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Abstract
A simple expression is derived for the effective shear viscosity of suspensions with deformable
polydispersed spheres in this study. The analyses commence with the modified Eshelby model
to derive the elastic stress–strain relation for an elastic composite containing spherical
inclusions. Then, using the elastic–viscous analogy, the effective shear viscosity is obtained
for suspensions with small volume fractions of deformable mono-sized spheres. Finally, using
Bruggeman’s differential model, the formula for the effective shear viscosity of suspensions
with concentrated deformable polydispersed spheres is obtained. The present formulae are
compared with some of the existing solutions and experimental measurements, and good
agreement is obtained.

1. Introduction

Concentrated suspensions have attracted great interest because
of their applications in processing of ceramics, food, beverage,
pharmacy, paints, magmas and cosmetic industries, etc [1–9].
Rheology studies of suspensions provide insight into the
interparticle interactions, and viscosity is the most measured
rheological property. The pioneering work on the effective
viscosity of suspensions was performed by Einstein in which
the motion of a single rigid sphere in a fluid was considered
and the effective (shear) viscosity of suspensions of spheres,
η∗, was derived as a function of the viscosity of the pure liquid,
ηo, as well as the volume fraction of rigid spheres, φ, such
that [10]

η∗ = ηo(1 + 2.5φ). (1)

Einstein’s equation is valid for a very dilute dispersion of
rigid spheres, and its applicability has been extended to higher
volume fractions of rigid spheres by including interactions
between spheres in analyses [11–19]. The problem is generally
analysed by using the Navier–Stokes equation to describe the
velocity field of the viscous fluid, which is perturbed by the
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presence of spheres. The spheres are generally considered to
be rigid and mono-sized, and both long-range hydrodynamic
interactions and short-range interparticle forces are considered.
The dynamics of the fluid and spheres are coupled by the
boundary condition that the fluid and sphere velocities match
at the sphere’s surface (i.e. the no slip boundary condition). It
has been concluded that Einstein’s equation can be extended
to account for effects of sphere interactions by adding higher-
order volume-fraction terms, such that

η∗ = ηo(1 + 2.5φ + cφ2 + · · ·). (2)

However, there is no general agreement on the principles by
which coefficients for the order of the second and higher terms
are to be calculated. This is because of the complexity in the
mathematical treatment of the integral equations that describe
interactions between spheres. Also, the calculated results
depend on whether two-sphere interactions or many-sphere
interactions are considered, which spatial distribution function
is used for the spheres and how the integral is calculated in
powers of φ. As a result, different values for the φ2 coefficient,
c, have been obtained [11–19].

For viscous spheres with a finite viscosity, ηs, the problem
is complicated by not only ηs but also the capillary number,
Ca, which represents the relative effect of the viscous force
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and the surface tension, γ , of spheres [6] and is defined by
Ca = ηov/γ , where v is a characteristic velocity. For small
Ca, deformation of spheres is controlled by surface tension
and viscous spheres remain spherical in the suspension. For
large Ca, viscous spheres are deformed by the hydrodynamic
stress in the suspension. The classical work by Taylor [20]
considered that the emulsifier film around spheres would
not prevent stress transfer from the fluid to the dispersed
viscous spheres and that there was no slippage at the sphere–
fluid interface. By extending Einstein’s analysis, Taylor
obtained [20]

η∗ = ηo

[
1 + 2.5φ

(
ηs + 0.4ηo

ηs + ηo

)]
. (3)

Like Einstein’s equation, equation (3) is valid for dilute
suspensions. When the viscous spheres become rigid (i.e.
ηs → ∞), equation (3) is reduced to Einstein’s equation,
equation (1). However, it should be noted that not all the
essential continuity conditions at the sphere–fluid interface
are satisfied in Tayor’s model. Specifically, while continuities
of velocity and tangential stresses are satisfied, continuity of
normal stress is not, and the deformation of spheres is not
considered. In this case, Taylor’s solution is pertinent to the
system with small values of Ca. It should also be noted that
if a viscoelastic membrane forms on the sphere surface, the
membrane will retard the transmittance of tangential stress
from the fluid to spheres and therefore hinders the flow within
spheres. In this case, the viscous spheres act like hard spheres.

