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Preface

Polymer nanocomposites (PNCs) are multiphase, multicomponent materials in which
one or more components come in the form of particulates with the size less than 100
nm in at least one spatial dimension. The particulates (dispersed phase or fillers) can
be metal, ceramic, carbon, or even polymer nanocrystals; they could have spherical,
cylindrical, platelet, or other shapes; they can possess various chemical, mechanical,
optical, or electrical properties. The polymer matrix, in turn, can be thermoplastic or
thermoset; the polymer can be partially crystalline, rubbery, or glassy. One example
of a PNC is cross-linked styrene-butadiene rubber with nanoscopic silica or carbon
black filler particles, along with other additives, included in varying amounts to create
car tires with good traction and acceptable rolling resistance and wear properties.
Another example is a typical paint, where sub-100-nm pigments can be added to a
liquid formulation, which then undergoes the processes of drying and film formation
to create a nanocomposite coating seen on the walls of our houses and on the bodies
of our vehicles. In these and other cases where PNCs have already found significant
use, including in consumer products such as shoe soles, packaging, and membranes,
even minor adjustments to the formulation to improve the material properties can
have significant practical implications. It is thus important to develop the
Formulation!Structure!Property!Performance roadmap, in which both experi-
mental and theoretical/modeling studies are utilized.

Nanocomposite modeling has made significant progress in recent decades, and
many excellent reviews highlighting various specific topics have been published in
recent years. Yet, with some notable exceptions (such as “Modeling and Prediction
of Polymer Nanocomposite Properties,” edited by Vikas Mittal, Wiley, 2012), there
have been very few books surveying multiple theoretical methods and analyzing
multiple topics under the same cover. Indeed, in order to successfully develop, say,
a nanocomposite gas separation membrane, one needs to consider the question
of the nanoparticle design (length and density of grafted ligands), their dispersion in
the polymer matrix, the processability of the material, and lastly, the gas perme-
ability and selectivity. This design requires multiscale, multiphysics, interdisci-
plinary modeling that does not come naturally even to the best researchers.
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In putting this book together, we hope to stimulate such efforts and highlight some
successful examples.

The structure of the book can be described as follows. The first three chapters
describe molecular or mesoscale approaches to predict the structure, dispersion, and
nanoscale morphologies of nanocomposite materials, given the nanoparticle shape
and loading and, in some cases, the length and density of grafted ligands. The next
two chapters discuss the dynamics of nanocomposites, concentrating specifically on
the behavior of polymer chains at and near the particle surfaces. The remaining six
chapters deal with the prediction of mechanical, transport, electrical, and optical
properties of nanocomposites, and the implications for product design. We now
proceed to describe each chapter more specifically.

In Chap. 1, Arthi Jayaraman discusses the use of the polymer reference inter-
action site model (PRISM) theory, which is generally applied at the coarse-grained
level and includes monomer-scale packing effects along with overall chain and
nanoparticle statistical behavior. PRISM requires information about the polymer
conformations as an input, and this can be either assumed or calculated self-
consistently from molecular simulations as is briefly discussed. A recently devel-
oped open-source code pyPRISM is described that allows for easy use of these
methods.

In Chap. 2, Valeriy V. Ginzburg describes the application of density functional
theory (DFT) to PNCs, which is also generally applied at the coarse-grained level.
This approach, based on classical statistical mechanical functionals that calculate
the free energy from the density profile, has been particularly useful for describing
monomer and nanoparticle packing in confinement or near surfaces. The chapter
first details several examples of standard DFT methods, including calculations
of the polymer-mediated interactions between polymer-grafted spherical, rod, and
plate-shaped particles. The combination of DFT with self-consistent field theory
(SCFT) is then discussed. As is made clear by several examples, this is especially
attractive to describe nanoparticle behavior in systems with long-range microphase
separation such as in block copolymers (where SCFT has found widespread
application for systems without nanoparticles).

In Chap. 3, Robert A. Riggleman and co-workers review their newly developed
coarse-grained method of simulating nanocomposite morphologies, polymer
nanocomposite field theory (PNC-FT). Based on the state-of-the-art polymer field
theory, PNC-FT incorporates the nanoparticles via the excluded volume interac-
tions (“cavity functions”) and enables the evaluation of the free energy of various
nanoscale structures. The authors discuss the application of their modeling
approach to predict the distribution of “hairy” nanospheres in drying polymer films;
calculate the effective interactions between nanoparticles with multicomponent
ligands; and evaluate the interaction between nanorods in a cylinder-forming block
copolymer film. Similar to SCFT-DFT, PNC-FT is now widely used to predict
nanocomposite equilibrium structures and morphologies.

In Chap. 4, Argyrios V. Karatrantos and Nigel Clarke describe the dynamics of
polymers near the nanofiller surfaces, and specifically the impact of the nanoparticle
size and the particle–polymer interaction on the relaxation time, the self-diffusion
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coefficient, and the glass transition temperature. They utilize coarse-grained
molecular dynamics (CG-MD) to show that the mobility of the polymer chains near
a strongly attracting particle surface is severely depressed compared to the bulk
polymer; near a weakly attracting or repulsive surface, on the other hand, the
mobility seems to be slightly enhanced. Overall, CG-MD provides a very useful
insight into the interfacial dynamics of PNCs.

In Chap. 5, Jack F. Douglas, Francis W. Starr, and co-workers attack a very
similar problem using a combination of CG-MD and analytical scaling theories.
They specifically investigate the relationship between the glass transition temper-
ature shift in nanocomposite materials and the density changes induced by the
addition of nanoparticles. The authors discuss the relationship between the mobility
gradient scale and the density gradient scale, and also comment on the similarities
and differences between nanocomposites and thin films in terms of their glass
transition and glassy dynamics.

In Chap. 6, Alexey V. Lyulin and co-workers describe the use of multiscale
modeling to predict the transport properties of polyelectrolyte membranes (PEMs).
Such membranes are used in fuel cells and batteries. The authors discuss how the
addition of nanoparticles (such as graphene oxide or silicon dioxide) can influence
the proton conductivity through the membrane by impacting the phase separation
between the water-rich and polymer-rich domains, as well as the diffusion coeffi-
cient and mobility of water near the particle surfaces. Several relevant simulation
techniques, from ab initio simulations of electronic structure to classical atomistic
molecular dynamics to coarse-grained dynamic density functional theory (DDFT),
are employed in this multiscale modeling study.

In Chap. 7, Nitin K. Hansoge and Sinan Keten describe the use of multiscale
modeling to predict mechanical properties of matrix-free (or “one-component
nanocomposites”) assemblies of “hairy nanoparticles.” They start by discussing the
“energy renormalization” procedure to go from atomistic to coarse-grained
molecular dynamics. Using CG-MD, they calculate the morphology of the
nanocomposite (i.e., the crystalline structure of the rigid nanoparticle cores sepa-
rated by the soft ligands). They then used CG-MD to calculate mechanical prop-
erties (Young’s modulus and toughness) and generate Ashby plots and Pareto fronts
to come up with the optimal designs to balance the two properties. Finally, an
approach is described whereby the conformational degrees of freedom for the
ligands can be integrated out, allowing for computationally inexpensive mesoscale
models involving only the particle cores interacting via effective pairwise potential
of mean force (PMF).

In Chap. 8, Pavan K. Valavala and Gregory M. Odegard review various
approaches to predict mechanical properties of composites and nanocomposites.
They start by differentiating between discrete-medium (like MD) and
continuous-medium models, and provide an extensive overview of the latter.
Within the continuous-medium framework, the authors distinguish between ana-
lytical micromechanical theories and computational finite element analysis (FEA),
both of which are based on linear elasticity and enable the prediction of linear
elastic moduli (Young’s modulus and shear modulus for the case of isotropic
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materials). Multiscale modeling is also discussed for those cases where a number of
disparate length scales is involved.

In Chap. 9, Valeriy V. Ginzburg and Jian Yang describe theoretical and mod-
eling approaches to the prediction of thermal conductivity (critically important in
many applications, including electronics and transportation). Similar to the previous
chapter, the authors discuss the use of analytical micromechanical models and FEA.
The role of interfacial thermal resistance—often leading to thermal conductivity
being significantly lower than expected—is also reviewed.

In Chap. 10, Michael J. A. Hore discusses ways to predict optical and electrical
properties of PNCs. Calculating those properties requires solving Maxwell’s
equations in complex media, at either very high frequencies (optical) or low fre-
quencies (electrical). Optical properties of interest include scattering and absorption
cross section, UV–Vis spectra, and plasmonic resonances. As the author shows, the
calculation techniques here range from analytical theories (Rayleigh and Mie
scattering) to more computationally expensive finite difference, time domain
(FDTD) simulations. For the case of electrical properties (static electrical conduc-
tivity), the author emphasizes the importance of percolation (infinite clusters of
conducting bonds) and simple methods to predict it (resistor network models). The
dependence of electrical conductivity on the conducting filler loading, shape, and
alignment is also discussed.

Finally, in Chap. 11, Craig Burkhart, L. Catherine Brinson, and co-workers
describe the application of both first-principles and data-driven approaches to the
design of nanocomposite materials for automotive tires. The material considered is
carbon-black (CB)-filled styrene-butadiene rubber (SBR). The authors discuss the
importance of experimental characterization (microscopy) to precisely determine
the morphology of the CB network in the SBR matrix; once this morphology is
determined, it can serve as input into FEA simulations analyzing the viscoelastic
behavior of the material. The predicted linear viscoelastic (LVE) response can be
then compared to the “optimal” response known to the industry. Given the com-
plexity of the process, one also looks to simplify the search for best compositions
by employing machine learning (ML) tools, and the authors highlight their roadmap
in this quest.

In summary, PNC material designers seeking to take advantage of many
potential options for polymer and nanoparticles, including their chemical types and
amounts, length/size, and architecture (e.g., whether and to what extent chains are
cross-linked or grafted to the nanoparticle surface), can turn to modeling approa-
ches to understand how PNC component properties lead to desirable overall
material behavior. While the chapters of this book, in order, are meant to present a
coherent picture of the range of current PNC modeling techniques from small to
large scales and from structure to dynamics to specific material properties, each
chapter is written to be independent and readable by itself. We hope the reader will
take away an understanding of which modeling methods can be effective and how
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they can be used, depending on the system and properties of interest, to closely
connect synthetically controllable polymer and particle variables to the resulting
overall PNC structure and/or dynamics, and allow for rational design of future
materials.

Midland, USA Valeriy V. Ginzburg
Columbus, USA Lisa M. Hall
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Chapter 1
Polymer Reference Interaction Site
Model (PRISM) Theory and Molecular
Simulation Studies of Polymer
Nanocomposites

Arthi Jayaraman

Abstract This chapter is focused on Polymer Reference Interaction Site Model
(PRISM) theory and its use along with molecular simulation techniques for studying
polymer nanocomposites (PNCs). In the first section of this chapter, we summarize
key experimental and computational studies on PNCs from the literature to show the
reader the types of fundamental questions that these studies have tackled. These are
the types of questions that one could also use PRISM theory to answer. Then, we
describe the basics of PRISM theory with relevant equations and show how PRISM
theory is linked to molecular simulations to obtain meaningful results pertaining
to PNC structure and thermodynamics. We also bring to the readers’ attention the
open-source package, pyPRISM, developed for both expert and novice computa-
tional researchers to easily incorporate PRISM theory into their PNC studies. We
then discuss briefly past, present, and potential new directions of PNC studies using
PRISM theory and conclude the chapter highlighting some of the limitations of
PRISM theory.

1.1 Introduction

Polymer nanocomposites (PNCs) are a specific class of macromolecular soft mate-
rials that have garnered significant attention in the past two to three decades from
researchers around the world. This is evident from the many review articles and
perspectives on this topic [1–17]. As the name suggests, a polymer nanocomposite is
a mixture of the polymer (matrix) as the majority component and nanoscale additives
(fillers) as the minority component. The chemical and physical nature of the fillers
andmatrix and their relative composition in the PNC is selected based on the eventual
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application of the PNC. There is a broad range of applications where PNCs have been
used, such as in automobile parts (e.g., car bumpers, tires) [18], aerospace industry
(e.g., components of thermal resistance aircraft body parts) [19], in separations (e.g.,
membranes for gas transport and absorption) [20], in electronics (e.g., organic/hybrid
solar cells) [21], and in biomaterials (e.g., tissue mimics, drug delivery vehicles)
[22]. To achieve the desired function or macroscopic property of the PNC needed
for these applications, one has to select the components of the PNCs based on their
individual properties (e.g., biocompatible matrix and filler when used in biomedical
applications, electron donating/accepting matrix and filler in organic/hybrid elec-
tronics) as well as on how they interact and spatially organize within the PNC (i.e.,
structure/morphology). Additionally, the ease during processing (e.g., response to
shear, temperature) of the PNC, a critical feature for large-scale manufacturing, is
another variable to consider during the material selection process. The non-trivial
relationship between the structure/morphology, dynamics, and thermodynamics for
a selected filler and matrix at a specific composition within PNCs has motivated
exciting research aimed at unraveling the complex interplay between PNC design
and its macroscopic behavior. In particular, computational tools (e.g., coarse-grained
models, theory, and simulation) have become valuable tools in this quest to both
predict PNC behavior for a variety of PNC design parameters as well as to explain
less understood experimental observations in PNCs.

This chapter specifically focuses on how Polymer Reference Interaction Site
Model (PRISM) theory and molecular simulation methods have been used to tackle
questions about PNC structure and thermodynamics. To help the reader appreciate
the value of these tools,wefirst review in Sect. 1.2 relevant past experimental, compu-
tational, and theoretical work on PNC structure and thermodynamics to describe the
types of fundamental questions that researchers working with PNCs tackle and that
PRISM theory can be used for. Then, in Sect. 1.3, the details of PRISM theory,
the open-source package for readers wishing to use this method, and complemen-
tary molecular simulation methods used along with PRISM theory are discussed.
In Sects. 1.4 and 1.5, the past, present, and potential new directions for PRISM
theory-based studies of PNCs are described along with the key limitations of PRISM
theory.

1.2 Relevant Past Experimental and Computational
Studies on PNCs

Past studies focused on PNCs (see references in review articles [1–13, 15, 17]) have
shown that any experimental or computational tool that is used to study PNC structure
andmorphology should be able to tackle/probe all relevant length scales including the
size of the monomer, the polymer chain, the nanoscale (bare or unmodified) particle
or filler, and if phase separated, size of the domains of fillers andmatrix chains. As the
nanoscale dimension of the fillers decreases (e.g., curvature of spherical nanoparticle
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increases), the total interfacial area between filler and matrix in the PNC increases,
which in turn affects the polymer chain conformation (e.g., radius of gyration) as
compared to its (zero-filler or neat polymer) melt-state ideal chain conformation.
The chain conformation also alters the effective filler-matrix interaction. If one sets
aside the polymer and filler chemistry and the resulting enthalpic driving forces from
consideration for amoment, theywill realize that the effectivefiller-matrix interaction
is purely a function of the entropic driving forces determined by the filler shape
and size, the matrix polymer molecular weight and architecture, and their relative
volume fractions in the PNC. The effective filler-matrix or filler-filler interactions
dictate whether the filler and the polymer matrix remain mixed (i.e., dispersed filler
morphology) or demixed (i.e., aggregated filler morphology) within the PNC. If one
also takes into consideration the actual chemistries of the (unmodified) filler and
matrix polymer(s), the enthalpic driving forces arising from the filler-filler, matrix-
matrix, and filler-matrix (direct) interactions will cooperate/compete with entropic
driving forces to alter/retain the chain conformations and the effective filler-matrix
interactions that lead to dispersed/aggregated filler morphologies.

To gobeyond the (limited) design space of PNCswithunmodified orbare additives
and incorporate additional tuning parameters that can alter the energetic and entropic
driving forces for the PNCmorphology and dynamics, one can functionalize the filler
surfaces. Themany advances in synthetic schemes in the past two decades have paved
the way for controllably engineering functionalized/grafted/tethered nanoparticles
at the molecular level with a variety of ligand—surfactants, polymers, proteins, and
nucleic acids—at a desired grafting density, dispersity, and with desired chemistries.
PNCs comprised of polymer-grafted nanoparticles (PGNs) have garnered much
interest within the PNC community, both from computational and experimental
researchers. References in review articles [10–13, 15–17] have established the link
between the molecular design of PGNs and the macroscale structure of PGNs within
a polymer matrix for linear (architecture) graft andmatrix polymers. At high grafting
density or the brush-limit, if the chemistry of the graft andmatrix polymer is the same
or similar, the system is driven purely by entropic driving forces. Much focus has
been placed on tailoring the PGNs such that the resulting entropic driving forces favor
mixing of PGNs and matrix chains. The extent to which the matrix chains mix with
and penetrate the grafted layer is termed extent of ‘wetting.’ As wetting increases,
the matrix chains and PGNs mix, and the extent of filler dispersion within the PNC
increases. The key design rules for tuning entropic driving forces to favor wetting are:
(a) use matrix polymers of a smaller molecular weight than that of the graft polymer,
with the curvature of the filler particle and the value of grafting density dictating how
much smaller the matrix chains need to be compared to the graft chain to achieve
wetting; (b) include a high dispersity in molecular masses of the graft polymers so
as to include few long graft polymers and many short polymers within the grafted
layer; and (c) if grafting density and particle size are fixed, choose graft and matrix
polymer chemistries that are less flexible and have higher persistence lengths. If
the matrix and graft polymer chemistries are dissimilar, then the Flory-Huggins χ

parameter between the matrix and graft polymer chemistry together with the other
factors that govern the entropic driving forces dictateS whether the PGNs and the
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matrixwill demix ormix at a given temperature. Using a negativeχ graft–matrix pair,
one can improve grafted layer wetting and push the limits of PGN volume fraction
that exhibit PNC dispersion. Recent studies [23–25] have shown that the first-order
dispersion to aggregation transition is not synonymous with the wetting to dewetting
transition; the latter occurs continuously as the PNC transitions from dispersed to
aggregated states. For linear graft and matrix polymers, at low grafting density, the
filler surface may not be completely shielded by the grafted chains from the matrix
chains and then the energetic driving forces based on the direct filler-graft, filler-
filler, and filler-matrix interactions along with the entropic driving forces decide the
extent of mixing/demixing of the PGNs and the matrix.

