

Feasible for large datasets and provides
an intrinsic metric to evaluate the
importance of each descriptor

Exhibits strong ability to capture non-linear
complex relations from large-scale datasets

Feasible for graphical representations of materials
and learns representations with different
abstraction levels

Neglect of non-linear linkage between descriptors and properties

Unfeasible for large datasets as the size of the kernel
matrix scales quadratically with the number of features

Requires a manageable dataset size and does not have the
capability to train multiple properties in one single model

Might create over-complex trees and cause overfitting

Requires much more training data, is time-consuming, and lacks
interpretability; also called ‘black boxes’.

Requires much more training data, is time-consuming, and
lacks interpretability

Abbreviations: ANN, artificial neural network; GPR, Gaussian process regression; KRR, kernel ridge regression; ML, machine learning; RF, random forest; SVM, support vector

machine.
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Dataset ﬁ

High-throughput computation
First-principles theory
Molecular dynamic simulation
Phase-field simulation

Experimental data

Online database
Handbook
Literature

~ Fingerprint

Chemical data
Structural data
Properties

Kernel-based regression
Decision tree

Neural network

Deep learning

Machine learning model
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Decision tree-based methods
Interpretability of neural network

FIGURE 1 The schematic of machine learning methods for the rational design of polymer-based dielectrics
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Enumeration method,

go through each possible solution
(complete enumeration) or limit the
solutions (incomplete enumeration)

GPR-based ML model used to screen
promising polymer nanocomposites with
desired permittivity, breakdown strength and
energy density, resulting in several kinds of
nanocomposites with desired properties
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(b)

Inverse Design Methods

Active learning algorithm
Prediction [

or

Uncertainty of
prediction

Selecting the
optimal sample

Current Machine New
dataset learning model samples
A

Add to dataset

or

Prediction and

uncertainty

(1) training the ML-based surrogate

Choosing the optimal sample requires ML models to provide both prediction

Test new sample

model for property prediction,
(2) selecting the optimal sample based on
the prediction results including values

<

and uncertainties, and
(3) supplementing the optimal sample
into training dataset

and uncertainty values of the target property. As a result, the GPR algorithm
and a combination of bootstrapping methods with standard ML algorithms
(decision tree, SVM etc.), which can estimate the uncertainty of pre- dictions,
are common ML methods in active learning.



\ P,., - Parent polymers

O = Evolutionary Strategy (ES)
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® New polymers
® Known polymers

Bandgap, predicted (eV)

(= 5]
Y AL W .
500 55 60(
Glass transition temperature, predicted (K)

ES completes a structured search through
procedures inspired by natural evolution.

At each iteration, parameter vectors
(‘genotypes’, fingerprints in the ML) in a
population are updated (selection, crossover
and mutation in GA; movement of particle in
PSO) to generate an offspring,

followed by an evaluation of the objection
function value.
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Optimization

Particle Swarm

x  — Boosting with
Decision Trees

Ensemble of
Neural
Networks

v

KTraining Dataset/

f Gradient \

——

Agreement

Particle Swarm Optimization (PSO)
Move a particle to improve the situation

moving one particle impacts the other
particles

repeat and let the system evolve

Seems similar to a Monte-
Carlo/Metropolis simulation
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Take the known structure, find a relationship to the desired property,
then invert that relationship to regenerate the structure, finally you can
set the desired property to your target and generate the associated

VAE: Variational autoencoders

structure (possibly)

Encoder Latent space Decoder

(xy) —— z e &
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Polymer SD-VAE
Polymerla_t_ent space

PR XK
| p TSP ” \

High Tg High bandgap High Tg & bandgap
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Generate molecule from desired properties
Generate properties from molecule
(h) Learn to do this process correctly by repeating

GAN: Generative adversarial networks Emp'f ical data
distribution

-'31,

+ Real
- or -
: falke? &

Gaussian “

noise Generator Syntheticdata  Discriminator

4 S X

An image generated by a &
StyleGAN that looks deceptively like a
photograph of a real person. This
image was generated by a StyleGAN
based on an analysis of portraits.

\ ¢
Another GAN deepfake deep &
learning example
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TABLE 2 Some examples of the ML-driven approach applied in designing polymers and nanocomposites

Inverse design

Target property Data source Fingerprint ML model method Reference
Polymers: Bandgap of the polymer and electron DFT computation Hierarchical fingerprint in [53] GPR Enumeration [53]
injection barrier (proxies for breakdown .
SMILES in [43] [43]
strength)
Polymers: Bandgap and dielectric constant DFT computation Fingerprints based on singles, KRR Enumeration [22]
(proxies for energy density) doubles and triples components
Polymers: Frequency-dependent dielectric Experimental data Hierarchical fingerprint GPR Enumeration [34]
constant in studies
Polymers: Dielectric constant Experimental data Hierarchical fingerprint Interval support - [86]
in studies vector
regression
Polymers: Bandgap, glass transition temperature Experimental data SMILES GPR GA in [102] [102]
in studies .
VAE in [104] [104]
Polymers: Glass transition temperature Experimental data SMILES GPR Active learning  [88]
in studies
Polymers: Specific heat of polymers Experimental data Hierarchical fingerprint constructed  Decision tree - [66]
using the Materials Studio
software
Polymers: Thermal conductivity MD simulations ~ SMILES CNN - [25]
Polymers: Thermal conductivity Online database ~ SMILES Bayesian method Enumeration [39]
Nanocomposites: Breakdown strength, Experimental data Descriptor-based fingerprint GPR Enumeration [26]
permittivity and energy density in studies
Nanocomposites: Breakdown strength Monte Catlo MCR methods GPR GA [79]
multi-scale
simulation
Nanocomposites: Energy density Phase-field Desctiptor-based fingerprint NN Enumeration [60]
simulations
Nanocomposites: Thermal conductivity FEM simulation 2D cross-sectional images CNN - [61]