To extend the solution for dilute suspensions to that for
concentrated suspensions, a simple differential model has been
developed by Bruggeman [21]. The basic idea is to construct
concentrated suspensions from a fluid through a series of
incremental additions of spheres until its final volume fraction
is reached. At each stage of the process, the relevant solution of
a dilute suspension problem is used to construct the effective
properties of the suspension, which is then used as the base
viscosity for the next incremental step. Because the base
suspension is treated as a homogeneous effective medium
when an infinitesimal number of spheres are added, the added
spheres at each step should be larger than the spheres added in
the previous step. Hence, the differential model is pertinent to
the case of polydispersed suspensions. Roscoe [22] applied
the differential model to Einstein’s equation to obtain η∗

for suspensions of polydispersed hard spheres. Combining
Taylor’s equation and Bruggeman’s differential model, Phan-
Thien and Pham [23] derived the effective viscosity for
suspensions with non-deformable polydispersed spheres.

The purpose of this study is to derive the effective
viscosity for polydispersed concentrated suspensions with
deformable viscous spheres (i.e. large values of Ca). To
achieve this, the modified Eshelby model [24, 25] for effective
Young’s modulus of an elastic composite containing spherical
inclusions [26], the elastic–viscous analogy for converting
elastic to viscous solutions [27, 28] and Bruggeman’s
differential model [21] are used. Then the present formulae
are compared with (i) the predictions obtained from other
models [23, 29, 30] and (ii) the experimental measurements
for the effective viscosity of concentrated suspensions with
deformable polydispersed bubbles [31, 32].

2. Analyses

To derive the effective viscosity for polydispersed concentrated
suspensions with deformable viscous spheres (i.e. large
capillary numbers), the present analyses consist of three
analytical procedures: (i) the modified Eshelby model is used to
derive the elastic stress–strain relation for an elastic composite
containing spherical inclusions. (ii) The elastic–viscous
analogy is adopted to obtain the effective shear viscosity
for suspensions with small volume fractions of deformable
mono-sized spheres. (iii) Bruggeman’s differential model is
applied to derive the formula for the effective shear viscosity
of suspensions with concentrated deformable polydispersed
spheres.

2.1. Modified Eshelby model

It has been noted that the solution of viscous deformation
of suspensions can be obtained from the solution of
elastic deformation of composites using the elastic–viscous
analogy [27, 28]. A model for analysing the elastic stress field
of an infinite matrix containing an ellipsoidal inclusion was
first developed by Eshelby [24]. Considering the average stress
imposed on an inclusion due to the presence of other inclusions,
the Eshelby model was modified to include the effect of a finite
volume fraction of inclusions by Mori and Tanaka [25]. Using
the modified Eshelby model, the elastic stress transfer between
the matrix and aligned ellipsoidal inclusions was derived
by Hsueh [26]. The formulations of Hsueh’s solutions are
formidable because of the complex Eshelby tensor involved;
however, the tensor components are greatly simplified when
inclusions are spherical and Poisson’s ratio is 0.5. It can be
derived from Hsueh’s results that the uniaxial stress–strain
(i.e. σ–ε) relation for elastic composites containing spherical
inclusions is

ε =
[

2Gs + 3Go − 2φ(Gs − Go)

2Gs + 3Go + 3φ(Gs − Go)

]
σ

Eo

(for νs = νo = 0.5), (4)

where E, ν and G are Young’s modulus, Poisson’s ratio and
shear modulus, respectively, and the subscripts, s and o, denote
spherical inclusion and matrix, respectively.

It should be noted that the details of the spatial distribution
of inclusions are not considered in the modified Eshelby model,
and the mean field is considered in modelling. Also, in the
absence of inclusions, the deformation throughout the system
is uniform and is described by ε = σ/Eo for uniaxial loading.
The deformation of inclusions is reflected by the uniaxial
stress–strain relation shown in equation (4). Specifically,
spherical inclusions become ellipsoids when the composite
is subjected to uniaxial loading which is described by the
constrained strain component in inclusions in [24–26].