Moving away from a traditional definition of PNCs that has a matrix and a filler
component mixed together, one could also consider a melt of PGNs in the absence
of a matrix making an effectively one-component PNC. These systems are termed
‘matrix-free PGNs’ and have been receiving attention in the past few years (see for
example studies in references [20, 26–29]). One advantage of using these matrix-
free PGNs is the ease of processing without dealing with the hassles of creating a
homogeneously mixed PNC. Second advantage is the regularity of particle spacing
in a polymer melt accomplished through the grafted polymer segments extending
from the nanoparticle core. This regularity in interparticle spacing can be exploited in
applications like optics, photonics, separation of small molecules, etc. In the absence
of freematrix chains, at high grafting density, the grafted chains create a dense region
around the core extended outward. Depending on the molecular weight of the grafted
chains and the grafting density, one could observe interpenetration between grafted
chains on adjacent particles or isolated ‘soft’-grafted particles arranged in an array.
Instead of melts, if one created a dense solution of matrix-free PGNs, one can create
porous polymer material that can be used for separations [20, 29, 30]. In a recent
study conducted on a dried matrix-free PGN solution, upon exposure to a solvent,
a combination of small angle x-ray and neutron scattering results showed that the
small molecule solvent uniformly distributes around the nanoparticle surface [29].
Going beyond homopolymers as grafts, one could also use block copolymer grafts
in such matrix-free PGN melts/dense solutions to achieve matrix-free PNCs with
nanoparticles at precise periodicities within microphase-separated block copolymer
domains. For example, in a recent experimental study done on poly(styrene-block-(n-
butyl acrylate))-grafted silica nanoparticles, the authors found that at higher grafting
density, there was better microphase separation of the block copolymers and more
uniform filler (core) dispersion in the covalently linked matrix polymer than at lower
grafting density with similar polymer chain length and composition [31].

In thin films of PGNs with and without matrix, additional factors including the
competing PGN interaction with the free surface, substrate and matrix will affect
structure and dynamics. Kim and Green [32], for instance, showed the three regimes
of structural organization—PGNs phase separating from the matrix and residing
at the free surface and bottom substrate (unstable film is regime I and stable film is
regime II) or PGNs beingmiscible within the film (regime III). They also find that the
phase separation in regime I is analogous to thin film of polymer blends (specifically
micelles in homopolymers) while the phase separation in regime II is like that seen
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in hard spheres in an athermal homopolymer melt. Going beyond homogeneous
surfaces, recent experiments on topographically patterned substrate [33] show that
the segregation of PGNs can be achieved by varying the relative confinement entropy
of grafted versusmatrix chains. In studies ofmatrix-free PGNs adsorbed on a surface,
it has been found that increasing the monomer–surface adsorption strength leads to
extended polymer chain conformations and adsorption on the surface and adoption of
a ‘canopy’ shape. The grafted chains from neighboring ‘canopies’ can interpenetrate
at low-moderate graft density and low surface attraction strength. In contrast, at high
graft density and/or high surface attraction strengths, the spacing between particles
increases and interparticle entanglements reduce. Self-assembly within monolayers
of PGNs on surfaces as a function of core–core and core–polymer interactions has
also been shown using simulations [34]. These simulations show the relative values
of these interactionswhere one can observe dispersed PGNs, single PGNwide strings
of PGNs, stripes of PGNs with width equal to two or three PGNs and clusters of
PGNs.

PRISM theory has played an important role in some of the above studies. Before
describing these studies in Sect. 1.4, it is useful to first go into the basics of PRISM
theory, how it links to simulations and ways one could conduct PRISM theory
calculations, in the next section.

1.3 PRISM Theory

1.3.1 Basics

PRISM theory was developed by Schweizer and Curro [35, 36] from the Reference
Interaction Site Model (RISM) theory [37–40] to study chain molecules (i.e., poly-
mers). Its formalism is similar to theOrnstein–Zernike integral equation [40, 41]with
the total site–site intermolecular pair correlation function, hij(r), being related to the
intermolecular direct correlation function, cij(r), and intramolecular pair correlation
function, ωij(r). In Fourier space, PRISM theory takes on the form:

H
∧

(k) = �
∧

(k)C
∧

(k)
[
�
∧

(k) + H
∧

(k)
]

(1.1)

where each term is a matrix of size N × N for a system that can be modeled with
N types of interaction sites. For example, in a PNC comprised of homopolymer
matrix chains of chemistry A with bare nanoscale fillers of chemistry B, if all repeat
units along each matrix chain can be treated as equivalent sites of type A and each
nanofiller treated as a single site or collection of sites of type B, N would be equal to
2. If the PNC has PGNs, then the graft polymer site (A), matrix polymer site (B) and
particle site (C) make it a 3-site system (see Fig. 1.1), and thus, the matrices would
be 3 × 3. In that 3-site system, the components of the matrices in (1.1) will be:
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Fig. 1.1 Schematic of a polymer-grafted nanoparticle (PGN) and a matrix polymer chain, and the
definition of the three possible types of sites A, B, and C. The reader should note that in this figure,
for the grafted chains, the tethered end segment, the intermediate segments and the free end segment
are treated equally with the same type of site (type A). Similarly, for the matrix chain, the free ends
and intermediate segments are treating equally (with type B site). In principle, this could be relaxed
by using different types of sites representing various parts of the chains. As the number of sites
used to represent/model, the system increases so does the size of the matrices in (1.2a−c) and the
corresponding numerical complexity for solving the PRISM equations

H
∧

(k) =
⎡

⎢
⎣

ρ
pair
AA ĥ AA(k) ρ

pair
AB ĥ AB(k) ρ

pair
AC ĥ AC(k)

ρ
pair
BA ĥBA(k) ρ

pair
BB ĥBB(k) ρ

pair
BC ĥBC(k)

ρ
pair
C A ĥC A(k) ρ

pair
CB ĥCB(k) ρ

pair
CC ĥCC(k)

⎤

⎥
⎦ (1.2a)

in which ρ
pair
αβ = ραρβ and ρα and ρβ correspond to the site number densities of site

types α and β,

�
∧

(k) =
⎡

⎣
ρsi te
AA ω

∧

AA(k) ρsi te
AB ω

∧

AB(k) ρsi te
AC ω

∧

AC(k)
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BA ω

∧

BA(k) ρsi te
BB ω

∧
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BC ω

∧

BC(k)
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C A ω

∧
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∧

CB(k) ρsi te
CC ω

∧

CC(k)

⎤
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where ρsi te
αβ = (ρα + ρβ) if α �= β otherwise ρsi te

αβ = ρα , and

C
∧

(k) =
⎡

⎣
ĉAA(k) ĉAB(k) ĉAC(k)
ĉB A(k) ĉBB(k) ĉBC(k)
ĉC A(k) ĉCB(k) ĉCC(k)

⎤

⎦ (1.2c)
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where cαβ = cβα . The design parameters of the PNC, for example, the filler composi-
tion (or volume fraction of filler), grafting density, and graft and/or matrix molecular
masses (i.e., chain lengths of the polymer) dictate the ρ i of the sites of type i.

The matrix elements of �
∧

(k) are the intramolecular pair correlation functions in
inverse space (or wave vector k) between sites i and j within a certain molecule;
these are known and given as an input to the (1.1). For some systems, these functions
can be derived analytically (e.g., ideal chain conformations in a polymer melt). The
analytical expression for a Gaussian chain conformation is

ω
∧

αβ(k) = 1 − f 2 − 2 f
n + 2 f n+1

n

(1 − f )2
(1.3)

where f is defined as f = exp
(−k2σ 2/6

)
, n is the number of monomers in the

Gaussian chain, and σ is the characteristic distance unit [42]. Similarly, (1.3) can be
used to model a freely jointed chain (FJC) with f = sin(kl)/kl, where l is the bond
length between sites along the chain [42]. For PGNs, analytic expressions for the
particle–graft and graft–graft ω

∧

αβ(k) have been derived when the number of grafted
chains on the surface is small [43–46]. The scattering community has also derived
many analytical forms of ω

∧

αβ(k) as ‘form factors’ for fitting the scattering data of
commonly studied polymer systems. However, in many cases, analytical expressions
forω

∧

αβ(k) for the PNCof interest does not exist. Rather than deriving a newanalytical
expression, one can simulate the PNC and sample configurations of the molecule of
interest to calculate the ω

∧

αβ(k) (see description in Sect. 1.3.2.1).
The matrix elements of H

∧

(k) and C
∧

(k) are usually unknown and are to be solved
for. Given two unknown matrices and one PRISM equation (1.1), we need one
more independent equation to solve for the two unknowns. This additional equa-
tion is called the closure relation. Closure relations connect the real-space direct pair
correlation functions cij(r), total intermolecular pair correlation function hij(r), and
pair-wise interaction potentials, Uij(r). Since the closures include pair-wise interac-
tion potentials, Uij(r), it is through these closures that the chemical details of the
PNC are specified. Examples of closures include Percus–Yevick (PY), Hypernetted
Chain (HNC), Mean-Spherical Approximation (MSA), Martynov–Sarkisov (MS),
and Laria–Wu–Chandler (LWC) [47, 48]. The choice of the type of closure used to
solve (1.1) is critical as this choice dictates how realistic or correct the PRISM theory
predictions are. We discuss this again in the limitations of this method (Sect. 1.5).
Therefore, the right closure must be found or developed for the system being studied.
For PNCs, based on agreement between PRISM theory and molecular simulations,
for mixtures of nanoparticles and homopolymers, many studies [43–46, 49–54] have
used the PY closure for polymer–polymer pair and polymer–particle pair, and the
HNC closure for particle–particle pair. If σ ij is the distance of closest approach
between sites i and j, (e.g., σ ij = d for monomer–monomer pairs and σ ij = (D +
d)/2 for particle–monomer pairs, where d is the size of the monomer site and D is
the size of the particle) the impenetrability condition applies inside the hard core.



8 A. Jayaraman

gi j (r) = 0 r < σi j (1.4a)

Outside the hard core, the PY approximation for ij pair of sites is written as

ci j (r) = (
1 − eβUi j (r)

)
gi j (r) r > σi j (1.4b)

and the HNC closure, often used for the particle–particle pair (hence the subscript
CC based on type of sites as shown in Fig. 1.1), is described as

cCC(r) = hCC(r) − ln gCC(r) − βUCC(r) r > D (1.4c)

Past studies by Schweizer and Yethiraj have suggested that molecular closures
[47, 55, 56] could prove more accurate for systems with strongly segregating poly-
mers or monomer species (e.g., strongly segregating copolymer matrix polymer or
copolymers grafts, or strongly segregating graft and matrix homopolymers). For this
statement to be confirmed for the PNC system at hand, one needs to conduct system-
atic comparisons of results from PRISM theory using atomic and molecular closures
against results from experiments and/or molecules simulation results.

After the closures have been selected, one can solve the above system of coupled
nonlinear integral (PRISM theory) equation and closure(s). Analytical solutions only
exist for atomic systems while numerical solutions are found for complex polymer
systems. In principle, one could select any method from existing numerical methods
used commonly to solve integral equations [57, 58]. Recent studies have employed
the KINSOL algorithm [59] with the line search optimization strategy which mini-
mizes the objective function along an optimum descent direction. KINSOL exhibits
convergence for complex nonlinear integral equations easier and faster as compared
to the Picard technique, which has also been used in some PRISM theory studies
[7, 58]. Irrespective of the numerical algorithm one chooses to use, upon solving the
PRISM equation and closure(s), one will obtain the total intermolecular pair corre-
lation functions, hij(r), which can be related to the gij(r) (=hij(r) + 1) and the partial
collective structure factors, Sij(k). The partial structure factors are the elements of
the S

∧

(k) matrix which are related to the direct pair correlation functions and total
pair correlation functions as

S
∧

(k) = C
∧

(k) + H
∧

(k) (1.5a)

These pair-wise structure factors can be compared to the corresponding pair
correlation functions from simulations or scattering results from experiments. By
obtaining thegij(r), one can calculate other properties of interest aswell. For example,
the potential ofmean force (PMF) between particles,WCC(r), can be calculated, from
the particle–particle pair correlation function as follows.

WCC(r) = −kT ln gCC(r) (1.5b)
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Similarly, the second virial coefficient can be calculated from gcc(r) for PNCs at
infinitely dilute concentrations. The pair-wise structure factors and the intermolecular
direct correlation function together also provide an estimate of the induced solvation
potential that one component (e.g., PGN) feels because of the other component (e.g.,
matrix chains); this is described in Sect. 1.3.2.2.

For some PNC design parameters, (e.g., stronger attractive interaction strengths,
large site size ratios, D/d, etc.), the numerical method selected may not yield any
solutions. This could be an issue with numerical convergence due to a poor initial
guess [57] or due to deviations from liquid-like behavior due to (micro/macro) phase
separation within the system. This is discussed further in the limitations described
in Sect. 1.5.

1.3.2 Linking to Molecular Simulation

PRISM theory calculations can be complemented by molecular simulations in
multiple ways and this section describes some of these synergies.

1.3.2.1 Providing Realistic Intramolecular Pair Correlation Function
(i.e., Shapes of Molecules)

Inmany past PRISM theory studies of PNCs (e.g., bare fillers in homopolymermatrix
or lightly grafted PGNs in homopolymer matrix) [43–46, 49–54] the intramolec-
ular pair correlation, �ij, was calculated by assuming ideal conformations of the
matrix chains. But, assuming ideal chain conformations for the polymer could be
far from reality in some systems. For example, the chains on a densely grafted
PGN or a copolymer-grafted particle have been shown to adopt non-ideal confor-
mations, and therefore, using ideal conformations for the grafted chains is not valid.
Similarly, the grafted chains in chemically dissimilar graft–matrix systems could
adopt extended (collapsed) configurations to initiate (deter) formation of energeti-
cally favorable (unfavorable) contacts with matrix chains. For such cases where an
off-the-shelf analytical expression of the intramolecular pair correlation, �ij, is not
available or existing analytical intramolecular pair correlation functions are not valid,
molecular simulations serve as a valuable tool for providing realistic intramolecular
pair correlation, �ij. For example, one can use molecular dynamics simulations
or Monte Carlo (MC) simulation techniques (e.g., see review articles on simu-
lations of polymers and PNCs [60–64]) to sample a single homopolymer-grafted
nanoparticle in a polymer matrix. These simulations provide the ensemble average
graft monomer–graft monomer, graft monomer–particle, matrix monomer–matrix
monomer intramolecular pair correlation functions. These correlation functions are
calculated using the Debye scattering relation [65, 66]
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ω
∧

αβ(k) =
〈

1
N total

Nα∑

i

Nβ∑

j

sin(k·ri j)
k·ri j

〉

(1.6)

in which α and β represent site types, Nα is the total number of sites of type α in
each molecule, Nβ is the total number of sites of type β in each molecule, N total =
(Nα + Nβ) if α �= β otherwise N total = Nα , ri j is the distance between sites i and j,
and the angle brackets represent ensemble averaging over uncorrelated snapshots in
a simulation trajectory.

In some cases, to reduce the computational intensity of having to simulate the
PGN(s) in a melt-like matrix, one could simulate separately a single matrix polymer
chain in vacuum and a single PGN in vacuum to obtain the pair-wise intramolecular
correlations. However, these vacuum simulations do not capture the effects of the
matrix chains on the grafted polymer configurations or vice versa, and thus, are
approximate intramolecular pair correlations.

1.3.2.2 Self-consistent PRISM Theory-Simulation Loop

PRISM theory and molecular simulations can also be linked together in a self-
consistent loop where the intramolecular pair correlation functions (e.g., chain
conformations) that are input to PRISM theory are provided by simulations of a
single PGN in an external medium-induced solvation potential that is obtained from
PRISM theory. The interdependence of the chain conformations and the medium-
induced solvation potential gives rise to the self-consistent loop (Fig. 1.2). The steps
involved in this self-consistent loop are described next.

