
4/11/22, 10:05 PMA Simple Neural Network - Transfer Functions · Machine Learning Notebook

Page 1 of 10https://mlnotebook.github.io/post/transfer-functions/#tanh

A Simple Neural
Network - Transfer

Functions
An insight into various activation functions

! 08 Mar 2017, 10:43
" tutorials
neural network / transfer / activation / gaussian / sigmoid /
linear / tanh

We’re going to write a little bit of Python in this tutorial on Simple
Neural Networks (Part 2). It will focus on the different types of
activation (or transfer) functions, their properties and how to
write each of them (and their derivatives) in Python.

As promised in the previous post, we’ll take a look at some of
the different activation functions that could be used in our
nodes. Again please let me know if there’s anything I’ve gotten
totally wrong - I’m very much learning too.

1. Linear Function
2. Sigmoid Function
3. Hyperbolic Tangent Function
4. Gaussian Function
5. Heaviside (step) Function

M L N o t e b o o kM L N o t e b o o k

Built with Hugo
Theme Blackburn

$ Home

% Posts

& About

' Contact

(Twitter

) Facebook

* LinkedIn

+ GitHub

https://mlnotebook.github.io/topics/tutorials
https://mlnotebook.github.io/tags/neural-network
https://mlnotebook.github.io/tags/transfer
https://mlnotebook.github.io/tags/activation
https://mlnotebook.github.io/tags/gaussian
https://mlnotebook.github.io/tags/sigmoid
https://mlnotebook.github.io/tags/linear
https://mlnotebook.github.io/tags/tanh
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fmlnotebook.github.io&t=
https://twitter.com/intent/tweet?source=https%3A%2F%2Fmlnotebook.github.io&text=:%20https%3A%2F%2Fmlnotebook.github.io&via=mlnotebook
http://www.reddit.com/submit?url=https%3A%2F%2Fmlnotebook.github.io&title=
http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fmlnotebook.github.io&title=&summary=&source=https%3A%2F%2Fmlnotebook.github.io
https://mlnotebook.github.io/
https://gohugo.io/
https://github.com/yoshiharuyamashita/blackburn
https://mlnotebook.github.io/
https://mlnotebook.github.io/post/
https://mlnotebook.github.io/about/
https://mlnotebook.github.io/contact/
https://twitter.com/mlnotebook
https://facebook.com/machineln
https://linkedin.com/in/robdrobinson
https://github.com/mlnotebook

4/11/22, 10:05 PMA Simple Neural Network - Transfer Functions · Machine Learning Notebook

Page 2 of 10https://mlnotebook.github.io/post/transfer-functions/#tanh

6. Ramp Function
1. Rectified Linear Unit (ReLU)

Linear (Identity) Function
To contents

What does it look like?

Figure 1: The linear function (left) and its derivative
(right)

Formulae

Python Code

def linear(x, Derivative=False):
 if not Derivative:
 return x
 else:
 return 1.0

Why is it used?

If there’s a situation where we want a node to give its output
without applying any thresholds, then the identity (or linear)
function is the way to go.

Hopefully you can see why it is used in the final output layer
nodes as we only want these nodes to do the

LinearFunction

li
n
e
a
r(
x
)

.8,8

f () =xi xi

input × weight

4/11/22, 10:05 PMA Simple Neural Network - Transfer Functions · Machine Learning Notebook

Page 3 of 10https://mlnotebook.github.io/post/transfer-functions/#tanh

operations before giving us its answer without any further
modifications.

Note: The linear function is not used in the hidden layers. We
must use non-linear transfer functions in the hidden layer nodes
or else the output will only ever end up being a linearly
separable solution.

The Sigmoid (or Fermi) Function
To contents

What does it look like?

Figure 2: The sigmoid function (left) and its
derivative (right)

Formulae

Python Code

def sigmoid(x,Derivative=False):
 if not Derivative:
 return 1 / (1 + np.exp (-x))
 else:
 out = sigmoid(x)
 return out * (1 - out)

f () = , () = σ() (1 − σ())xi
1

1 + e−xi
f ′ xi xi xi

4/11/22, 10:05 PMA Simple Neural Network - Transfer Functions · Machine Learning Notebook

Page 4 of 10https://mlnotebook.github.io/post/transfer-functions/#tanh

Why is it used?