2.2. Elastic–viscous analogy

In using the elastic–viscous analogy, the procedures of Laplace
transform and inverse Laplace transform are required to obtain
viscous solutions from elastic solutions [27, 28, 33]. However,
it has been derived that these procedures are equivalent to
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making the following replacements: ε → ε̇, ν → 0.5,
E → 3η and G → η, where ε̇ is the uniaxial strain rate of the
corresponding viscous composite. Hence, the shear viscosity,
η∗, of viscous composites is

η∗ = σ

3ε̇
= ηo

[
2ηs + 3ηo + 3φ(ηs − ηo)

2ηs + 3ηo − 2φ(ηs − ηo)

]
. (5)

Equation (5) is identical to Bedeaux’s solution [34] for the
effective shear viscosity of the two-phase flow when φ is small.
It should be noted that the details of the velocity gradients
due to the variation of the viscosity in space and time were
not considered in Bedeaux’s analysis. Instead, the average of
velocity fields over regions sufficiently large compared with
the structure was considered to derive the effective viscosity
of the suspension [34]. Equation (5) is also identical to Hashin
and Shtrikman’s lower-bound solution for the effective shear
modulus of incompressible composites based on a composite-
sphere model [30] while Hashin and Shtrikman’s upper-bound
solution is given by [30]

η∗ = ηs

[
5ηo − 3φ(ηo − ηs)

5ηs + 2φ(ηo − ηs)

]
. (6)

However, it should be noted that the above bound solutions,
equations (5) and (6), are valid when ηs > ηo. If ηs < ηo,
the two equations should be exchanged; that is, equations (5)
and (6) become the upper- and the lower-bound solutions,
respectively.

Because all the essential continuity conditions at the
inclusion–matrix interface are satisfied in the Eshelby model,
the spheres are considered as deformable in analyses. Hence,
equation (5) is pertinent to the system of suspensions with
large values of Ca. However, because only the average stress
imposed on an inclusion due to the presence of other inclusions
is considered in the modified Eshelby model, η∗ obtained
from equation (5) through the analogy contains only long-
range interactions. With the lack of short-range interparticle
forces, equation (5) would not be accurate in describing the
effective viscosity of suspensions with high volume fractions of
spheres. Nevertheless, when φ is sufficiently small, the neglect
of short-range interparticle forces can be justified. Hence,
when φ → 0, equation (6) can be simplified to

η∗ = ηo

[
1 + 2.5φ

(
ηs − ηo

ηs + 1.5ηo

)]
(for φ → 0). (7)

Equation (7) describes the effective viscosity of the suspension,
η∗, when a small volume fraction φ of deformable spheres with
viscosity ηs is added to a fluid with viscosity ηo.

2.3. Bruggeman’s differential model

The differential model constructs the suspension by adding
an infinitesimal volume fraction of spheres at each step. At
any intermediate step, the volume fraction of spheres in the
suspension is defined as φ and the effective viscosity of
suspension is defined as η∗. When an infinitesimal volume
fraction �φ of spheres is added to this suspension, the newly
added spheres have a volume fraction �φ/(1 + �φ) in the

new suspension and the effective viscosity of the suspension
changes from η∗ to η∗+dη∗. Using equation (7), the differential
model yields

η∗ + dη∗ = η∗
[

1 + 2.5

(
�φ

1 + �φ

) (
ηs − η∗

ηs + 1.5η∗

)]
. (8)

At this step, the total volume fraction of spheres increases from
φ to φ + dφ, such that

φ + dφ = φ + �φ

1 + �φ
. (9)

Based on equation (9), dφ is related to �φ by

dφ = (1 − φ) �φ

1 + �φ
. (10)

Combination of equations (8) and (10) yields

(ηs + 1.5η∗) dη∗

2.5(ηs − η∗)η∗ = dφ

1 − φ
. (11)

Integration of equation (11) with the initial condition, η∗ = ηo

at φ = 0, yields

φ = 1 −
(

ηo

η∗

)2/5
ηs − η∗

ηs − ηo
. (12)

Equation (12) is the expression for the effective shear
viscosity of suspensions with deformable polydispersed
spheres. However, it should be noted that the details of the
spatial and the size distributions of spheres are not considered
in deriving equation (12).

When ηs → ∞, equation (12) becomes

η∗ = ηo(1 − φ)−2.5 (for ηs → ∞). (13)

Equation (13) is identical to Roscoe’s equation [22] for the
viscosity of suspensions of polydispersed rigid spheres. For
small volume fractions of polydispersed spheres (i.e. φ →
0), equation (13) is further reduced to Einstein’s equation,
equation (1). When spheres become bubbles (i.e. ηs = 0),
equation (12) becomes

η∗ = ηo(1 − φ)5/3 (for ηs = 0). (14)

In this case, η∗ decreases with increasing volume fraction of
bubbles.