First, the pair-wise decomposed medium-induced solvation potential, �ψ ij(r),
is obtained from the PRISM theory output. This pair-wise function describes the
interaction between any two sites i and j as mediated by all the other sites in the
system. The form of the solvation potential depends on the approximation used in its
derivation [67–72]. The PY and HNC forms of the solvation potential are as follows:

Δψ PY
i j (r) = −kBT ln

[
1 + cik(r) ∗ skk ′(r) ∗ ck ′ j (r)

]
(1.7a)

ΔψHNC
i j (r) = −kBT cik(r) ∗ skk ′(r) ∗ ck ′ j (r) (1.7b)

where ‘*’ in (1.7a) and (1.7b) denote a convolution integral in spatial coordinates and
kB is the Boltzmann constant and T is the temperature. The terms on the right-hand
side of (1.7a) and (1.7b) are the real-space pair-wise direct pair correlation function
and real-space analog of the structure factors. The solvation potential, �ψ ij(r), is
then input to a molecular simulation of a single PGN and/or a single matrix chain.
In the simulation, the total interaction potential between sites i and j separated by a
distance r,U tot

i j (r) is defined as the sum ofUij(r) and the solvation potential,�ψ ij(r),
obtained from the preceding PRISM step. To ensure the sites in the PRISM theory
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Fig. 1.2 Flowchart of self-consistent PRISM—molecular simulation approach. ‘pyPRISM’ is
the open-source package which the reader could use to conduct this calculation. This package
is described in Sect. 1.3.3. This figure is reprinted with permission from [58] (2018) American
Chemical Society

and molecular simulations represent the same thing, it is best to keep the model
chosen to represent the PGN and the matrix polymer to be the same in both PRISM
theory and molecular simulations.

Next, the PRISM theory calculation and molecular simulation steps are repeated
one after the other. In PNCswith PGNs, one could either alternately simulate a single
PGN or a single matrix chain with the newest set of pair-wise solvation potentials
from PRISM calculations or simultaneously simulate the single PGN and a single
matrix chain (in parallel) with the same set of solvation potentials calculated from
the previous PRISM step. Irrespective of the simulation method, the intramolecular
structure factors between site pairs are sampled from uncorrelated configurations and
the ensemble average of the intramolecular structure factors is calculated to serve as
the new input for the following iteration of PRISM theory calculations.

The self-consistent PRISM theory—molecular simulation loop iterations are
continued until convergence is achieved. One convergence criterion is the sum of
squared errors (SSE) of �ψ ij(r) between iterations n and n + 1:
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SSEn→n+1 =
∑

i, j

Nr∑

m=1

[
�ψn+1

i j (rm) − �ψn
i j (rm)

]2
(1.7a)

where Nr is the number of points over which real space has been discretized. The
subscripts i and j denote those pairs of sites whose interactions are relevant to the
simulation. The convergence counter, n, is set to 0 for the first iteration. The SSE for
the transition n→ n+1 (n≥ 1) is expressed relative to that from 0→ 1. Convergence
is attained when the following criterion is fulfilled in say three or five consecutive
iterations:

SSEn→n+1

SSE0→1
≤ 0.01 (n ≥ 1) (1.7b)

This approach was specifically used in work by Nair and Jayaraman [73] to tackle
non-ideal conformations along the grafted copolymers andmatrix polymers thatwere
neglected in the studies of homopolymer-grafted nanoparticles [43–46] preceding
Nair and Jayaraman’s work. Furthermore, in contrast to older self-consistent PRISM-
MC studies on homopolymer melts alone [68, 70, 71, 74–76] or work on bare parti-
cles in a homopolymer melt [77, 78] where the self-consistent loop involved MC
simulations of only one matrix polymer chain, in the study by Nair and Jayaraman
[73], alternate self-consistent loops for a single copolymer-grafted particle and a
single matrix chain were used. This approach accounts for non-idealities in both
the grafted and matrix chain conformations. A similar self-consistent PRISM-MC
approachwas previously applied to a blend of two polymerswhere the self-consistent
loops involved MC simulations of each polymer [79, 80].

1.3.3 Open-Source Package pyPRISM

Having discussed the above basics features of PRISM theory and how to link it
to molecular simulations, we now present briefly some details of an open-source
package that one could use to conduct PRISM theory calculations on PNCs. Recently,
we developed pyPRISM, a Python-based open-source package, to ease the implemen-
tation and use of PRISM theory by expert and novice researchers who study PNCs
and other soft materials. pyPRISM provides a user-friendly interface for setting up
PRISM theory calculations for the problem at hand, along with underlying data
structures that simplify the mathematics involved in setting up and solving PRISM
theory. The documentation and knowledge base materials are hosted on the reposi-
tory website [81–83] and maintained by Dr. Tyler Martin and coworkers at National
Institute of Standards and Technology (NIST). This online resource helps users to
produce correct results with PRISM theory and easily contribute, create, and modify
closures, numerical solution algorithms, and analyses for other users. Along with the
details of this package, we published a detailed pedagogical review [58] describing
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Fig. 1.3 a Particle–particle site–site pair correlations, gPP (r), versus reduced separation distance,
r/d, in a PNC at a total packing fraction, η = 0.4, with a freely jointed chain matrix of length,
N = 100, with attractive polymer–particle interactions at an attraction strength, ε = 1.0, and with
varying interaction range, α, as described in Fig. 1.3 of [49]. b Particle–particle potential of mean
force,wPP (r), versus reduced separation distance, r/d, between polymer grafted particles in a linear
polymer matrix at a total packing fraction of η = 0.35 for varying graft architecture and matrix
length, NM , as discussed in Fig. 9 of [84]. The lines are the predictions from pyPRISM and the
symbols are data extracted from the corresponding referenced literature. In both subplots, d = 1.0 is
the characteristic length scale of the system equal to the monomer site diameter. The details of how
these data are generated using pyPRISM can be found in the companion pyPRISM tutorial [83].
Caption and figure were reprinted with permission from [58] (2018) American Chemical Society

how PRISM theory has been applied to a large range of soft matter studies along with
results for a few case studies, including PNCs. The results of the PNC case studies
calculated using pyPRISM were compared to the original studies (see Fig. 1.3), some
of which we describe next.

1.4 Past, Present, and Future of PRISM Theory-Based
PNC Studies

PRISM theory has been a valuable tool for predicting of how PNC design param-
eters impact the PNC morphology and phase behavior. Early studies by Hooper



14 A. Jayaraman

and Schweizer as well as Hall and Schweizer have established how the structure
of PNCs with bare particles in free polymer matrix is affected by particle–particle
attraction, polymer–particle attraction, particle size to polymer matrix chain length
ratio, PNC filler fraction, etc. [49–54]. Some of these results have also been corrob-
orated with direct structural comparisons with experiments, in particular scattering
results [52]. Jayaraman and Schweizer have extended PRISM theory to study lightly
grafted particles (i.e., PGNs with homopolymers tethered on the particles at a low
grafting density) in dense solutions without matrix as well as in chemically identical
homopolymer matrix chains [43–46]. These studies have shown how increasing the
number of grafts and varying their placement on the particle surface impact effec-
tive interparticle interactions, PNC structure, and the microphase spinodal curves.
Martin and Jayaraman used PRISM theory to predict that increasing dispersity in
the chain lengths of the homopolymer grafts on PGNs improves dispersions of the
PGNs in a chemically identical homopolymer matrix (Fig. 1.4a) [85–87]. Moving
beyond chemically identical graft and matrix polymers, in PNCs with PGNs placed

Monodisperse Polydispersea)

b)

Fig. 1.4 a PGNs with disperse polymer grafts increase the particle–particle repulsion in a polymer
nanocomposite. b PNCs with chemically distinct graft and matrix polymers exhibit gradual change
in wetting with temperature in contrast to a first-order particle dispersion to aggregation transition.
Figures in part a are reproduced from [85] with permission fromRoyal Society of Chemistry. Figure
in part b has been reprinted with permission from [25] (2016) American Chemical Society
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in a chemically dissimilar polymer matrix (Fig. 1.4b), PRISM theory along with
molecular simulations has shown that the grafted layer wetting–dewetting transition
is a second-order transition and distinct from the PGN dispersion–aggregation (first-
order) transition [23–25]. Calculation of the effective χ parameter and second virial
coefficient underlying these wetting–dewetting and dispersion–aggregation transi-
tions provided additional insight into the dispersion–aggregation transition occurring
when the extent of grafted layerwettingmatched that of the analogous athermal PNC.

The above PRISM theory-based studies have focused on linear polymers, both in
graft and matrix chains, and polymer chemistries that can be modeled using isotropic
intersite interaction potentials. One can expect to observe unique phase behavior, not
seen previously, by moving toward nonlinear polymer architectures (e.g., bottle-
brushes, comb/graft polymers, cyclic/ring polymers) and/or polymer chemistries
with directional and specific interactions (e.g., hydrogen bonding, pi-pi stacking).

Given the many advances in polymer synthesis and techniques for grafting poly-
mers to or from particle surfaces, there is a strong motivation to understand potential
impacts of nonlinear polymer architecture in graft and/or matrix chains on PNC
structure and dynamics. For example, bottlebrush polymer is one specific class
of nonlinear architectures that has received significant attention in many recent
synthetic, computational, and theoretical studies [88–94]. Bottlebrush polymers are
comprised of a linear backbonewith side chains emanating from the backbone. These
polymers can be synthesized in a controlled manner with varying side chain chem-
istry, molecular weight, and grafting density along the backbone. In the context of
PNCs, the complexity brought about by grafting such bottlebrush polymers onto
particle surface is worth exploring. The increased crowding between the sidechains
on the bottlebrush and between the bottlebrushes on the nanoparticle surface should
significantly increase the conformational entropy loss of the (linear or nonlinear)
matrix polymer chain penetrating the grafted layer. By dialing down the grafting
density on the particle surface, onemay approach the samewetting–dewetting and/or
dispersion–aggregation physics as the densely grafted linear polymer containing
PGNs. Two PRISM theory-based studies have tackled some of the above questions.
One study by Modica et al. using PRISM theory and Langevin dynamics compared
and contrasted comb polymers (i.e., bottlebrush with low grafting density along the
polymer backbone) grafts versus linear grafts in PNCswith linear matrix chains [84].
They found that compared to linear polymers, the comb polymers exhibit a stronger
effective attraction between the grafted particles in both small molecule solvent
and polymer matrix due to the increased crowding in the grafted layer from the
comb polymer side chains. They also found that the effective interactions (i.e., PMF)
between the grafted particles aremore sensitive to the comb polymer design (i.e., side
chain length and spacing) in a smallmolecule solvent than in a polymermatrix. Using
nonlinear polymer architecture in the matrix can also alter the tendency for particle
dispersion/aggregation as compared linear polymermatrix. In another PRISM theory
study [95], the use of comb polymer architecture in the matrix leads to reduced (bare)
nanoparticle aggregation formoderate nanoparticle–monomer attraction strength and
increased bridging of nanoparticles at relatively large nanoparticle–monomer attrac-
tion. These effects brought about by using comb polymer architecture versus linear
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polymer architecture in the matrix can be subdued/enhanced through the choice of
comb polymer grafting density, side chain to backbone length ratio, etc. Gradients
in sidechain length and crowding along bottlebrushes could be exploited, say with
increasing crowding from the tethering point outward to create polymer grafted parti-
cles with uniform monomer density radially. Alternately, gradient brushes could be
designed to engineer layers of varying monomer densities in the grafted layer. These
are potential new topics for PRISM theory-based studies.

The subject of how associating polymer chemistries (e.g., hydrogen bonding or
π-π stacking between graft and matrix polymers) alter the grafted chain conforma-
tion,matrix-graft interpenetration, grafted layer structure, effective interactions, PNC
morphology has received far less attention than other simpler polymer chemistries
modeled using isotropic interactions. These directional interactions have been studied
in detail in polymer blends (i.e., mixture of homopolymers or copolymers with
hydrogen bonding chemistries) where hydrogen bonding has been shown to alter
the structure (e.g., conformations associated with intrachain vs. interchain hydrogen
bonding) and chain dynamics. Past experimental studies [96–99] have shown
that polymer blends with intermolecular hydrogen bonds are characterized by a
single glass transition temperature indicatingmiscibility between blend components.
Hydrogen bonded polymer blends show coupling of segmental relaxations (leading
to a single alpha relaxation) in blend components and also suppressed concentra-
tion fluctuations [100]. The inter- and intra-associations between hydrogen bonding
moieties have also been shown to affect the dynamic moduli (G’ and G”) in the
terminal regime [101]. The potential of similar striking effects in PNCs motivates
investigations in this avenue. Motivated by these experiments, Kulshreshtha et al.
developed new coarse-grained models to study PNCs with a single polymer grafted
nanoparticle with (linear) graft polymers placed in a linear polymer matrix with graft
and matrix polymers having directional and specific interactions [102]. Interestingly,
even if one observed equivalent grafted layer wetting in PNCs with isotropic inter-
actions and PNCs with directional graft–matrix interactions, there were some major
differences in the way graft and matrix chains interacted. Each graft polymer in the
PNC with directional graft–matrix interactions interacts with fewer matrix chains
and has much lower free volume than in the PNCs with isotropic graft–matrix inter-
actions. This difference could have major implications on the particle–particle effec-
tive interactions, glass transition temperature of the PNC, as well as the mechanical
and rheological properties for these PNCs. Incorporation of this new coarse-grained
model [102] within the PRISM theory framework and studies of PNCs with direc-
tional and specific interactions between the grafts and matrix polymers at finite filler
fractions is another new direction for a PRISM theory-based study.
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1.5 Limitations of PRISM Theory

Despite the many successful applications of PRISM theory for PNC studies, it is
important to highlight some limitations associated with the use of PRISM theory
especially for studying PNCs.

The first limitation is the strong dependence of PRISM theory’s results on the
closures chosen. For example, past work has shown that by using atomic closures to
describe the phase behavior of polymer blends results leads to an incorrect scaling
dependence of the spinodal temperature on the polymer chain length [103]. To
produce the correct scaling, one could use thermodynamic perturbation theory [104]
ormolecular closures [47, 105]. These issues are also relevant for PNCswith amixed
polymer blend as matrix or with chemically dissimilar graft and matrix polymers. As
stated above in Sect. 1.3.3, the pyPRISM package allows users to assess the effect of
the closure itself on the results by making an easier user-interface to switch between
closures and/or implement new closures.

PRISM theory’s foundation as a liquid-state theory implies that it is only appli-
cable for systems with liquid-like structural correlations [106]. One could interpret
this as an inability of PRISM theory to directly predict correlations for the glassy
or crystalline states of polymer matrix or grafted layer in the PNC. Also, PRISM
theory cannot directly predict the structure of an ordered, macrophase-separated, or
microphase-separated phases in PNCs. However, modern thermodynamic density
functional theories that can be used to study spatially inhomogeneous systems need
liquid-state correlations as input, and PRISM theory could be useful for this task
[107–110]. Furthermore, PRISM theory study of thin films of PNCs or PNCs near
surfaces/interfaces is not as straightforward as studies of bulk PNCs (i.e., away from
surface effects) and needs a fairly complex treatment (see, for example, [111]).

Another major challenge is simply (numerically) solving the PRISM theory equa-
tions. In particular, the choice of the algorithm, (e.g., Picard, Inexact Newton), the
chosen initial guess of the solution, and the convergence criteria for the iterations
within the numerical solutionmethod are among themany considerations that impact
convergence of the PRISM theory equations to a solution. These choices are not
trivial and require multiple tests before a lack of solution for the given system, can
be attributed to the system being structurally inhomogeneous rather than a numerical
issue.

Lastly, unlike stochastic and deterministic molecular simulation methods like
molecular dynamics or MC, PRISM theory does not produce a trajectory of coor-
dinates of the ‘sites’ in the system. The output from PRISM theory is purely in the
form of pair correlations in real/inverse space, and inferences about the structure and
phase behavior come from these pair correlations. For computational or experimental
users of PRISM theory, the lack of a visual interpretation of their results (e.g., in the
form of simulation snapshots) is often disappointing. Interestingly, self-consistent
PRISM-simulation methods partially mitigate this problem by providing trajecto-
ries of single molecules in a mean-field, medium-induced solvation potential. Lastly,
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unlike molecular dynamics, PRISM theory cannot provide any information about the
dynamics within the PNCs.

1.6 Conclusions

This chapter presented the basics of PRISM theory and the key considerations
that one needs to make in order to obtain meaningful results from PRISM theory
studies of PNC structure and phase behavior. We presented a review of past studies
on PNCs using experiments, theory, and simulations to describe the main funda-
mental questions that have been posed and tackled in this field. PRISM theory’s
successes were also highlighted to demonstrate the many valuable research contri-
butions to the PNC literature made possible by use of PRISM theory. We also briefly
mentioned pyPRISM, an open-source package developed by Martin, Jayaraman,
and coworkers and hosted by NIST to encourage readers to use PRISM theory
without concerning themselves with the tedious computational implementation. We
concluded the chapter with a few key limitations of PRISM theory to caution the
readers of the potential challenges they could encounter when using PRISM theory
for studying PNCs.
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Chapter 2
Density Functional Theory-Based
Modeling of Polymer Nanocomposites

Valeriy V. Ginzburg

Abstract Density functional theory (DFT) is a powerful approach utilized success-
fully in both quantum and classical theoretical and computational physics. Since the
1970s, DFT has been applied to predict the phase behavior of simple fluids, including
the liquid-to-crystal transition in hard-sphere and Lennard–Jones fluids. Beginning
in the 1990s, it was recognized that DFT can be adapted to describe the equilibrium
morphologies of polymer-based nanocomposites (PNC). Here, we review various
examples where DFT is applied to PNCs, from polymer–clay and polymer-nanotube
mixtures to one-component hairy nanoparticle assemblies. We also discuss hybrid
approacheswhereDFT is combinedwith other coarse-grainedfield theories, in partic-
ular, the Self-Consistent Field/Density Functional Theory (SCF-DFT) method and
its applications.