This function maps the input to a value between 0 and 1 (but not
equal to 0 or 1). This means the output from the node will be a
high signal (if the input is positive) or a low one (if the input is
negative). This function is often chosen as it is one of the
easiest to hard-code in terms of its derivative. The simplicity of
its derivative allows us to efficiently perform back propagation
without using any fancy packages or approximations. The fact
that this function is smooth, continuous (differentiable),
monotonic and bounded means that back propagation will work
well.

The sigmoid’s natural threshold is 0.5, meaning that any input
that maps to a value above 0.5 will be considered high (or 1) in
binary terms.

Hyperbolic Tangent Function ()
To contents

What does it look like?

Figure 3: The hyperbolic tangent function (left) and
its derivative (right)

Formulae

tanh(x)

f () = tanh(), () = 1 − tanhi i
′

i
2

4/11/22, 10:05 PMA Simple Neural Network - Transfer Functions · Machine Learning Notebook

Page 5 of 10https://mlnotebook.github.io/post/transfer-functions/#tanh

Why is it used?

This is a very similar function to the previous sigmoid function
and has much of the same properties: even its derivative is
straight forward to compute. However, this function allows us to
map the input to any value between -1 and 1 (but not inclusive
of those). In effect, this allows us to apply a plenalty to the node
(negative) rather than just have the node not fire at all. It also
gives us a larger range of output to play with in the positive end
of the scale meaning finer adjustments can be made.

This function has a natural threshold of 0, meaning that any
input which maps to a value greater than 0 is considered high
(or 1) in binary terms.

Again, the fact that this function is smooth, continuous
(differentiable), monotonic and bounded means that back
propagation will work well. The subsequent functions don’t all
have these properties which makes them more difficult to use in
back propagation (though it is done).

What’s the difference between the
sigmoid and hyperbolic tangent?
They both achieve a similar mapping, are both continuous,
smooth, monotonic and differentiable, but give out different
values. For a sigmoid function, a large negative input generates
an almost zero output. This lack of output will affect all
subsequent weights in the network which may not be desirable -
effectively stopping the next nodes from learning. In contrast,
the function supplies -1 for negative values, maintaining
the output of the node and allowing subsequent nodes to learn
from it.

f () = tanh(), () = 1 − tanhxi xi f ′ xi ()xi
2

tanh

4/11/22, 10:05 PMA Simple Neural Network - Transfer Functions · Machine Learning Notebook

Page 6 of 10https://mlnotebook.github.io/post/transfer-functions/#tanh

Gaussian Function
To contents

What does it look like?

Figure 4: The gaussian function (left) and its
derivative (right)

Formulae

Python Code

def gaussian(x, Derivative=False):
 if not Derivative:
 return np.exp(-x**2)
 else:
 return -2 * x * np.exp(-x**2)

Why is it used?

The gaussian function is an even function, thus is gives the
same output for equally positive and negative values of input. It
gives its maximal output when there is no input and has
decreasing output with increasing distance from zero. We can
perhaps imagine this function is used in a node where the input
feature is less likely to contribute to the final result.

g
a
u
s
s
ia
n
(x
)

GaussianFunction
1.2

1.0

0.8

0.6

0..4

0.2

0.0

-0.

-0

-0.6

-0.8

-1.0
-1.28

f () = , () = −2xxi e−x2
i f ′ xi e−x2

i

4/11/22, 10:05 PMA Simple Neural Network - Transfer Functions · Machine Learning Notebook

Page 7 of 10https://mlnotebook.github.io/post/transfer-functions/#tanh

Step (or Heaviside) Function
To contents

What does it look like?

Figure 5: The Heaviside function (left) and its
derivative (right)

Formulae

Why is it used?

Some cases call for a function which applies a hard thresold:
either the output is precisely a single value, or not. The other
functions we’ve looked at have an intrinsic probablistic output to
them i.e. a higher output in decimal format implying a greater
probability of being 1 (or a high output). The step function does
away with this opting for a definite high or low output depending
on some threshold on the input .

However, the step-function is discontinuous and therefore non-
differentiable (its derivative is the Dirac-delta function).
Therefore use of this function in practice is not done with back-
propagation.

f (x) = { 0
1

: ≤ Txi
: > Txi

T

4/11/22, 10:05 PMA Simple Neural Network - Transfer Functions · Machine Learning Notebook

Page 8 of 10https://mlnotebook.github.io/post/transfer-functions/#tanh

Ramp Function
To contents

What does it look like?

Figure 6: The ramp function (left) and its derivative
(right) with and .