2.4. Consideration of maximum packing volume fraction of
spheres

It has been noted that the differential model imposes no
restriction on the volume fraction of dispersed spheres, φ, and
the value of φ can reach unity. This is physically unrealistic.
With the volume fraction φ of spheres in the fluid, the free
volume in the fluid available is less than 1–φ when new spheres
are added to the fluid because a significant portion of the
fluid is immobilized in the volume between existing spheres.
To account for this, it has been suggested that the effective
volume occupied by spheres is φ/φc instead of φ where φc

3
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is an adjustable parameter related to the volume fraction at
which spheres become closely packed. The typical value of
φc is between 0.6 and 0.7 [35]. Hence, when an infinitesimal
volume fraction �φ of spheres is added to the suspension, the
total effective volume fraction of spheres increases from φ/φc

to φ/φc + dφ, such that

φ/φc + dφ = φ/φc + �φ

1 + �φ
. (15)

Using equation (15), dφ is related to �φ by

dφ = (1 − φ/φc)�φ

1 + �φ
. (16)

Replacing equation (10) by equation (16) in the differential
model, it can be derived that equation (12) becomes

φ = φc

[
1 −

(
ηo

η∗

) 2
5φc

(
ηs − η∗

ηs − ηo

) 1
φc

]
. (17)

When ηs → ∞, equation (17) is reduced to the well-known
Dougherty and Krieger equation [35] for suspensions with
rigid spheres, such that

η∗ = ηo

(
1 − φ

φc

)−2.5φc

. (18)

3. Comparison

First, Phan-Thien and Pham’s solution for the effective
viscosity for suspensions with non-deformable polydispersed
spheres and the solution obtained by Christensen, who
used a micro-mechanics model and a generalized self-
consistent method to derive the effective viscosity for
polydispersed concentrated suspensions, are summarized.
Then a comparison is made between the present and existing
analytical results and experimental measurements.

3.1. Phan-Thien and Pham’s solution

Phan-Thien and Pham [23] derived the effective viscosity for
polydispersed concentrated suspensions by combining Tay-
lor’s equation [20] and Bruggeman’s differential model [21],
and the solution is

φ = 1 −
(

ηo

η∗

)2/5 (
2.5ηs + ηo

2.5ηs + η∗

)3/5

. (19)

Phan-Thien and Pham’s solution, equation (19), is pertinent
to emulsions with small capillary numbers such that spherical
droplets remain spherical in the suspension. The difference
between the present formula and Phan-Thien and Pham’s
solution can be observed by comparing equation (12) with
equation (19). When ηs → ∞, both equations (12) and
(19) can be reduced to equation (13) for the viscosity of
suspensions of polydispersed rigid spheres. However, when
spheres become bubbles (i.e. ηs = 0), equation (19) becomes

η∗ = ηo

1 − φ
(for ηs = 0). (20)

Hence, the viscosity of suspensions increases with the volume
fraction of bubbles. This is because bubbles are considered
to remain spherical and non-deformable in the suspension in
Taylor’s model.

3.2. Christensen’s solution

Using a micro-mechanics model, Christensen [29] developed
a generalized self-consistent method to derive the effective
properties of polydispersed suspensions. Based on
Christensen’s solution for incompressible suspension (i.e.
letting Poisson’s ratio = 0.5), η∗ satisfies a quadratic equation,
such that

A

(
η∗

ηo

)2

+ 2B

(
η∗

ηo

)
+ C = 0, (21)

where

A = 12η1

(
ηs

ηo
− 1

)
φ10/3 − 2

[
63η2

(
ηs

ηo
− 1

)
+ 2η1η3

]
φ7/3

+ 252η2

(
ηs

ηo
− 1

)
φ5/3 − 150η2

(
ηs

ηo
− 1

)
φ + 8η2η3,

B = 3η1

(
ηs

ηo
− 1

)
φ10/3 + 2

[
63η2

(
ηs

ηo
− 1

)
+ 2η1η3

]
φ7/3

− 252η2

(
ηs

ηo
− 1

)
φ5/3 + 93.75η2

(
ηs

ηo
− 1

)
φ + 0.75η2η3,

C = −18η1

(
ηs

ηo
− 1

)
φ10/3 − 2

[
63η2

(
ηs

ηo
− 1

)
+ 2η1η3

]
φ7/3

+ 252η2

(
ηs

ηo
− 1

)
φ5/3 − 168.75η2

(
ηs

ηo
− 1

)
φ − 9.5η2η3

with

η1 = 19

(
ηs

ηo
− 1

)
, η2 = 9.5

(
ηs

ηo
− 1

)
+ 17.5,

and η3 = 3

(
ηs

ηo
− 1

)
+ 7.5.