2.1 Introduction

Theperformanceof polymer nanocomposites depends crucially on the “morphology”
or “nanostructure”. The nanofillers can be organized into crystal-like patterns or
dispersed randomly within a polymer matrix or aggregated into large clusters. The
polymers can also form a homogeneous phase or, alternatively, undergo a micro-
or macro- phase separation. The overall nanocomposite morphology can also be
impacted by confinement (e.g., thin films vs. bulk). Understanding and predicting
the morphology as a function of the nanocomposite formulation, filler type and
geometry, and processing conditions is the biggest challenge in expanding the use of
nanocomposite materials to new application areas. Multiple approaches are utilized
to address this challenge [1–22]. In this chapter, we mainly concentrate on one
approach to predicting the equilibrium nanocomposite morphology—the coarse-
grained Density Functional Theory (DFT) based modeling. While DFT—like other
equilibrium models—does not describe the dynamics of ordering, phase separation,
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Fig. 2.1 Two classes of polymer nanocomposites

or alignment, it can predict the morphologies that are the most advantageous in a
sense that they correspond to the free energy minima, either global or local.

Before discussing DFT in-depth, we would like to introduce a “mini-
classification”, dividing all nanocomposites into two classes (Fig. 2.1). In the first
class, “Nanoparticle limit”, the polymer chains and the nanofillers have comparable
dimensions; in the second class, “Colloidal limit”, the nanofillers are significantly
larger than the polymers (at least in one dimension).

The implication of this distinction, in our view, is as follows. For the first class
of nanocomposites, the equilibration occurs simultaneously for both polymers and
nanofillers. Thus, one needs to construct the free energy as a functional of the single-
particle distribution functions (“densities”) of both polymers and fillers, and then
minimize it appropriately to obtain the equilibrium morphologies. For the second
class, however, the equilibration of the nanofillers is much slower than the equili-
bration of the polymers. Thus, it is necessary to construct the free energy for the
polymers and minimize it subject to the “frozen” positions of the fillers; usually,
only two filler particles are used for this initial minimization. The positions of the
two particles are then updated, and the polymer-free energy is calculated for each
inter-particle separation. The result of this process is the so-called potential of mean
force (PMF) for the particles due to their interactions with the polymers. Once the
PMF is known, the particles are equilibrated next. Thus, the approach used to model
the morphology and phase behavior of nanocomposites depends crucially on the
nanoparticle size. It is clear that spherical nanoparticles with RP < 2 nm belongs to
the first class, while most nanorods, nanoplatelets, and nanospheres with RP > 10 nm
belong to the second class. However, for nanospheres with 2 nm < RP < 10 nm, the
classification might be more ambiguous, especially if the fillers and polymers are
polydisperse.
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The rest of the chapter is structured as follows. In Sect. 2.2, we review the history
of the density functional theory and its applications to polymers, liquid crystals,
and colloids. In Sect. 2.3, the applications of the DFT to polymer nanocomposites
are discussed. In Sect. 2.4, we describe a special “hybrid” approach to nanocom-
posite modeling, combining the “standard” DFT for spherical particles with the
polymer self-consistent field theory (SCFT). Lastly, Sect. 2.5 contains the summary
and outlook for future theory developments.

2.2 DFT Overview

Density functional theory originated in the 1960swith the pioneeringwork ofHohen-
berg and Kohn [23] and Kohn and Sham [24], outlining a radically new method of
calculating electronic structures of complex atoms. This work was subsequently
recognized by 1998 Nobel Prize in Chemistry awarded to Walter Kohn [25]. The
main idea of the DFT approach is that the energy and other characteristics of a multi-
particle system can be fully described by a functional of a single-particle density,
provided that one correctly captures correlations and “exchange” interactions. The
triumph of DFT in quantum chemistry also helped promote its applications in clas-
sical condensed matter. Ramakrishnan and Yussouff [26] first formulated a clas-
sical DFT-like model to describe the first-order liquid–solid transition (“freezing”)
in simple liquids. To parameterize the non-ideal portion of the free energy func-
tional, several approaches (local density approximation [LDA] [27, 28], weighted
density approximation [WDA] [29–33], and fundamental measure theory [FMT]
[34–39]) have been developed and refined over the course of the last thirty years (see
reviews [40, 41] for a more detailed discussion). The original analysis centered on
the hard-sphere and Lennard–Jones sphere freezing; subsequently, the method was
also extended to describe phase transitions in anisotropic, liquid-crystalline particles
[42–50]. Equally momentous, in the 1980s and 1990s DFT was extended to describe
flexible polymer chains [51–62]; formore details on those polymerDFTs, see reviews
[63, 64]. Example applications of polymer DFT include bulk crystallization [65–67]
and ordering near hard surfaces [59, 68–71].

The general idea of DFT in the context of classical fluids is as follows. Let us
consider, as an example, a multicomponent polymer melt. For each monomer type,
labeled α, one can define the single-particle density, ρα(r), and write down the free
energy of the overall system in the following form (here, we use the grand-canonical
ensemble, with the chemical potential of the α-polymer denoted μα),

�[ρα(r)] ≡ F[ρα(r)] +
∑

α

∫
drρα(r)[Vα(r) − μα]

= Fid [ρα(r)] + Fex [ρα(r)] + Fch[ρα(r)]

+ Fint[ρα(r)] +
∑

α

∫
drρα(r)[Vα(r) − μα] (2.1)
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Here, the first term in the right-hand side, Fid , is the ideal-gas contribution, given
by,

Fid [ρα(r)] = kBT
∑

α

∫
drρα(r)

[
ln

(
�3

αρα(r)
) − 1

]
(2.2)

The second term, Fex, describes the hard-sphere excess free energy contribution.
As discussed above, there are multiple ways to capture those terms in an approxi-
mate fashion, fromweighted density approximation [WDA] to fundamental measure
theory [FMT]. The third term, Fch, evaluates the effects of connecting hard-spheres
into polymeric chains; it is generally based on the Wertheim perturbation scheme
[72, 73]. The fourth term, F int, estimates enthalpic contributions to the free energy,
e.g., from van-der-Waals forces. Finally, the last term considers the role of external
interactions (such as hard walls) via an imposed potential Vα(r). To calculate the
morphology of the overall system, one needs to minimize the free energy (2.1) with
respect to all the densities ρα(r),

δF[ρα(r)]
δρα(r)

= μα − Vα(r) (2.3)

The resulting self-consistency equations generally are quite complex and need
to be solved numerically in an iterative fashion. In particular, Fex generally is a
complex nonlinear and nonlocal functional of the single-particle densities. Thus, the
minimization (2.3) leads to fairly complicated integral equations, requiring a fairly
fine spatial discretization and leading to slow convergence of the iterative process.
For more details on the numerical algorithms used, we refer the readers to papers
by Frischknecht and co-workers [61, 62]. We now proceed to the discussion of DFT
application to nanocomposites.

2.3 Applications of DFT to PNCs

2.3.1 Polymers and Nanospheres

As a first example of the application of DFT to nanocomposites, one can look at
the problem of the interaction between hard spheres of radius RP and homopoly-
mers (melt or solution). A simple treatment of this problem for the solution case
was proposed in the early 2000s by Schmidt and co-workers [74–77] who used the
Asakura-Oosawa (AO) [78, 79] approximation. Within the AO analysis, the polymer
chains are treated as impermeable spheres of radiusRg,whereRg is the polymer radius
of gyration and depends on the polymer molecular weight and the solvent quality
(good or poor) [80]. The AO analysis and subsequent theoretical work [81, 82]
famously demonstrated that the colloidal particles experience so-called “depletion
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attraction”, as the polymer chains resist confinement in the narrow spaces between
the colloidal particles. In the cases where q = Rg/RP < 0.15 (the “colloidal limit”
we discussed earlier), the polymeric degrees of freedom can be integrated out to
yield an effective pair potential between the colloids. Schmidt and co-workers built
on that earlier body of work and developed a new DFT-based approach to calculate
phase diagrams of AO mixtures as a function of the size ratio q, the polymer volume
fraction, and the colloid volume fraction. The phase diagrams included colloid-
poor phase (“Gas”), colloid-rich liquid phase (“Liquid”), and colloidal crystal phase
(“Crystal”). Depending on the size ratio q, the demixing can occur either via “Gas–
Liquid” or via “Gas–Solid” coexistence. Furthermore, DFT was applied to describe
the particle and polymer density profiles at the “Gas–Liquid” interfaces or near a
hard wall.

The above analysis, while straightforward and accurate in the limit of large
nanospheres, is expected to run into difficulties for the cases where q = Rg/RP ~
1, and representing polymers as simple spheres is no longer tenable. In the 2000s,
new approaches have been developed based on polymer DFTs. Some examples are
shown in Figs. 2.2 and 2.3.

In Fig. 2.2, the density profiles of polymers and nanospheres near a hard wall
are plotted as a function of the distance from the wall, as computed by McGarrity,
Frischknecht, and Mackay [83, 84]. They considered an athermal mixture (no van-
der-Waals interactions), used an FMT approach for the excess sphere free energy,
and the Tripathy-Chapman association term [85, 86]. The calculations are done for
RP = 2 σ , where σ is the monomer Kuhn length; the chain length N = 100. At low
particle densities, the polymer expels the particles from the wall (Fig. 2.2a), while
at high particle densities, the particles segregate to the surface layer (Fig. 2.2b).

Additional complexity can be introduced by adding van-der-Waals interactions
and considering block copolymers instead of homopolymers. Cao and Wu [87]
modeled a solution of AB diblock copolymers and nanoparticles near a hard wall;
the total film thickness was set to 20 σ . The A-block is attractive to the particles,
while the B-block is either neutral (Fig. 2.3a, b) or slightly repulsive (Fig. 2.3c, d) to
the particles. The calculations show that as the interaction between the particles and
the B-block become less favorable, the system undergoes a transition from a “mul-
tilayer film” to a “monolayer”. The “multilayer” morphology is likely due to the
three-dimensional ordering of the particles into soft colloidal crystals (even though
the simulations are one-dimensional); the “monolayer” morphology represents the
block copolymer templating,with the particles segregating into the favorable domain.

One last example in this section describes the melt of “hairy nanoparticles” or
“nanoparticle-organic hybrid materials” (NOHM) [11, 88–94]. Here, DFT was used
to compute the transition between the liquid and the face-centered cubic (FCC) solid
(Fig. 2.4). We will return to this same system below when discussing the hybrid
SCF-DFT technique.
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Fig. 2.2 Polymer/nanoparticle mixture near a hard wall. As the particle density is increased, the
layer near the wall changes from polymer-rich to particle-rich. a Particle (black) and polymer (blue)
density profiles for the polymer-rich structure; b Same for the particle-rich structure. Reproduced
with permission from [83]. Copyright (2009) American Institute of Physics

2.3.2 Polymers and Nanorods

Our next example includes rodlike nanoparticles in a polymer melt, as shown in
Fig. 2.5, left panel. The nanorods are assumed to have a high aspect ratio and well-
aligned. The surfaces of the rods are covered with grafted oligomers of chain length
N, and they are immersed in a homopolymer melt with chains of length P. The
grafting density σ gr is obviously one important parameter governing the dispersion
of the rods; another parameter is the ratio of the free chain length to the grafted
chain length, α= P/N. The DFT calculations by Frischknecht, Hore, Composto,
and co-workers [95–97] determined the effective interaction potential between the
nanorods and evaluatedwhether it was attractive (leading to the nanorod aggregation)
or repulsive (leading to their dispersion). The results are shown inFig. 2.5, right panel.
For the moderate grafting densities, the phase behavior was found to be sensitive to
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Fig. 2.3 Self-organization of nanoparticles (with diameter σ P = 4σ ) by short-chain block copoly-
mers consisting of A/B segments (chain length M = 8). a and c give the reduced density profiles
of the polymeric segments and of the nanoparticles confined within a thin film of thickness H =
20 s. b and d Visualize the corresponding structures. In (a) and (b), B segments are neutral to
the nanoparticles, while in (c) and (d), B segments repel the particles. In both cases, the packing
fraction of the polymer in the bulk is 0.01 and that of the particles in the bulk is 0.1. Reproduced
with permission from [87]. Copyright (2007) American Institute of Physics

the ratio of the rod radius to the polymer Rg; for the high grafting densities, this
dependence has disappeared. The results were compared with experiments, and a
good agreement was found.

2.3.3 Polymers and Nanoplatelets

Finally, we consider the case of polymers and nanoplates. Balazs, Ginzburg, and
co-workers developed a two-step approach in analyzing the structure and disper-
sion of such systems. First, polymer self-consistent field theory (SCFT) is used to
compute the effective polymer-mediated interaction potential between the platelets
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Fig. 2.4 The DFT-calculated phase diagram for “hairy nanoparticles” with the particle/monomer
volume ratio of 106. The Y-axis is the nanoparticle volume fraction, and the X-axis is the ratio of
the polymer Rg to the particle radius a. Reproduced with permission from [90]. Copyright (2013)
American Chemical Society

Fig. 2.5 Polymer-grafted nanorods in polymer melt. The cartoon on the left shows the schematics,
with N being the length of the grafted ligands, and P being the length of the free chains. The
phase diagrams on the right show the regions corresponding to rods being aggregated (red) or well-
dispersed (blue); triangles and squares are experimental data, and circles representDFT calculations.
a High grafting density; b Moderate grafting density. Reproduced with permission from [95].
Copyright (2013) American Chemical Society

[98, 99]. Then,DFT is constructed tomodel the anisotropic assemblies of oblate ellip-
soids with long-range interactions due to the SCFT-calculated potentials [6, 7, 100–
103]. Trial single-particle densities are constructed to model various morphologies
(Fig. 2.6).

As shown in Fig. 2.7, for nanoplatelets with relatively low aspect ratio D/L = 30,
the phase diagram is quite nontrivial and complex. In the example here, the platelets
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Fig. 2.6 The morphologies of oblate ellipsoid fluids: a Isotropic (I); b Nematic (N); c Smectic
(Sm); d Columnar (Col); e Plastic Solid (“House of Cards”) (PS); f Crystal (Cr). Reproduced with
permission from [103]. Copyright (2000) American Chemical Society
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Fig. 2.7 Phase diagrams of polymer–clay mixtures: a ρgr = 0.04, Ngr = 50, and b ρgr = 0.02,
Ngr = 100. The platelet diameter D = 30 nm, thickness L = 1 nm. The free chain length P = 300.
The Y-axis is the Flory–Huggins interaction parameter between the ligands and the free chains, the
X-axis is the platelet volume fraction. Reproduced with permission from [103]. Copyright (2000)
American Chemical Society

are modified by grafted ligands, similar to the nanorod example above.When the free
chains are attracted to the ligands (χ < 0), the isotropic and plastic solid structures
prevail at low filler loadings; eventually, the platelets and polymers arrange into a 3D
crystal structure. When the free chains are repelled from the ligands (χ > 0), a wide
isotropic-crystal coexistence is observed, indicating aggregation or poor dispersion.
Note that in the calculations, we assume that the fillers interact via weak van der
Waals attractive forces.

As the platelet diameter is increased, the phase diagram becomes simpler. The
isotropic, plastic solid, and columnar phases become squeezed to the limit of
extremely low concentrations. It should become possible to consider a simpler model
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Fig. 2.8 The cartoon on the left shows the schematics, with Ng being the length of the grafted
ligands, and N f being the length of the free chains. The plot on the right shows the locus of the
critical values of α =N f/Ng at which the interaction force between the grafted monolayers becomes
attractive for fixed bulk-free polymer density,ρfσ f

3 = 0.6. The chain lengths of the grafted polymers
are Ng = 101 (squares) and Ng = 151 (circles). σ g = σf = σ Reproduced with permission from
[105]. Copyright (2009) American Institute of Physics

where the nanoplatelets are well-aligned and ask only whether the effective poten-
tial between them is attractive (causing aggregation) or repulsive (causing disper-
sion). This simplified problem was studied quite extensively (see, e.g., reviews [6,
7, 104]). In one example, Jain et al. [105] used DFT to estimate the interaction
potential between two parallel plates in a polymer melt (Fig. 2.8). It was shown that
the boundary between the aggregation and dispersion depends strongly on both the
grafting density and the ratio of the ligand to free polymer chain lengths, as one
indeed can expect.

Overall, the use of DFT in predicting nanocomposite morphology has been quite
extensive.However, as examples above show,mostDFTapplications in the nanocom-
posite field either utilize the “colloidal approximation” (integrating out the polymeric
degrees of freedom) or are restricted to lower-dimensionality morphologies (usually
1D, sometimes 2D) and/or shorter polymers. This is because all polymeric DFTs are
still computationally expensive. In the next section, we discuss a simplified approach
that aims to reduce the computation time and enable the calculation of more complex
morphologies.