Abbreviations: CNN, convolutional neural network; DFT, density functional theory; FEM, finite-element model; GA, genetic algorithm; GPR, Gaussian process regression; KRR, kernel
ridge regression; MCR, microstructure characterization and reconstruction MD, molecular dynamic; ML, machine learning; NN, neural network; SMILES, Simplified Molecular-Input

Line-Entry System; VAE, variational autoencoder.
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FIGURE 1 The schematic of machine learning methods for the rational design of polymer-based dielectrics




Variable Importance

the relevance of features with target properties
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Gradients of convolutional neural networks (CNNs) model
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Deep Learning Important FeaTures (DeepLIFT)

(D ANACONDA ORG Search Anaconda.org “ Gallery About Anaconda Help Download Anaconda

78 26 6
Attribution value bioconda / packages / deeplift 0..13.0 (& > @ %o

N

Samples

DeepLIFT (Deep Learning Important FeaTures)

Files | Labels | Badges ‘

B License: MIT License

# Home: https://github.com/kundajelab/deeplift

</> Development: https://github.com/kundajelab/deeplift

&) Documentation: https://github.com/kundajelab/deeplift/blob/master/README.md
& 3151 total downloads

% Last upload: 1 year and 4 months ago

Installers
conda install @

To install this package with conda run:
conda install -c bioconda deeplift

Description
Algorithms for computing importance scores in deep neural networks.

Implements the methods in “Learning Important Features Through Propagating Activation Differences” by Shrikumar, Greenside
& Kundaje, as well as other commonly-used methods such as gradients, guided backprop and integrated gradients. See
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15

https://github.com/kundajelab/deeplift for documentation and FAQ.

Descriptors
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9.6 SHAP (SHapley Additive exPlanations)

SHAP (SHapley Additive exPlanations) by Lundberg and Lee (2017)59 is a method to explain
individual predictions. SHAP is based on the game theoretically optimal Shapley values.

There are two reasons why SHAP got its own chapter and is not a subchapter of Shapley values.
First, the SHAP authors proposed KernelSHAP, an alternative, kernel-based estimation approach for
Shapley values inspired by local surrogate models. And they proposed TreeSHAP, an efficient
estimation approach for tree-based models. Second, SHAP comes with many global interpretation
methods based on aggregations of Shapley values. This chapter explains both the new estimation
approaches and the global interpretation methods.

Interested in an in-depth, hands-on course on SHAP and Shapley values? Head over to the
Shapley course page and get notified once the course is available.

| recommend reading the chapters on Shapley values and local models (LIME) first.

9.6.1 Definition

The goal of SHAP is to explain the prediction of an instance x by computing the contribution of each
feature to the prediction. The SHAP explanation method computes Shapley values from coalitional
game theory. The feature values of a data instance act as players in a coalition. Shapley values tell us
how to fairly distribute the “payout” (= the prediction) among the features. A player can be an
individual feature value, e.g. for tabular data. A player can also be a group of feature values. For
example to explain an image, pixels can be grouped to superpixels and the prediction distributed
among them. One innovation that SHAP brings to the table is that the Shapley value explanation is
represented as an additive feature attribution method, a linear model. That view connects LIME and
Shapley values. SHAP specifies the explanation as:

M
a2 =da+ Y b:2!
57



Variable Importance

9 Local Interpretable Model-agnostic
Explanations (LIME)

9.1 Introduction

Break-down (BD) plots and Shapley values, introduced in Chapters 6 and 8, respectively, are most
suitable for models with a small or moderate number of explanatory variables.

None of those approaches is well-suited for models with a very large number of explanatory variables,
because they usually determine non-zero attributions for all variables in the model. However, in domains
like, for instance, genomics or image recognition, models with hundreds of thousands, or even millions,
of explanatory (input) variables are not uncommon. In such cases, sparse explanations with a small
number of variables offer a useful alternative. The most popular example of such sparse explainers is the
Local Interpretable Model-agnostic Explanations (LIME) method and its modifications.

The LIME method was originally proposed by Ribeiro, Singh, and Guestrin (2016). The key idea behind it
is to locally approximate a black-box model by a simpler glass-box model, which is easier to interpret. In
this chapter, we describe this approach.

9.2 Intuition

The intuition behind the LIME method is explained in Figure 9.1. We want to understand the factors that
influence a complex black-box model around a single instance of interest (black cross). The coloured
areas presented in Figure 9.1 correspond to decision regions for a binary classifier, i.e., they pertain to a
prediction of a value of a binary dependent variable. The axes represent the values of two continuous
explanatory variables. The coloured areas indicate combinations of values of the two variables for which
the model classifies the observation to one of the two classes. To understand the local behavior of the
complex model around the point of interest, we generate an artificial dataset, to which we fit a glass-box
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