3.3. Comparison

The present analytical results are compared with the
existing analytical results and experimental measurements.
First, suspensions with deformable polydispersed viscous
spheres are considered, and the results obtained from
equation (12) are compared with the results from Hashin
and Shtrikman’s bound solutions, equations (5) and (6),
and Christensen’s solution, equation (21). Second, the
difference between suspensions with deformable and non-
deformable polydispersed viscous spheres is considered, and
the results obtained from equation (12) are compared with
those from Phan-Thien and Pham’s equation, equation (19).
Finally, suspensions with deformable polydispersed bubbles
are considered, and the results obtained from equations (12)
and (17) are compared with existing numerical results [36] and
measurements [31, 32].

The normalized effective viscosities of suspensions,
η∗/ηo, as functions of the volume fraction of deformable

4
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∞

Figure 1. The normalized effective viscosity, η∗/ηo, of suspensions as a function of the volume fraction of deformable polydispersed
spheres, φ, for the sphere-to-liquid viscosity ratio, ηs/ηo, being (a) 10, 100 and ∞ and (b) 0, 0.2, 0.5 and 0.8 showing the comparison among
the present formula, equation (12), Hashin and Shtrikman’s bound solutions, equations (5) and (6), and Christensen’s solution, equation (21).

∞

Figure 2. The normalized effective viscosity, η∗/ηo, of suspensions as a function of the volume fraction of polydispersed spheres, φ, for
the sphere-to-liquid viscosity ratio, ηs/ηo, being (a) 10, 100 and ∞ showing the difference between deformable and non-deformable
spheres and (b) 0, 0.2, 0.5 and 0.8 showing the results for non-deformable spheres to compare with figure 1(b).

polydispersed spheres, φ, are shown in figures 1(a) and (b),
respectively, for the sphere-to-fluid viscosity ratio, ηs/ηo,
being greater and lesser than unity. When ηs/ηo > 1,
figure 1(a) shows that η∗/ηo increases with both φ and ηs/ηo.
When ηs/ηo < 1, figure 1(b) shows that η∗/ηo increases
with increasing ηs/ηo but decreases with increasing φ. The
difference between Hashin and Shtrikman’s upper- and lower-
bound solutions increases when ηs/ηo deviates from unity.
Specifically, the upper-bound solution shows that η∗ → ∞
when ηs → ∞, and the lower-bound solution shows that
η∗ = 0 when ηs = 0. Hashin and Shtrikman’s solutions for
these two extreme cases are not shown in figures 1(a) and (b).

However, both the present formula and Christensen’s solution
are always within Hashin and Shtrikman’s bound solutions.
Also, the present formula and Christensen’s solution are in
excellent agreement for ηs/ηo � 10, and the curves from these
two solutions can hardly be distinguished in some cases in
figure 1(b) for fixed ηs/ηo.

The normalized effective viscosity of suspensions, η∗/ηo,
as a function of the volume fraction of polydispersed spheres,
φ, is plotted in figure 2(a) for ηs/ηo > 1 to show the
difference between deformable and non-deformable spheres,
i.e. equations (12) and (19). The normalized effective viscosity
of suspensions, η∗/ηo, as a function of the volume fraction
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Figure 3. The normalized effective viscosity, η∗/ηo, of suspensions
as a function of the volume fraction of deformable spherical
bubbles, φ, showing the comparison among the present formulae,
equations (12) and (17), Manga and Loewenberg’s numerical
simulations and Lejeune et al’s measurements.

of non-deformable polydispersed spheres, φ, is shown in
figure 2(b) for ηs/ηo < 1 while the corresponding solutions for
deformable spheres can be found in figure 1(b). Equations (12)
and (19) become identical only when the spheres are rigid.
Otherwise, compared with equation (12), equation (19) always
predicts a higher value of η∗. Specifically, figure 2(b) shows
that η∗/ηo is always greater than unity even when ηs/ηo is less
than unity, and both figures 2(a) and (b) show that η∗ → ∞
when φ → 1 regardless of the value of ηs when the spheres
are non-deformable.