2.4 The SCF-DFT Approach

The hybrid Self-Consistent Field/Density Functional Theory (SCF-DFT) method
was originally proposed by Thompson, Ginzburg, Matsen, and Balazs [106, 107] to
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describe the bulk morphologies of mixtures of nanospheres and diblock copolymers.
Itwas subsequently usedbymanyother investigators and applied to various problems,
some of which are highlighted below. So far, the method is restricted to the case
where the particles are nanospheres, though extensions to other shapes (e.g., oblate
or prolate ellipsoids) should be reasonably straightforward.

The starting point for the SCF-DFT approach is the SCFT of polymers (see books
and reviews [108–111] formore details).Within SCFT, polymers are treated asGaus-
sian chains and the interaction between variousmonomers is local and captured by the
Flory-Huggins lattice model [112–114]. The spherical nanofillers occupy multiple
lattice sites; to describe their interactions, one needs to utilize a DFT description
that captures long-ranged excluded volume effects. The SCF-DFT free energy for a
mixture of a multicomponent polymer blend with a single nanosphere type is written
as,
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Here, V is the total volume, T is temperature, N is the chain length of the first
(reference) polymer chain, ψ j is the volume fraction of the j-th component, Qj is
the partition function of the j-th component, and αj is the volume ratio of the j-th
component and the first (reference) component. In addition, ϕα(r) is the position-
dependent volume fraction of the α-th chemical species, φα is the overall volume
fraction of the α-th chemical species, and wα(r) is the conjugate field. Finally, ξ (r)
is the pressure-like field, and the matrix (χN)αβ describes all the pairwise Flory–
Huggins interactions. For the particles, one uses the DFT-like description based on
the center probability distribution, ρP(r), fromwhich the position-dependent volume
fraction is then computed via,
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Here, � is the standard Heaviside function. Also, consistent with DFT for
hard spheres, one estimates the excess non-ideal free energy using a Weighted-
Density Approximation (WDA) [27]. The Carnahan-Starling [115] excess term and
a weighted density function are utilized,

�HS(x) = 4x − 3x2

(1 − x)2
(2.6)
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For simplicity, in the expansion (2.7), w1 and w2 are both set to zero, and w0(r) =
�(2RP − |r|). Lastly, the partition functions for the particles and the polymers are
given by,

QP =
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dr exp[−wP(r)] (2.8a)
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r, α j
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(2.8b)

In (2.8b), the propagator q is evaluated in a standard SCFT fashion [106–111].
The free energy (2.4) needs to be minimized with respect to densities, conjugate
fields, and pressure; the resulting equations are solved iteratively. The solutions
would then describe the morphologies of nanocomposites, including the distribution
of nanoparticles within various polymer domains.

2.4.1 Nanoparticles in Block Copolymers—Bulk and Films

Historically, the first example of SCF-DFT was the case where spherical nanoparti-
cles were admixed with an AB-diblock copolymer; the nanoparticles were assumed
to be strongly preferential to the A-block. Figure 2.9 shows the density profiles and
particle center distributions for the lamellar morphology [106].

The model shows that the particles segregate into the A-lamellae; furthermore,
larger particles prefer to be located at the center of the lamella (Fig. 2.9a, b), while the
smaller ones tend to push closer to the edges (Fig. 2.9c). This result agrees qualita-
tively with experimental data of Bockstaller et al. [116] and other authors [117–120].
Similar particle segregation was calculated for other morphologies (cylindrical and
spherical) [107]. Subsequent work by Balazs and co-workers discussed the influence
of mixed spheres, as well as the behavior of the block copolymer/particle system in
thin films [121–128]. It was shown, in particular, that under some conditions, the
particles can segregate towards the surfaces and provide “self-healing” effect.
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Fig. 2.9 Concentration profiles of diblock-particle systems [ϕA(x), density distribution ofAblocks;
ϕP(x), and ρP(x), distributions of particles and particle centers, respectively]. a Large particle (RP
= 0.74Rg), particle volume fraction φP = 0.15. b Large particle (RP = 0.74Rg), φP = 0.03. c Small
particle (RP = 0.5Rg), φP = 0.15. B blocks are not depicted. Three periods are shown to better
illustrate the morphologies. Sketches showing the structure of each system accompany the profiles.
Reproducedwith permission from [106]. Copyright (2001) AmericanAssociation for Advancement
of Science

2.4.2 “Giant Surfactants”—Single-Ligand Nanoparticles

The above theory was formulated assuming that the fillers were “hard spheres”.
In reality, however, many nanoparticles have oligomeric ligands grafted to their
surfaces (“giant surfactants” [19, 129–131], and the theory needs to take this effect
into account. One of the first examples of the SCF-DFT extension to account for the
effects of grafting was the study by Lee et al. [127], in which they calculated phases
of the amphiphilic “tadpole” sphere-coil copolymers. It was shown that the spheres
can organize into hexagonal closed-pack lattice, with polymers filling the spaces
between them. This analysis was later refined and extended by other authors [132].
Similar arrangements were subsequently observed in Brownian Dynamics and other
particle-based simulations [18, 20, 133].

Several recent studies utilized SCF-DFT to predict the morphology and phase
behavior of single- or double-tethered nanoparticles with block-copolymer (rather
than homopolymer) ligand [134–136]. In one example, Wang and co-workers inves-
tigated the phase behavior of ABP, APB, and PAB triblocks, where A and B are
flexible chains, and P is a nanoparticle; the A-block is favorable to the particles.
Figure 2.10 shows the calculated phase diagrams, based on 2D SCF-DFT simula-
tions. The Y-axis is the strength of attraction between the A-block and the P-particle,
and the X-axis is the A-block volume fraction. It can be seen that the morphology
and the phase behavior are sensitive to the particle placement relative to the A-block.
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Fig. 2.10 a 2D ordered structures self-assembled by various giant surfactants: (Top) hexago-
nally packed cylinders formed by mixed A block and nanoparticles (NP) (Cmix); (Middle) parallel
lamellae formed by mixed A block and NP and pure B block (LAM); (Bottom) hexagonally packed
cylinders formed by pure B block (CB). The orange color denotes the regions formed by mixed A
block and NP, and the blue color denotes the regions formed by pure B block. b Phase diagrams for
(Top) ABP, (Middle) APB, and (Bottom) BAP giant surfactants as a function of the chain length
ratio of A block (f A) and the interaction parameter between A block and NP (−χAPN). Reproduced
with permission from [137]. Copyright (2019) American Chemical Society
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2.4.3 “Hairy Nanoparticles”—Single-Component Assemblies
and Mixtures with Polymers

The last example we consider is related to the application of SCF-DFT to polymer-
grafted or “hairy” nanoparticles (PGNP or HNP) [11, 17, 137]. This topic was briefly
discussed in Sect. 3.1 when we described the use of DFT to estimate the liquid-to-
crystal transition in bulk one-component HNP assemblies. We now highlight the use
of SCF-DFT in understanding these systems.

In 2009, Akcora and co-workers [138] experimentally investigated the dispersions
of polystyrene (PS)-grafted silica-NP in PSmatrix. As expected, they observed some
cases where the particles were well-dispersed (long ligands) and some cases where
the particles were aggregated (short ligands), in agreement with earlier theories [12,
21, 22, 139–141]. Surprisingly, under some conditions, the particles would form
two-dimensional arrays (“sheets”) and one-dimensional chains (“strings”). Coarse-
grained Monte Carlo simulations and analytical strong-segregation theory modeling
[138, 142] successfully explained those morphologies for the case of nanocompos-
ites with low NP loading; the combined modeling and experimental insights were
summarized byKumar and co-workers in their 2013Macromolecules paper [17]. The
reason for the anisotropic assembly was that the polymer shell (“canopy”) did not
have to remain spherical; under some conditions, the HNPs could reduce their free
energy by re-arranging the ligands and making their surfaces somewhat “patchy”;
the particles would then be able to minimize the free energy further by “fusing”
the “bald” patches together. In an SCF-DFT study, Ginzburg [143] investigated the
formation of sheets, strings, and aggregates at different NP volume fractions and for
different ligand lengths and grafting densities.

In the HNP-homopolymer binary mixtures, the anisotropic assembly was caused
by the interaction between the matrix and the ligands. Are the anisotropic morpholo-
gies going to be present if there is no matrix? The DFT analysis was discussed in
Sect. 3.1 included only two phases—uniform liquid and face-centered cubic (FCC)
crystal. However, Koerner et al. [144], Bockstaller et al. [145], and other authors
demonstrated the formation of anisotropic structures in thin films of one-component
HNPs under conditions of “moderate” and “sparse” grafting. To describe the phase
behavior of these systems, Ginzburg [146] applied a slightly modified version of
SCF-DFT; the results are shown in Figs. 2.11 and 2.12.

The phase map in Fig. 2.11 shows the equilibrium morphologies for one-
component nanocomposites having the core radius RP = 3.05 nm as the grafting
density and the grafted chain length is varied. The structures predicted in simulations
include FCC crystal and isotropic liquid, but also lamellar (sheets) and cylindrical
(strings) morphologies. It was further hypothesized that the phase map can be re-
plotted in scaled coordinates, RP/Rg and ϕP (Fig. 2.12), and a reasonable agreement
with experiments was obtained, although more studies are needed.
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Fig. 2.11 Phase map for the HNPmelt. Here, N is ligand length and σ is grafting density. Symbols
represent simulation results, with equilibrium (minimum free energy) morphologies shown as
follows: yellow= lamellar, gray= sheets, orange= cylindrical, and blue= FCC spherical. Dashed
lines are boundaries of the region studied in these simulations, while solid lines are approximate
locations of transitions between various phases. Reproduced with permission from [147]. Copyright
(2017) American Chemical Society

2.5 Summary and Outlook

Density functional theory (DFT) is a powerful technique to study the phase behavior
of complex fluids. Over the past four decades, DFT has been extensively parameter-
ized for various systems, from hard spheres to Lennard–Jones spheres to hard ellip-
soids and spherocylinders to flexible polymer chains. In particular, DFT is generally
well-suited to model the behavior of a mixture comprised of hard spheres of different
sizes; one can then combine one or more sphere types into polymer chains via the
Wertheim perturbation procedure. At the same time, numerical solution of the DFT
equations often remains challenging due to long-range nature of the non-ideal free
energy terms in either WDA or FMT approximations; thus, most DFT examples for
nanocomposites so far have been describing either 1D or 2D structures.

Hybrid field-theory approaches, such as SCF-DFT, can often accelerate the calcu-
lations and allow for fast exploration of phase maps and various morphologies. The
use of SCFT instead of DFT for polymer components neglects some intermolecular
correlations but significantly increases the computation speed. Under some condi-
tions, the use of compressible SCFT [104, 105, 148] can help improve the agreement
with experiment and/or approximate the DFT results. The SCF-DFT approach, as
originally formulated by Thompson et al. [106, 107], and subsequently refined and
extended by other authors [127, 136, 146, 149], enables fast and straightforward
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Fig. 2.12 Phase map of the HNP one-component systems expressed in terms of ϕP and RP/Rg.
Symbols are labeled as in Fig. 2.11. Solid lines are guided to the eye depicting approximate phase
boundaries. Stars with numbers represent the phase map locations of HNP systems from [144] and
[147] (see text for more details). The dashed blue line is the predicted FCC melting transition.
Reproduced with permission from [147]. Copyright (2017) American Chemical Society

calculation of the phase behavior for variety of nanocomposite systems (“bald” and
“hairy” nanoparticles in homopolymers, homopolymer blends, and block copoly-
mers; melts or solutions; bulk or thin films). It is feasible to suggest that in the future,
SCF-DFT can be used for molecular design of nanocomposites in the same way as
today, SCFT is used for molecular design of pure block copolymers [109, 150–154].
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Chapter 3
Coarse-Grained Modeling of Polymer
Nanocomposites: Field-Theoretic
Simulations

Jason P. Koski, Huikuan Chao, Christian Tabedzki, and Robert A. Riggleman

Abstract For several decades polymer field theory has been an important compu-
tational and theoretical tool for predicting and interpreting the phase behavior of
polymers. Many emerging applications of polymer materials involve blending poly-
mers with nanoparticles to improve performance; however, the thermodynamics of
these systems remains relatively poorly understood. In this chapter, we summarize
numerous recent advances in polymer field theory with a focus on our approach to
extend polymer field theory to describe polymer nanocomposites. We discuss recent
applications of the methods as well as the mutual advantages and disadvantages
of various implementations and conclude with a discussion of the challenges and
ongoing development of the methods.

3.1 Introduction

One of the intrinsic challenges with modeling of polymer nanocomposites is the
inherent multiple length scales involved with the materials, and phenomena on each
length scale can affect the resulting properties [1–3]. On the most local level, one
must consider the Coulombic, van der Waals, and in some cases Hydrogen-bonding
interactions between all species; on the polymer segmental level, packing effects
begin to come into play. On yet larger length scales, polymer conformations and
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nanoparticle sizes and shapes exist, and finally on the largest scales one must account
for the bulk structure of the composite, which could in general involve multiple
phases coexisting. While there are established strategies for capturing the behavior
on relatively small (� 20 nm) and continuum mechanics works well on the largest
length scales, only a handful of approaches are able to predict the structure and phase
behavior of composites on larger, mesoscale length scales.

In addition to molecular simulations, two other statistical mechanical approaches
are commonly used: polymer reference interaction site model (PRISM) theory and
field-theoretic approaches, the latter of which is the primary subject of this chapter.
As PRISM theory and background of this approach has been nicely reviewed recently
byMartin et al. [4], the details of the theory will only be presented at a high level here
in order to focus on the results generated for polymer nanocomposites. Briefly, a set
of nonlinear matrix integral equations that are based on the microscopic interactions
are employed to calculate the thermodynamic properties of the fluid of interest, and
typically the focus is on the static structure factor between the various components,
S(k). A challenge of standard PRISM theory is the apparent difficulty in incor-
porating densely grafted nanoparticles into the theory, although the hybrid Monte-
Carlo/PRISM theory approach of Jayaraman et al. provides an elegant solution to this
issue [5, 6]. PRISM theory has played an instrumental role in developing theoretical
phase diagrams for polymer nanocomposites [7, 8].

Separately, polymer field theory has a rich history that gives it some advantages
over other approaches. From the early work of Edwards showing that one can esti-
mate the statistics of Gaussian polymer chains with excluded volume interactions [9]
to ubiquitous application to various block copolymer structures [10–15], field theory
has a record of generally agreeing well with experiments. Experimental strategies
for estimating the parameters of common versions of the theory are well-established
and tabulated, and the theory lends itself to both analytic and numerical analysis,
depending on the level of approximations employed [10]. Numerical implementa-
tions of field theory as either field-theoretic simulations (FTS) or as self-consistent
field theory (SCFT) also allow the study of inhomogeneous (phase separated) states.

Two primary strategies have emerged for the study of polymer nanocomposites
using field-theoretic simulations. First among themwas the seminal work by Thomp-
son et al. [16] combining density functional theory with self-consistent field theory
(SCFT/DFT) to predict the distribution of nanoparticles in block copolymer matri-
ces. This method has been employed in a variety of applications with great success
at capturing the behaviors observed in experiments [17, 18]. As this method is dis-
cussed at length in Chap. 2 of this text, wewill not focus on an extended discussion of
this approach. Rather, we focus on the hybrid particle/field theory, wherein explicit
nanoparticles are retained in the partition function describing the system [19], and
its subsequent generalization by many of us [20].

In this chapter, we present a detailed derivation and discussion of the extensions
of polymer field theory that allow for the inclusion of excluded volume correlations
(see Fig. 3.1) and the associated study of polymer nanocomposites using field-based
simulations. To most clearly demonstrate the extensions of conventional methods,
we first present a standard field theory derivation of a compressible diblock melt
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Fig. 3.1 Segment density
near a polymer wall for the
standard field theory using
delta function densities and
for the theory using
finite-sized segments. The
latter gives rise to liquid-like
layering near the wall

blended with a homopolymer. Here, we demonstrate the particle-to-field transfor-
mation and derive the corresponding density operators for the polymer chains. Sec-
ond, we present the framework developed by Sides and coworkers [19] to include
explicit particles and establish a hybrid particle-field theory (HPFT) technique used
to study polymer nanocomposites.We then present extensions of these frameworks to
include field-based nanoparticles that allow for rapid calculation of nanoparticle den-
sity distributions in bulk systems while also providing a method to trivially include
field fluctuations through complex Langevin (CL) simulations. These extensions
include field-based nanospheres, nanorods, simple grafted nanoparticles (homopoly-
mer grafting), complex grafted nanoparticles (diblock, mixed, and Janus grafting),
and the incorporation of advanced pair-potentials in a field-based formulation. Next,
we provide a non-equilibrium dynamicmean-field theory that goes beyond the afore-
mentioned equilibrium methods and allows the integration and study of dynamic
processes. Finally, we present a short section on the numerical implementation of
the various methods and highlight some recent results obtained using the methods
presented herein before concluding by summarizing areas for future development
and outstanding challenges.