Formulae

Python Code

def ramp(x, Derivative=False, T1=0, T2=np.max(x)):
 out = np.ones(x.shape)
 ids = ((x < T1) | (x > T2))
 if not Derivative:
 out = ((x - T1)/(T2-T1))
 out[(x < T1)] = 0
 out[(x > T2)] = 1
 return out
 else:
 out[ids]=0
 return out

T1 = −2 T2 = 3

f (x) =

⎧

⎩

⎨
⎪⎪
⎪⎪

0

 (−)xi T1
(−)T2 T1

1

: ≤xi T1

: ≤ ≤T1 xi T2

: >xi T2

4/11/22, 10:05 PMA Simple Neural Network - Transfer Functions · Machine Learning Notebook

Page 9 of 10https://mlnotebook.github.io/post/transfer-functions/#tanh

Why is it used?

The ramp function is a truncated version of the linear function.
From its shape, the ramp function looks like a more definitive
version of the sigmoid function in that its maps a range of inputs
to outputs over the range (0 1) but this time with definitive cut off
points and . This gives the function the ability to fire the
node very definitively above a threshold, but still have some
uncertainty in the lower regions. It may not be common to see

 in the negative region unless the ramp is equally distributed
about .

6.1 Rectified Linear Unit (ReLU)

There is a popular, special case of the ramp function in use in
the powerful convolutional neural network (CNN) architecture
called a Rectifying Linear Unit (ReLU). In a ReLU, and

 is the maximum of the input giving a linear function with no
negative values as below:

Figure 7: The Rectified Linear Unit (ReLU) (left)
with its derivative (right).

and in Python:

def relu(x, Derivative=False):
 if not Derivative:
 return np.maximum(0,x)
 else:
 out = np.ones(x.shape)
 out[(x < 0)]=0

T1 T2

T1
0

T1 = 0
T2

RectifiedLinearUnit(ReLU)
10

re
lu
(x
) 7

8,8

4/11/22, 10:05 PMA Simple Neural Network - Transfer Functions · Machine Learning Notebook

Page 10 of 10https://mlnotebook.github.io/post/transfer-functions/#tanh

 return out

, A Simple Neural Network -
Mathematics

 A Simple Neural Network -
Vectorisation

-

Comments Community ! Privacy Policy "1 Login

t Tweet f Share Sort by Newest

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Be the first to comment.

Subscribe✉ Add Disqus to your
siteAdd DisqusAdd
d Do Not Sell

My Data
⚠

 Favorite(

8,8

https://mlnotebook.github.io/post/neuralnetwork/
https://mlnotebook.github.io/post/neuralnetwork/
https://mlnotebook.github.io/post/nn-more-maths/
https://mlnotebook.github.io/post/nn-more-maths/
https://disqus.com/
https://disqus.com/home/forums/mlnotebook-1/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/home/inbox/
https://disqus.com/embed/comments/?base=default&f=mlnotebook-1&t_u=https%3A%2F%2Fmlnotebook.github.io%2Fpost%2Ftransfer-functions%2F&t_d=A%20Simple%20Neural%20Network%20-%20Transfer%20Functions&t_t=A%20Simple%20Neural%20Network%20-%20Transfer%20Functions&s_o=default#
https://disqus.com/embed/comments/?base=default&f=mlnotebook-1&t_u=https%3A%2F%2Fmlnotebook.github.io%2Fpost%2Ftransfer-functions%2F&t_d=A%20Simple%20Neural%20Network%20-%20Transfer%20Functions&t_t=A%20Simple%20Neural%20Network%20-%20Transfer%20Functions&s_o=default#
https://disqus.com/embed/comments/?base=default&f=mlnotebook-1&t_u=https%3A%2F%2Fmlnotebook.github.io%2Fpost%2Ftransfer-functions%2F&t_d=A%20Simple%20Neural%20Network%20-%20Transfer%20Functions&t_t=A%20Simple%20Neural%20Network%20-%20Transfer%20Functions&s_o=default#
https://publishers.disqus.com/engage?utm_source=mlnotebook-1&utm_medium=Disqus-Footer
https://disqus.com/data-sharing-settings/
https://disqus.com/embed/comments/?base=default&f=mlnotebook-1&t_u=https%3A%2F%2Fmlnotebook.github.io%2Fpost%2Ftransfer-functions%2F&t_d=A%20Simple%20Neural%20Network%20-%20Transfer%20Functions&t_t=A%20Simple%20Neural%20Network%20-%20Transfer%20Functions&s_o=default#