Bubbles formed by exsolution of volatiles play a major
role in magma ascent and volcanic eruptions, and rheology of
bubble-bearing magmas is of interest. It has been concluded
that magmas have large capillary numbers because of their
high viscosity and bubbles are deformable in magmas [6].
Using the boundary integral numerical technique, Manga and
Loewenberg [36] performed numerical simulations to calculate
the viscosity of a suspension of deformable spherical bubbles
within a Newtonian fluid, and the calculated results are shown
in figure 3. It should be noted that mono-sized bubbles
were considered in the simulation, and the upper value on
φ of 0.4 shown in figure 3 is governed by the maximum
number of bubbles that can be randomly positioned inside
the unit cell in simulations. Lejeune et al [31] measured
the viscosity of the calcium alumiosilicate melt containing
deformable polydispersed bubbles at high temperatures, and
the results are also shown in figure 3. Using φc =
0.64, η∗ is predicted from equation (17). Compared with
equation (17), equation (12) has a better agreement with
Manga and Loewenberg’s numerical results. However, no
conclusion can be drawn because polydispersed spheres are
considered in deriving equations (12) and (17), while mono-
sized bubbles are considered in simulations. Although the
suspensions have polydispersed bubbles in measurements, the

Figure 4. The normalized effective viscosity, η∗/ηo, of suspensions
as a function of the volume fraction of deformable bubbles, φ,
showing the comparison between the present formulae,
equations (12) and (17), and Stein and Spera’s measurements.

(This figure is in colour only in the electronic version)

spread of data makes it difficult to judge whether equation (12)
or equation (17) gives a better prediction.

Stein and Spera [32] measured the shear viscosity
of rhyolite-bubble emulsions at magmatic temperatures.
The bubble sizes have a log-normal distribution, and the
experiments were carried out at high capillary numbers with
30 < Ca < 925. The measured relative viscosity as a function
of the volume fraction of bubbles is shown in figure 4. It
was claimed that the measured viscosities were not sensitive
to the temperature for the temperature range 925–1125 ◦C in
the experiment. The variation of the measured viscosities at
a fixed porosity is due to inter-sample variability associated
with (1) the heterogeneous distribution of bubbles, (2) the
presence of a range of bubble sizes and (3) experimental
uncertainty [32]. Again, the spread of data in figure 4 makes it
difficult to judge whether equation (12) or equation (17) gives
a better prediction.

4. Conclusions

Since Einstein derived the effective viscosity of suspensions
with dilute dispersion of rigid spheres, significant efforts have
been made to extend the solution to the case of higher volume
fractions of spheres. The spheres can be mono-sized or
polydispersed, and they can also be rigid or viscous. When
the spheres are viscous, the solutions also depend on the
relative effect of the viscous force and the surface tension
of spheres, i.e. the capillary number. For small capillary
numbers, deformation of spheres is controlled by surface
tension and viscous spheres remain spherical in the suspension.
For large capillary numbers, viscous spheres are deformed
by the hydrodynamic stress in the suspension. Using the
modified Eshelby model, the elastic–viscous analogy and
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Bruggeman’s differential model, formulae for the effective
shear viscosity of suspensions with deformable polydispersed
spheres are derived in this study. Compared with the existing
solutions, our formula, equation (12), is (i) within Hashin and
Shtrikman’s bound solutions, (ii) much more concise than
Christensen’s solution, equation (21), and (iii) in excellent
agreement with Christensen’s solution when the sphere-to-
liquid viscosity ratio is less than 10. Our formula is also
in good agreement with Manga and Loewenberg’s simulated
results for suspensions of deformable spherical bubbles within
a Newtonian fluid. Compared with existing experimental
results, good agreement is obtained with (i) Lejeune
et al’s viscosity measurements of calcium alumiosilicate
melt containing deformable polydispersed bubbles at high
temperatures and (ii) Stein and Spera’s viscosity measurements
of rhyolite-bubble emulsions at magmatic temperatures.
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