3.2 Standard Field Theory—Compressible Diblock with
Homopolymer

We first present a standard field theory formalism of a compressible diblock copoly-
mer melt with homopolymer. The polymers are modeled as discrete Gaussian chains
with ND and NH segments for the diblock and homopolymer chains, respectively.
Here, ND = NA + NB where NA and NB are the number of segments in the A and B
block of the copolymer, respectively. The microscopic density of the diblock copoly-
mer is given by
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ρ̂K (r) =
nD∑

i

NK∑

j

δ(r − ri,j), (3.1)

where nD is the number of diblock chains and K denotes either the A or B block. The
homopolymer microscopic density is given by

ρ̂H (r) =
nH∑

i

NH∑

j

δ(r − ri,j), (3.2)

where nH is the number of homopolymer chains.
The polymer chains are connected via a Gaussian bonding potential

βU0 =
nT∑

i

NT−1∑

j

3|ri,j − ri,j+1|2
2b2

, (3.3)

where b is the statistical segment length of the polymer and T is either D or H
to denote the type of polymer chain. Here, we assume that bA = bB = bH = b. A
Helfand compressibility [21] potential is used to enforce an energetic penalty for
deviations away from the total system density, ρ0, given by

βU1 = κ

2ρ0

∫
dr [ρ̂+(r) − ρ0]2, (3.4)

where ρ̂+ = ρ̂A + ρ̂B + ρ̂H is the spatially varying total microscopic density and
κ controls the strength of the density fluctuations. Finally, a repulsive Flory-like
potential is used to include enthalpic repulsions between dissimilar components

βU2 =
∑

I<J

χIJ

ρ0

∫
dr ρ̂I (r)ρ̂J (r), (3.5)

where ρ̂I and ρ̂J are the microscopic densities of components I and J , respectively,
and χIJ is the Flory parameter governing the strength of the interaction between
components I and J . The sum is taken over distinct combinations of A, B, and H .

The total partition function for the particle model can now be written as

Z = z0

∫
drnHNH

∫
drnDND e−βU0−βU1−βU2 , (3.6)

where z0 contains the numerical prefactors such as the thermal de Broglie wave-
lengths. Hubbard-Stratonovich transformations are then used to decouple the par-
ticle coordinates and transform the microscopic densities into conjugated chemical
potential fields [10, 22]. In order to proceed through the Hubbard-Stratonovich trans-
formation for the nonbonded potential in (3.5), it is necessary to write the equation
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in a quadratic form. This can be done by re-writing (3.5) as the difference of two
quadratic terms,

βU2 =
∑

I �=J

χIJ

4ρ0

∫
dr [ρ̂(+)

IJ (r)]2 − χIJ

4ρ0

∫
dr [ρ̂(−)

IJ (r)]2, (3.7)

where ρ̂
(±)
IJ (r) = ρ̂I (r) ± ρ̂J (r). As a result, for each pair of enthalpically distinct

components, two energetic terms arise in the particle-to-field transformation from
(3.7). Note that for a two component incompressible system, ρ̂I (r) + ρ̂J (r) must
equal ρ0 at every point such that

∫
dr [ρ̂(+)

IJ (r)]2 = ∫
dr ρ2

0 = ρ0(nINI + nJNJ ) and
this term can be lumped into z0. In this case, only a single energetic term arises from
(3.7). However, for a compressible system or systems where there are more than two
enthalpically distinct components, ρ̂I (r) + ρ̂J (r) is not restricted to equal ρ0 at every
point and may be spatially varying in which the previously described simplification
of (3.7) is not applicable.

Here, the most general result of the particle-to-field transformation is the field-
theoretic partition function,

Z = z1

∫
Dw+

∏

I �=J

∫
Dw(+)

IJ

∫
Dw(−)

IJ e−H[{w}], (3.8)

where z1 is the re-defined numerical prefactor that differs from z0 in that it contains the
normalization constants from the Gaussian functional integrals used to de-couple the
particle interactions,H[{w}] is the effective Hamiltonian of the system, and {w} is the
set of chemical potential fields for our system,w+,w(+)

AB ,w(−)
AB ,w(+)

AH ,w(−)
AH ,w(+)

BH ,w(−)
BH .

We note that all of the integrals in (3.8) are along the real axis. The effective Hamil-
tonian is given by

H[{w}] = ρ0

2κ

∫
dr w+(r)2 − iρ0

∫
dr w+(r)

+
∑

I �=J

ρ0

χIJ

∫
dr w(+)

IJ (r)2 +
∑

I �=J

ρ0

χIJ

∫
dr w(−)

IJ (r)2

−nD lnQD[wA,wB] − nH lnQH [wH ], (3.9)

where QD and QH are the partition functions of a single diblock copolymer and
homopolymer chain, respectively. QD is calculated from the chain propagator,
qD(j, r),

QD[wA,wB] = 1

V

∫
dr qD(ND, r), (3.10)

which is in turn constructed by iterating a Chapman-Kolmogorov equation
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qD(j + 1, r) = e−wK (r)
∫

dr′ �(r − r′) qD(j, r), (3.11)

where wK is either wA or wB if segment j + 1 is an A or B segment, respectively.
�(r − r′) represents the transitional probability density describing the conditional
probability of the next discrete polymer segment existing at r given the previous
segment’s location at r′; for Gaussian spring models, the Fourier transform of transi-
tional probability density is �̂(k) = exp(−b2|k|2/6). The initial condition is taken
from the A end of the block copolymer and is given as

qD(1, r) = e−wA(r). (3.12)

In (3.10)–(3.12) we have suppressed the functional dependence of q on wA and wB

for notational simplicity. For a homopolymer, wK and wA are replaced with wH

and qD is replaced with qH in (3.10)–(3.12). Note that in the case of NH = 1, the
homopolymer is represented as an explicit solvent and the single molecule partition
function simply becomes QH [wH ;N = 1] = 1

V

∫
dr e−wH (r) and that no iteration of

the Chapman-Kolmogorov equation is necessary.
The fields wA,wB, and wH are each given by

wA = i[w+ + w(+)
AB + w(+)

AH ] − w(−)
AB − w(−)

AH ,

wB = i[w+ + w(+)
AB + w(+)

BH ] + w(−)
AB − w(−)

BH ,

wH = i[w+ + w(+)
AH + w(+)

BH ] + w(−)
AH + w(−)

BH . (3.13)

The above equations (and all similar equations in this chapter) assume non-negative
values for all χIJ . In cases where χIJ is negative, w(−)

IJ carries the imaginary unit
rather than w(+)

IJ [23, 24].
The density operators of the polymer segments are given by

ρ̃A(r) = nD
VQD

NA∑

j=1

qD(j, r) ewA(r) q†D(ND − j + 1, r), (3.14)

ρ̃B(r) = nD
VQD

ND∑

j=NA+1

qD(j, r) ewB(r) q†D(ND − j + 1, r), (3.15)

ρ̃H (r) = nH
VQH

NH∑

j=1

qH (j, r) ewH (r) qH (NH − j + 1, r). (3.16)

The complementary propagator, q†D(j, r), is determined by iterating the same
Chapman-Kolmogorov equation described above in (3.11) starting from the B end
of the diblock copolymer.

At this point, a mean-field approximation is often used to simplify (3.8) such
that it is assumed that a single solution of {w}, denoted as {w∗}, dominates the
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partition function [10]. This leads to Z ≈ z1 e−H[{w∗}] = e−βF and a simple steepest
descent method can be used to determine {w∗}. Recently, it has been demonstrated
that complex Langevin (CL) sampling can be used to sample the fully fluctuating
field theory rather than using a mean-field approximation [10, 25–28]. While the
CL method is expected to exactly sample the underlying particle model, numerical
implementation of CL sampling leads to larger computational expense and one loses
direct access to the free energy [29]. Furthermore, as discussed below, there seem to
be cases where the CL method does not converge.

An additional consideration of CL simulations is the presence of ultraviolet (UV)
divergences [10, 30]. UV divergences arise from the issue of resolving a delta func-
tion, which becomes increasingly problematic with increased lattice resolution. The
presence of UV divergences causes thermodynamic parameters such as the free
energy, chemical potential, and the osmotic pressure to diverge as the resolution
of the simulation grid increases. This can be shown analytically where integrands
arise as a function of the wavenumber, k, which do not converge without choosing
a wavenumber cutoff. The issue of UV divergences is not present at the mean-field
level.

Furthermore, representing both the microscopic densities and the interaction
potentials as delta functions in the standard field theory formalism results in the
absence of excluded volume correlations. The conventional field theory formalism is
thus unable to model systems where excluded volume correlations are essential, such
as polymer nanocomposites. This is critical in a system with nanoparticles where a
nanoparticle needs to interact with a second nanoparticle at distances greater than
0. The excluded volume correlations are what give rise to aggregated nanoparticles
forming ordered lattice structures, which cannot be observed with using delta func-
tions to represent both the microscopic densities and the interaction potentials. In
Sect. 4 below, we demonstrate how to resolve this issue.

3.3 Hybrid Particle-Field Theory— Explicit Nanospheres

In an effort to extend the field theory framework, Sides and coworkers [19] developed
a hybrid particle-field theory (HPFT) method to model polymer nanocomposites.
Within this framework, the polymers are treated as they are in a typical field the-
ory formalism while the nanoparticles retain their explicit particle positions in the
Hamiltonian. The microscopic density of the nanoparticles are given by

ρ̂P(r) =
nP∑

i

�(r − ri), (3.17)

where nP is the number of nanoparticles and �(r), which describes the NP shape, is
defined as
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�(r) = ρ0

2
erfc

( |r| − RP

ξ

)
. (3.18)

Here, RP is the radius of the particle and ξ is the length scale in which the particle
density goes from ρ0 inside the core to 0 outside the core. For a systemwhere the NPs
have neutral interactions with all polymeric species, we introduce the nanoparticle
density into the ρ̂+ term in (3.4) and keep the explicit particle coordinates of the
nanoparticles intact during the particle-to-field transformation. As a result, (3.8) and
(3.9) become

Z = z1

∫
drnP

∫
Dw+

∏

I �=J

∫
Dw(+)

IJ

∫
Dw(−)

IJ e−H[rnP ,{w}], (3.19)

and

H[rnP , {w}] = ρ0

2κ

∫
dr w+(r)2 − i

∫
dr w+(r)

(
ρ0 − ρ̂P(r)

)

+
∑

I �=J

ρ0

χIJ

∫
dr w(+)

IJ (r)2 + ρ0

χIJ

∫
dr w(−)

IJ (r)2

−nD lnQD[wA,wB] − nH lnQH [wH ], (3.20)

respectively.
The cavity functions, �(r), introduced in (3.17) are now coupled to the w+ field

such that there is an energetic penalty, governed by κ , for the polymer chains pen-
etrating the core of the nanoparticles. Sides and coworkers [19] demonstrated that
Brownian dynamics or force-bias Monte Carlo schemes could be used to update the
particle positions where the force on each particle can be computed by

Fj = −∂H

∂rj
= −iρ0

∫
dr g(rj − r)w+(r), (3.21)

where g(r) = 1
r
d�(r)
dr r.

Unfortunately, spanning a large nanoparticle parameter space is difficult using
these methods, particularly in dense polymer melts and/or systems with several
nanoparticles. As a result, the HPFT method is often used to model just one or
two nanoparticles where the positions of the nanoparticles are fixed. This method
is useful to see how polymers or solvent respond or interact with a particle where
at the mean-field level, the free energy, chain entropy, or the polymer/solvent dis-
tribution near the particle can rapidly be calculated. This approach has been used
in numerous applications to model an explicit particle sitting at various defects in a
diblock copolymer [31], comparing vesicle and cluster configurations in a diblock
copolymer solution [32], or to generate potential of mean force curves by varying the
interparticle distance of two explicit particles for an array of polymer melt conditions
[33]. While the method of using one or two explicit particles with fixed positions
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is useful in these situations, the utility of this technique relies on either biasing the
particle(s) in certain positions and the polymers equilibrating around the particle(s),
or being able to sufficiently sample the particle coordinates. Consequently, the HPFT
approach overall is limited in characterizing bulk polymer nanocomposite behavior,
particularly in 3D. Lastly, relaxing the mean-field approximation through complex
Langevin sampling is a non-trivial task in the HPFT approach. In short, the com-
plex nature of the Hamiltonian would involve forces that are complex-valued, which
would push the nanoparticles out of the real plane, and it is not clear how to treat
certain aspects of the simulation, such as periodic boundary conditions.

3.4 Field-Based Nanospheres and Finite-Segment Polymers

In this section, we present a generalization of the HPFT approach to incorporate
nanoparticles into the field theory framework as field-based particles rather explicit
particles [20]. This can be done by using the same microscopic density operator in
(3.17) and rather than keeping the nanoparticle coordinates intact, the particle coor-
dinates can be exactly integrated out of the partition function, where (3.20) becomes
(Fig. 3.2)

H[{w}] = ρ0

2κ

∫
dr w+(r)2 − iρ0

∫
dr w+(r)

+
∑

I �=J

ρ0

χIJ

∫
dr w(+)

IJ (r)2 + ρ0

χIJ

∫
dr w(−)

IJ (r)2

−nD lnQD[wA,wB] − nH lnQH [wH ] − nP lnQP[� ∗ wP], (3.22)

where QP is the partition function of a single nanoparticle. Here we use ∗ as the
shorthand for a convolution operation f ∗ g = ∫ ∞

−∞ dx′f (x − x′)g(x′). In a similar
manner, we can redefine the microscopic densities of the polymers in (3.1) and (3.2)
as an array of unit Gaussians rather than delta functions such that

Fig. 3.2 Schematic illustrating the introduced physics in this section; polymers and solvent to
finite-sized polymers and nanoparticles
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ρ̂K (r) =
nD∑

i

NK∑

j

h(r − ri,j), (3.23)

ρ̂H (r) =
nH∑

i

NH∑

j

h(r − ri,j), (3.24)

where

h(r) =
(

1

2πa2

)D/2

exp

(
− r2

2a2

)
. (3.25)

Here, D is the dimension of the problem and a is the effective monomer size. We
note explicitly that in defining (3.17), (3.23), and (3.24), that these representations
are a simple convolution of the corresponding density function (i.e. �(r) for the
nanospheres or h(r) for the polymers) with the array of delta functions used in the
standard field theory formulation presented in Sect. 2.2. Tracing these steps through
the particle-to-field transformation leads to the effective Hamiltonian

H[{w}] = ρ0

2κ

∫
dr w+(r)2 − iρ0

∫
dr w+(r)

+
∑

I �=J

ρ0

χIJ

∫
dr w(+)

IJ (r)2 + ρ0

χIJ

∫
dr w(−)

IJ (r)2

−nD lnQD[h ∗ wA, h ∗ wB] − nH lnQH [h ∗ wH ]
−nP lnQP[� ∗ wP]. (3.26)

Now, we have two sets of density operators where the density operators presented
in (3.15) and (3.16) within Sect. 2.2 denote the diblock and homopolymer segment
center density, respectively. These operators correspond to the densities that would
typically be used to calculate a pair distribution function in a molecular dynamics
simulation, for example. The nanoparticle center density takes the form

ρ̃P(r) = nP
VQP

e−wP(r), (3.27)

We can also define the density operators of the total volume, which is given by the
convolution of the species’ density function with the corresponding center density
operator. These operators are given explicitly as

ρ̆K (r) = (h ∗ ρ̃K )(r), (3.28)

ρ̆H (r) = (h ∗ ρ̃H )(r), (3.29)
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and

ρ̆P(r) = (� ∗ ρ̃P)(r). (3.30)

Here, we point out that the Hamiltonian (and associated partition function) are
once again strictly a function of chemical potential fields and all particle coordinates
have been integrated out of the partition function. As the Hamiltonian is now solely
a function of chemical potential fields, introducing field fluctuations through the
CL method is straightforward. Additionally, the density functions address the issue
of UV divergences in the fully fluctuating field theory of the standard field theory
formalism by regularizing the theory at r = 0. Furthermore, the introduction of the
field-based nanospheres does not change how the computational expense scales. The
sum over I and J can be further generalized to distinct combinations of A, B, H ,
and P. In many of our published examples [20, 34–36], we commonly treat the
nanoparticles as A particles where wA = wP or as neutral nanoparticles (χKP = 0)
so as to reduce the parameter space and the number of fields to equilibrate and/or
sample. However, the most general definitions of the fields wA,wB, wH , and wP are
now given by

wA = i[w+ + w(+)
AB + w(+)

AH + w(+)
AP ] − w(−)

AB − w(−)
AH − w(−)

AP ,

wB = i[w+ + w(+)
AB + w(+)

BH + w(+)
BP ] + w(−)

AB − w(−)
BH − w(−)

BP ,

wH = i[w+ + w(+)
AH + w(+)

BH + w(+)
HP ] + w(−)

AH + w(−)
BH − w(−)

HP ,

wP = i[w+ + w(+)
AP + w(+)

BP + w(+)
HP ] + w(−)

AP + w(−)
BP + w(−)

HP .

(3.31)

An additional advantage of this generalization of the HPFT method is that both
explicit and field-based particles can be introduced into the same system. This is
demonstrated by representing (3.17) as

ρ̂P(r) =
nP∑

i

�(r − ri) =
nP,exp∑

i

�(r − ri) +
nP,field∑

j

�(r − rj), (3.32)

which leads to

H[rnP,exp , {w}] = ρ0

2κ

∫
dr w+(r)2 − i

∫
dr w+(r)

(
ρ0 − ρ̂P,exp(r)

)

+
∑

I �=J

ρ0

χIJ

∫
dr w(+)

IJ (r)2 + ρ0

χIJ

∫
dr w(−)

IJ (r)2

− nD lnQD[h ∗ wA, h ∗ wB] − nH lnQS [h ∗ wH ]
− nP,field lnQP[� ∗ wP],

(3.33)

where nP,exp and nP,field are the number of explicit and field based nanoparticles,
respectively. The incorporation of both explicit and field-based particles leverages
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the advantages of both representations. The explicit particles allow for exact control
and knowledge of a particle’s position while the field-based particles lead to rapid
calculations of the probability distribution of several particles around the explicit
particle. The combination of both these approaches allows for efficient calculation
of the particle distribution around a single explicit particle, which can be used to
calculate the radial distribution function or potential of mean force. This approach
effectively captures many-body effects and the capability to study the effect of field
fluctuations to go beyond the mean-field approximation.

3.4.1 Recent Results

As an example where we employ a mix of explicit and field-based nanoparticles,
in Fig. 3.3 we show recent results characterizing the interactions between spheri-
cal nanoparticles embedded in a cylinder-forming block copolymer [36]. A single,
explicit nanoparticle is placed in the center of the box, and field-based nanopar-
ticles are allowed to equilibrate around the explicit particle (Fig. 3.3a, b). We
next calculate the distribution of the field-based particle centers along the length
of the cylinder as a function of distance from the particle surface, ρ(�r − DP),
which is then converted into a free energy (potential of mean force) through
�F/kBT = − log [ρ(�r − DP)/ρ(∞)], where ρ(∞) is the far-field density. In all
cases, the free energy profile is non-monotonic as a function of the particle separation.
A barrier emerges when the particles are ∼ 3Rg apart, which is due to deformations
of the interfaces between the A and B phases. A free energy well of approximately
4kBT emerges when the particles are in contact as the entropic penalty of chains
stretching to fill the gap between the nanoparticles is relaxed.

3.5 Field-Based Nanorods

We can extend this approach further to incorporate anistropic particles [20] where
we focus our discussion here on nanorods (Fig. 3.4).

To do so, we first define an orientation vector, u, along the length of the nanorod
where the nanorod density function is given by

�NR(r,u) =
ρ0

4
erfc

( |u · r| − LP/2

ξ

)
· erfc

( |u × r| − RP

ξ

)
, (3.34)

and LP is the length of the nanorod, RP the radius, and ξ again plays the role of a
parameter that controls the length scale over which the nanorod density decays from
ρ0 to 0. The Hamiltonian and partition function are represented in the same form as
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they are for the nanospheres except that the convolution of the nanoparticle density
function with its chemical potential field is now taken with respect to both position
and orientation. This additional complication only changes the nanoparticle partition
function, QP , and the corresponding center and total density operators, ρ̃(r,u) and
ρ̆(r,u), respectively. These quantities now take the form

QP[wP] = 1

4πV

∫
dr

∫
du exp [−(�NR ∗ wP)(r,u)] , (3.35)

ρ̃P(r,u) = nP
4πVQP

e−(�NR∗wP)(r,u), (3.36)

and

ρ̆P(r) =
∫

du (�NR ∗ ρ̃P)(r,u). (3.37)

Fig. 3.3 Comparison of the complex Langevin and mean-field distributions of spherical nanopar-
ticles around a central, explicit spherical nanoparticle embedded in the cylindrical phase of a block
copolymer. a Slice through the simulation box showing the explicit spherical nanoparticle embed-
ded in theminority component of the cylinder phase. bDistribution of field-based spherical particles
around the central explicit particle in the plane visible in panel a. c Potential of mean force along
the length of the cylinder for nanoparticles with diameter DP = 1.5Rg or 1.2Rg obtained using
complex Langevin simulations (CL) or under the mean-field (MF) approximation. Figure adapted
from [36]

Fig. 3.4 Schematic
illustrating the introduced
physics in this section;
nanoparticles to nanorods
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Note that the 4π in the prefactor of in (3.35) and (3.36) is for 3D calculations while
it is 2π in 2D calculations. The orientation of the nanorods can be quantified by
defining a tensor order parameter

Sα,β(r) =
∫
du(uαuβ − 1

3δα,β) exp(−(�NR ∗ wP)(r,u))∫
du exp(−(�NR ∗ wP)(r,u)

, (3.38)

where α and β refer to the Cartesian directions and δα,β is the Kronecker delta
function. The exponential terms represent the Boltzmann weight of the particle cen-
ter density, and the eigenvector associated with the largest eigenvalue denotes the
primary direction of alignment.

The introduction of the orientation vector, u, is implemented through a discretiza-
tion of the unit-sphere in spherical coordinates using Gaussian-Legendre weights to
efficiently calculate the spatial coordinates associated with u. The discretization of
the unit-sphere allows for our method to characterize an array of anisotropic particles
such as nanorods, Janus particles, Janus rods, or patchy particles. However, for parti-
cles that are not symmetric about the azemuthal angle (e.g. diamond particles or most
patchy particles), two orientation vectors need to be defined and the system quickly
becomes computationally demanding if not computationally intractable. Interest-
ingly, the theoretically-informed Langevin dynamics (TILD) method, described
below, circumvents this challenge.

3.5.1 Recent Results

The study presented in Fig. 3.5 is a showcase of using PNC-FT to investigate spa-
tial distribution of nanorods in cylindrical phased PS-b-P2VP thin films [37, 38].
The field theoretic simulation and experimental results (Figs. 3.5a, b) suggest that
nanorods segregated to the base of P2VP cylinder when the substrate wets the cylin-
der and induces defects at the base. The segregation of nanorods to the defect region
relieves chain stretching and becomes thermodynamically favored. Figure 3.5c quan-
tifies the segregation by showing the fraction of nanorod vertically oriented to the
substrate as a functions of the wetting strength. When the nanorod length becomes
comparable to the film thickness, the study shows the fraction saturates and becomes
invariant to the wetting strength.

3.6 Homopolymer Grafted Nanoparticles

Advances in synthetic chemistry have led to the ability to graft polymer chains
onto the surface of nanoparticles. Grafted chains serve as an additional degree of
freedom in controlling the spatial distribution of particles within the polymer matrix.
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Fig. 3.5 aDensity fieldmaps containing isosurfaces that enclose regionswhere theA-block (minor-
ity component) local volume fraction is given by the colors on the colorbar with λW = 0.0 (top)
and λW = 6.0 (bottom). b TEM (left) and AFM (right) topography images of a P2VP-grafted gold
nanorod thin film. Majority of the nanorods are showing horizontal orientation to the substrate in
the P2VP cylinder. c Fraction of vertically oriented nanorods fv as a function of the strength of the
bottom substrate selectivity λW in filmswith hard confinement (solid) or soft confinement (dashed).
Panels a, c adapted from [38], and panel b reproduced from [37] with permission from The Royal
Society of Chemistry

Fig. 3.6 Schematic
illustrating the introduced
physics in this section;
nanoparticles to
homopolymer grafted
nanoparticles

Specifically, the grafted chains can induce extra steric hindrance as particles approach
one another and effectively prevent the particle aggregation that would arise due to
attractive particle-particle interactions. Significant research has been done in the
realm of grafted nanoparticles, particularly in varying the relative lengths of the
matrix and grafted chains (Fig. 3.6).
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As a result, a natural extension to our method is the ability to model grafted
nanoparticles within our framework [39]. Using similar convolutions as above to
distribute the mass of a nanoparticle about its center, we can define a homogeneous
distribution of grafting sites at the surface of the nanoparticle given by

�σ (r) = 1

σ0
exp

[
−

( |r| − RP − ξ

ξ

)2
]

, (3.39)

where σ0 is a normalization constant such that
∫
dr�σ (r) = 1. The normalization

constant ensures that �σ is the probability density of a single polymer chain being
grafted to the surface. The normalized distribution of grafting sites is represented as

σG(r) = 1

nP

(
�σ ∗ ρ̂P,c

)
(r), (3.40)

where ρ̂P,c is the microscopic nanoparticle center density such that � ∗ ρ̂P,c = ρ̂P .
For grafted nanoparticles, we now present our Hamiltonian in the general form with
explicit and field-based grafted nanoparticles

H[rnP,exp , {w}] = ρ0

2κ

∫
dr w+(r)2 − i

∫
dr w+(r)

(
ρ0 − ρ̂P,exp(r)

)

+
∑

I �=J

ρ0

χIJ

∫
dr w(+)

IJ (r)2 + ρ0

χIJ

∫
dr w(−)

IJ (r)2

−nG,exp

∫
dr⊥ σG,exp(r⊥) ln qG,exp[r⊥; h ∗ wG]

−nD lnQD[h ∗ wA, h ∗ wB] − nH lnQH [h ∗ wH ]
−nP,field lnQP[μP], (3.41)

where

μP,Homo(r) = (� ∗ wP)(r) − nG,field

nP,field

(
�σ ∗ ln qG,field

)
(r). (3.42)

Here, r⊥ are the positions of the grafting sites for the explicit particles, nG is the
number of grafted chains, and qG(r) is the partition function of a single grafted
chain propagated from the free end and terminating at r. At this point, the derivation
of (3.41) and (3.42) warrants additional detail. To simplify the derivation, lets first
assume there are no explicit particles in the system. In the step after the particle-to-
field transformation, the contribution from the grafted chains is given by

− nG

∫
drG σG(rG) ln qG(rG), (3.43)
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where rG are the positions of the grafting sites for all of the nanoparticles. If we plug
in (3.40) for σG above, we now get

−nG
nP

∫
drG (�σ ∗ ρ̂P,c)(rG) ln qG(rG)

= −nG
nP

∫
drG

∫
dr′ �σ (rG − r′)ρ̂P,c(r′) ln qG(rG). (3.44)

Now, to go to the next step, we first point out that the following relation,
∫
dr h(r)

∫

dr′f (r − r′)g(r′) = ∫
dr′g(r′)

∫
dr f (r′ − r)h(r), is only valid when f is even.

Since, �σ is even, we can rewrite (3.44) as

−nG
nP

∫
drG

∫
dr′ �σ (r′ − rG)ρ̂P,c(r′) ln qG(rG)

= −nG
nP

∫
dr′ ρ̂P,c(r′)(�σ ∗ ln qG)(r′), (3.45)

where we can now trivially reduce the explicit particle center coordinates such that
− nG

nP
(�σ ∗ ln qG)(r′) arises as a second term in the single nanoparticle partition func-

tion, QP , as shown in (3.42).
The first term in (3.42) encompasses the interactions felt by the nanoparticle core

while the second term represents the free energy of a grafted chain terminating at the
surface of the nanoparticle. Without the second term, the nanoparticle distribution
would be unaffected by the grafted chains. It should be noted explicitly that (3.41)
is generalized for a given μP and that (3.42) is the correct representation for a
homopolymer grafted nanoparticle. We next proceed to generalize the result for
diblock, mixed, and Janus grafted nanoparticles.

3.7 Complex Grafted Nanoparticles

As described in the last section, we have now introduced the main components to
include complex grafted nanoparticles into our framework [35] (Fig. 3.7).

Following the homopolymer grafted nanoparticles, diblock grafted nanoparticles
are implemented in the same manner where

μP,Diblock(r) = (� ∗ wP)(r) −
nGD,field

nP

(
�σ ∗ ln qGD,field

)
(r), (3.46)

and nGD is the number of grafted diblocks. The only fundamental difference between
(3.42) and (3.46) is that qGD is made up of the propagators that form a diblock rather
than a homopolymer. To incorporate an A/B mixed homopolymer brush grafted
particle, μP is altered to
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Fig. 3.7 Schematic illustrating the introduced physics in this section; homopolymer grafted
nanoparticles to diblock grafted, mixed homopolymer grafted, and Janus grafted nanoparticles

μP,Mixed(r) = (� ∗ wP)(r) − nG,field

nP

[
�σ ∗

(
fA ln qGA,field

+(1 − fA) ln qGB,field

)]
(r), (3.47)

where fA is the fraction of grafted A homopolymer chains in the grafted brush. Lastly,
to include a Janus grafted nanoparticle, we require an orientation-dependent grafting
site density. We first present the final form of μP given by

μP,Janus(r,u) = (� ∗ wP)(r) − nG,field

nP

[
fA(�̃σA ∗ ln qGA,field)(r,u)

+(1 − fA)(�̃σB ∗ ln qGB,field)(r,u)

]
, (3.48)

where �̃σA and �̃σB are orientation dependent grafting site distributions. We define
�̃σK such that �̃σK (r,u) = �σK (−r,u). This definition is necessary as �σK is not
even, which is necessary to switch the convolution from the particle centers to the
single grafted chain partition function, as discussed in the previous section in going
from (3.43) to (3.45). �σA and �σB are given by

�σA(r,u) = 1

σ0
exp

[
−

( |r| − RP − ξ

ξ

)2
]

erfc

(
1 − 2fA − r · u/|r|

ξu

)
, (3.49)

�σB(r,u) = 1

σ0
exp

[
−

( |r| − RP − ξ

ξ

)2
]

erfc

(
r · u/|r| − 1 + 2fA

ξu

)
, (3.50)

where the complimentary error function term confines the grafting site distribution to
a fraction of the nanoparticle surface area. Specifically, �σA takes up fA of the surface
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Fig. 3.8 Schematic for Janus grafted nanoparticle showing the setup for the orientation u, the
fraction of grafting area for each type of chains, and the angle θ between u and the directions long
the grafting area boundaries. Based on our definition, θ = cos−1(1 − 2fA). Reproduced from [35]
with permission from The Royal Society of Chemistry

area while�σB takes up 1 − fA of the surface area. The difference between (3.47) and
(3.48) is that the mixed brush grafting function is not orientation dependent and the A
and B chains are evenly distributed on the surface of the nanoparticle. However, the
grafting functions in the Janus particle case are orientation dependent and effectively
confines the A grafted chains on fA of the nanoparticle surface while the remaining
surface consists of B grafted chains (Fig. 3.8).

As is the case with homopolymer grafted particles, the inclusion of both explicit
and field-based complex grafted particles is trivial. Furthermore, the framework
allows inclusion of a combination of one or more grafted nanoparticle types.

3.7.1 Recent Applications

Figure 3.9 highlights an application of PNC-FT to study the structure and interfacial
activity of complex grafted nanoparticles in an immisible polymer blends consisted
of homopolymers (denoted as A and B polymers below) [35]. When the radius of
gyration of grafted polymer is larger to the size of nanoparticle core (Rg/RP = 2.5),
the study shows that the grafted diblocks close to the A–B interface stretch into the
A phase while the grafted chains far away from the interface are instead forced to
locally phase separate on the side of the particle that resides in the B phase. For
the mixed brush case, the grafted chains in their corresponding unfavorable phase
pack close to the particle and locally phase separate while the grafted chains in their
preferred phase extend into the bulk phase. In the case of Janus gratfing, the chains
do not have to sacrifice their entropy to avoid unfavored enthalpic contacts with the
bulk phase. The graft structure observed here plays an important role to control the
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Fig. 3.9 a Local grafted chain density.a, d, and g display the diblock grafted particles, b, e, and h
displaymixedbrushparticles,while c, f, and i display the Janus brush particles.a–c Isosurfaces of the
explicit grafted particle sitting near the interface. The red isosurfaces denote theAgraftedmonomers
while the blue isosurfaces represent the B graftedmonomers. The red and blue background show the
A and B matrix chain density, respectively. d–f Color maps indicating the A grafted chain density.
g–i Color maps indicating the B grafted chain density. The colormaps are taken from slices through
the particle center. The color bar denotes the volume fraction of the corresponding component. b
Interfacial tension as a function of the A component of the grafted layer,fA. Reproduced from [35]
with permission from The Royal Society of Chemistry

interfacial property. The interfacial tension in the cases of mixed and Janus grafting
is found significantly lower than both the bare particle and diblock grafted particles
given that the overall A component fraction (fA) is about 0.5.

3.8 General Interparticle Potentials

Interestingly, the implementation of the density functions via convolutions allows
for the incorporation of more realistic pair potentials in an exchange field theory
formulation. Specifically, to go from a particle-based to a field-based model, we
utilize Gaussian functional integrals that either take the form

∫
Dw exp[−(1/2)

∫
dr

∫
dr′w(r)u(r, r′)w(r′) + ∫

drρ̂(r)w(r)]∫
Dw exp[−(1/2)

∫
dr

∫
dr′w(r)u(r, r′)w(r′)

= exp

(
1

2

∫
dr

∫
dr′ρ̂(r)u−1(r, r′)ρ̂(r′)

)
, (3.51)

or
∫
Dw exp[−(1/2)

∫
dr

∫
dr′w(r)u(r, r′)w(r′) + i

∫
drρ̂(r)w(r)]∫

Dw exp[−(1/2)
∫
dr

∫
dr′w(r)u(r, r′)w(r′)

= exp

(
−1

2

∫
dr

∫
dr′ρ̂(r)u−1(r, r′)ρ̂(r′)

)
, (3.52)
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where u and u−1 are the functional inverse of each other, defined such that

∫
dr′u(r, r′)u−1(r′, r′′) = δ(r − r′′). (3.53)

In order for the Gaussian integrals in (3.51) and (3.52) to be applied, u must be real,
symmetric, and positive definite. In the standard field theories described above in
Sect. 3.2, one typically writes the interaction potential as purely local

βU = C
∫

dr ρ̂(r)2 = C
∫

dr
∫

dr′ ρ̂(r)δ(r − r′)ρ̂(r′). (3.54)

Here, C is a constant and the delta function is a convenient choice for the interaction
potential as the functional inverse of a delta function is simply another delta function.
If instead we employ the density-smearing approach, we define ρ̂ = �i ∗ ρ̂c and
(3.54) can be re-written in two equivalent forms

βU = C
∫

dr
∫

dr′ (�i ∗ ρ̂c(r))δ(r − r′)(�i ∗ ρ̂c(r
′)) (3.55)

= C
∫

dr
∫

dr′ ρ̂c(r)(�i ∗ �i)ρ̂c(r
′). (3.56)

Tracing through the particle-to-field transformation in the first form (3.55) is similar
to that described above in Sect. 3.4 on field-based nanospheres: the effective chemical
potential fields would simply be convolved with �i(r). In contrast, the second form
has the particle centers interacting through an effective pair potential, (�i ∗ �i)(r).
Shown in Figure 3.10 is an example of a pair potential of two nanoparticles described
by the equation below

u(|r − r′|) = κ

2ρ0

∫
dr′′ �(r′′ − r) �(r′′ − r′). (3.57)

While the effective pair potential in (3.56) would need to be positive definite to
use the Gaussian integrals, the first form in (3.55) does not have this requirement,
and this opens a path to the use of more complex effective interactions. For example,
in the case where nanoparticles of species i and j have two distinct shapes, (3.55)
and (3.56) can be further generalized to

βU = C
∫

dr ρ̂i(r)ρ̂j(r)

= C
∫

dr
∫

dr′ (�i ∗ ρ̂c(r))δ(r − r′)(�j ∗ ρ̂c(r
′))

= C
∫

dr
∫

dr′ ρ̂c(r)(�i ∗ �j)ρ̂c(r
′). (3.58)
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Fig. 3.10 Effective pair
potential between two
nanoparticle centers given by
(3.57) with ξ = 0.05RP

This realization allows for this framework to incorporate more realistic non-local
potentials through the microscopic density functions rather than the pair potential,
u. However, as �i and �j still arise as convolutions in the Hamiltonian, they should
be well behaved in Fourier space to efficiently evaluate the convolution.

Interesting applications of this methodology could be to incorporate van der
Waals-like particle-particle attractions or to study adsorbing polymers to the surface
of nanoparticles by defining an attractive well at the surface of the nanoparticles. In
each of these cases, the interaction potential is not limited by having to be real, sym-
metric, or positive definite if one employs aWeeks-Chandler-Andersen splitting [40]
of the potential into its attractive and repulsive terms. The derivation and implementa-
tion of such a form for adsorbing diblock copolymers is provided in the next section.

3.8.1 Adsorbing Diblock Copolymer

In this subsection, we derive the field-theoretic representation of a system where
nanoparticles have a purely repulsive interaction with the B blocks, but a local sur-
face attraction with the A blocks of a diblock copolymer. The repulsive part of
the interaction for both species is equal, and we continue to capture it through the
Helfand compressibility potential in (3.4). We expand the potential to directly see
the pair-wise interactions between the species as
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βU1 = κ

2ρ0

∫
dr [ρ̂+(r) − ρ0]2

= κ

2ρ0

∫
dr [ρ̂A(r)2 + ρ̂B(r)2 + ρ̂P(r)2 + ρ2

0

+ 2ρ̂Aρ̂B + 2ρ̂Aρ̂P + 2ρ̂Bρ̂P

− 2ρ̂Aρ0 − 2ρ̂Bρ0 − 2ρ̂Pρ0]. (3.59)

Here, we can more clearly see that the A block of the diblock has a repulsive inter-
action with the nanoparticle cores of the form

βUAP,repuls = κ

ρ0

∫
drρ̂Aρ̂P

= κ

ρ0

∫
dr

∫
dr′(h ∗ ρ̂A,c)(� ∗ ρ̂P,c)

= κ

ρ0

∫
dr

∫
dr′ρ̂A,c(h ∗ �)ρ̂P,c

=
∫

dr
∫

dr′ρ̂A,c(r)uAP,repuls(|r − r′|)ρ̂P,c(r), (3.60)

where the repulsive pair potential is

uAP,repuls(|r − r′|) = κ

ρ0

∫
dr′′h(r′′ − r)�(r′′ − r′). (3.61)

Now, we can define an attractive interaction between the A block and the nanopar-
ticle surface by smearing the particle center density with a negative Gaussian ring
−�S that lies just off the particle surface. This adds a potential of the form

βUAP,attract = − ε

ρ0

∫
drρ̂Aρ̂S

= − ε

ρ0

∫
dr

∫
dr′(h ∗ ρ̂A,c)(�S ∗ ρ̂P,c)

= − ε

ρ0

∫
dr

∫
dr′ρ̂A,c(h ∗ �S)ρ̂P,c

=
∫

dr
∫

dr′ρ̂A,c(r)uAP,attract(|r − r′|)ρ̂P,c(r), (3.62)

where ε controls the strength of the attractive surface and the attractive pair potential
is

uAP,attract(|r − r′|) = − ε

ρ0

∫
dr′′h(r′′ − r)�S(r′′ − r′), (3.63)
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Fig. 3.11 Effective pair
potential between an
adsorbing polymer and a
nanoparticle center (black)
given by the summation of
an attractive (red) and
repulsive (blue) contribution
based on (3.63) and (3.61),
respectively. These pair
potentials are for κ = 10,
ε = 8, a = 0.067RP , and
ξ = 0.033RP

and �S is defined by

�S(r) = ρ0 exp

[
−

( |r| − RP − ξ

ξ

)2
]

. (3.64)

Assuming the pair potentials are additive, the effective pair potential between the A
block of the diblock and the nanoparticles is uAP = uAP,repuls + uAP,attract, which is
plotted in Fig. 3.11.

It is clear that despite using an ε value of 8, the attractive well is only ≈ 1. In
this particular case, it is more appropriate to think of the depth of the well as the
strength of attraction between the A block and the nanoparticle surface rather than
the absolute value of ε. Furthermore, the forms of the density functions are a choice,
and one can easily imagine using more realistic interaction potentials, such as a
regularized version of colloid potentials [41].

Finally, we present the full set of equations for a field theory that uses the attractive
potential described above. Incorporating the potentials defined in (3.3)–(3.5) and
introducing (3.63) into a system of AB diblocks and neutral nanoparticles (nH = 0)
leads to a Hamiltonian given by

H[{w}] = ρ0

2κ

∫
dr w+(r)2 − iρ0

∫
dr w+(r)

+ ρ0

χAB

∫
dr w(+)

AB (r)2 + ρ0

χAB

∫
dr w(−)

AB (r)2

+ρ0

ε

∫
dr w(+)

AS (r)2 + ρ0

ε

∫
dr w(−)

AS (r)2 (3.65)

−nD lnQD[h ∗ wA, h ∗ wB]
−nP lnQP[μP],
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where

μP(r) = (� ∗ wP)(r) + (�S ∗ wS)(r), (3.66)

and

wA = i[w+ + w(+)
AB − w(−)

AS ] − w(−)
AB + w(+)

AS ,

wB = i[w+ + w(+)
AB ] + w(−)

AB ,

wP = iw+,

wS = iw(−)
AS + w(+)

AS . (3.67)

Here, the term involving w(+)
AS is real while the term involving w(−)

AS carries an imagi-
nary unit i because the surface potential in (3.62) is attractive. Furthermore, wS does
not have a contribution from the w+ field as the purpose of �S in this context is
to represent a region in which the A block of the copolymer has a positive affinity
towards rather than giving the surface an excluded volume. As a result, �S ∗ ρ̂P,c is
not included in ρ̂+.

3.9 Theoretically-Informed Langevin Dynamics (TILD)

TheTILDmethod is a particle-based implementation of themodels used in FTS,with
one significant caveat: the non-bonded interactions are taken between continuous
density fields instead of summing up pairs of interactions. Briefly, for a Gaussian-
regularized Edwards model (GREM) for n linear homopolymers of length N in an
implicit solvent, one can consider the total potential as being broken up into its
bonded (b) and non-bonded (nb) components,

βUtot = βUb(rnN ) + βUnb[ρ]. (3.68)

The bonded interactions are taken directly from the particle coordinates and do not
involve any inter-molecular interactions. As such, the expense of calculating Ub is
expected to scale as O(nN ).

The non-bonded contribution to the potential is calculated bymapping the explicit
particle densities onto a continuous density field,

ρ(r) =
nN∑

i

δ(r − ri) ≈ 1

δV

∑

i

W (r − ri), (3.69)

where W (r − ri) is the weight from particle i given to the grid point at r and δV
is the volume of the grid employed; the notation for this mapping closely follows
that commonly used in the particle-to-mesh Ewald summation technique in particle-
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based simulations of charged species [42]. Equation (3.69) assumes a regular grid
where each point is associated with the same grid volume, though this is not strictly
required. With this continuous density field, the non-bonded potential for the GREM
becomes

2βU [ρ] =
∫

dr
∫

dr′ ρ(r) uG(r − r′) ρ(r′) − nNuG(0)

2
, (3.70)

uG(r) = u0
(
2πa2

)−D/2
e−|r|2/2a2 . (3.71)

Here, D is the dimensionality of the system and a is the range of the interaction
potential, which is closely related to the monomer smearing size described above
(Fig. 3.12).

To use this approach in a Langevin dynamics (LD) scheme, for each particle
one needs to obtain the conservative part of the force that arises from the potential
energy, fi = − ∂Utot

∂ri
. Similar to the potential energy, contributions from the bonded

term will arise naturally as in a particle-based simulation, and these can be easily
analytically implemented for most common potentials. The contribution to the force
from the non-bonded term is most efficiently handled on the grid by first calculating
the continuous (grid-based) non-bonded force between points r and r′ as

fnb(r) = −
∫

dr′∇uG(r − r′) ρ(r′), (3.72)

which can be handled asD convolution operations of the gradient of the pair potential
with the density field. The continuous force is then mapped onto the particles as

Fig. 3.12 Snapshot of the particle positions (left), and the corresponding density fields (right) for a
block copolymermelt. The explicit particle coordinates are used to evaluate the bonded interactions,
while the non-bonded interactions are evaluated based on the grid densities



3 Coarse-Grained Modeling of Polymer Nanocomposites … 71

f (nb)
i =

∫
dr δ(r − ri) fnb(r) (3.73)

≈
∑

μ

W (rμ − ri) fnb(rμ), (3.74)

where the sum over μ is over the grid points with finite support (W �= 0) for particle
i, and rμ indicates a position associated with grid point μ.

An important feature of the TILD method is that it is even more straightforward
to introduce more complex pair potentials between the components without the need
to use the smearing function approach described in the previous sections. As the
potential will be evaluated in Fourier space when evaluating the convolutions in
(3.72), there is still a need to employ a regularized potential that is continuous even
at overlap (i.e., u(r = 0) should be finite, even if large), but the WCA-like splitting
into attractive and repulsive contributions is not necessary.

Our group initially began implementing and using this dynamic implementation
of field theories after the theoretical developments presented by Fredrickson and
Orland [43] and related work by Grzetic et al. [44] that is well-grounded in the
Martin-Siggia-Rose (MSR) path integral formulation of classical mechanics [45].
Our early implementations of the method were referred to as a “dynamic mean-
field theory” (DMFT) to highlight the connection to the MSR formalism; however,
recently we have realized that our implementation is very closely related to the
“theoretically-informed Monte Carlo” (TIMC) methods developed by de Pablo et
al. [46]. The primary differences are that the TIMC methods are typically based on
Monte Carlo sampling the system, while we employ dynamic integration schemes.
There are some common implementation choices that are distinct from our usual
applications, but the connection between the methods is sufficiently deep that we
have chosen to adopt the name theoretically-informed Langevin dynamics (TILD)
to not generate yet another acronym for sampling the models commonly used in
field-based simulations.

3.9.1 Recent Applications

Figure 3.13 shows highlights from two recent applications of TILD. First,
Fig. 3.13a–c show how solvent annealing conditions can be used to tune the dis-
tribution of nanoparticles in block copolymer thin films. In dry films, the nanoparti-
cles were found to be surface-active; the particles adsorbed to the free (top) interface.
Upon exposure to solvent, if the nanoparticles had a high grafting density, the solvent
would displace the particles from the surface, dispersing the nanoparticles through-
out the film. The change in the dispersion of the particles with the presence of solvent
allows us to use the drying process to control the distribution of nanoparticles in the
block copolymer film by varying the drying rate. By defining a Péclet number as the
ratio of the film retraction rate relative to the nanoparticle diffusion time, we show
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Fig. 3.13 aVisualization of the effect of drying rate on the distribution of polymer-grafted nanopar-
ticles in the thin film, where the drying rate is scaled by an effective particle diffusion time. b
Influence of grafting density σ on the final fraction of nanoparticles that reside at the free surface
fI . c Quantification of the effect of drying rate on fI . Figures a, b, and c reproduced from [47] with
permission from The Royal Society of Chemistry. d Phase diagram for polymer-grafted nanoparti-
cles dispersed in a homopolymer matrix as a function of the relative lengths of the polymer chains,
α = P/N and χP. Panel d is adapted from [48]

visually in Fig. 3.13a, c how the fraction of nanoparticles at the interface fI can be
controlled after solvent evaporation [47].

The second example shows the calculation of phase diagrams for polymer-grafted
nanoparticles dispersed in homopolymer matrices [48]. In short, we found that the
thermodynamics of these systems depend primarily on two important factors: the
repulsion between the grafted polymer chains and the matrix, as governed by χ ,
and the ratio of the length of the matrix polymers P to the grafted polymers N ,
α = P/N . As shown in Fig. 3.13d, when the matrix is shorter than the grafted chains
(α = 0.5), the phase separation is primarily controlled by χ , and phase separation is
not observed until χP ≈ 0.75. In contrast, when the matrix chains are significantly
longer than the grafts (α ≥ 4), phase separation is observed even in the athermal
limit (χ = 0). These results agree qualitatively very well with experiments in the
cases where direct comparisons are possible.

The final example presented in this section focuses on the brush structure of
mixed brush particles in solution [49]. In Fig. 3.14, the top two rows use HPFT with
a mean-field approximation while the bottom row uses TILD where fluctuations are
inherent in the model. As these particles are in the presence of solvent, fluctuations
are prominent and they are necessary to include realistic descriptions of the mixed
brush phases when the radius of the nanoparticle to the grafted chain radius of gyra-
tion ratio, RP/Rg , is ≈ 1 or greater. As RP/Rg is increased, the mean-field approach
predicts increasingly striped/patchy phases. However, the incorporation of fluctua-
tions via the TILDmethod demonstrates that these structures form significant defects
relative to the mean-field predicted structures. Interestingly, when RP/Rg is small,
the Janus structure predicted from the mean-field model is also predicted from the
TILD approach.
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Fig. 3.14 Visualizations of single-particle mixed brush structures in solution. The red isosurface
denotes the A chains while the blue isosurface denotes the B chains. Each row uses specific approx-
imations while each column represents the ratio of the nanoparticle radius to the grafted chains’
radius of gyration ratio. The top two rows use HPFT with a mean-field approximation while the
bottom row uses TILD where fluctuations are inherent in the model. This figure is adapted from
[49]

3.10 Comparison of the Different Methods

Each of the methods discussed herein have their associated advantages and disad-
vantages. Mean-field solutions are attractive because they enable rapid solutions and
well-behaved algorithms that are generally not severely limited by stability, but it
remains unclear how accurate mean-field solutions can be for polymer nanocom-
posites. The mean-field approximation would seem to be particularly suspect at
high nanoparticle loading, where one expects a strongly correlated fluid structure.
A promising strategy to circumvent this is to employ a hybrid particle-field (HPF)
theory with a single explicit nanoparticle surrounded by field-based particles, but
evaluated under the mean-field approximation. When applied to a 2D system con-
taining only nanoparticles, Fig. 3.15 shows that this method lead to signatures of
hexagonal packing as long as the particle repulsions are sufficiently strong [20].

The complex Langevin field-theoretic simulations (CL-FTS) relax the mean-field
approximation and allows for sampling the fully-fluctuating version of the model,
assuming it converges to a steady state [10, 50, 51]. While initial implementations of
CL-FTSwere of limited numerical stability, recent advances in numerical algorithms
have significantly improved this situation [26, 30, 52], and for polymer solutions and
melts CL-FTS remains a very attractive approach due to its ability to rapidly equi-
librate simulations. CL-FTS is particularly attractive in the high molecular weight
limit withwell-resolved chain discretizationwhere it rapidly equilibrates, while tech-
niques such as TILD will require explicitly simulating the dynamics of the polymer
molecules. A challenge with CL-FTS is the difficulty in generating stable trajecto-
ries in some regimes of parameter space. For the data presented in Fig. 3.13 (right)
where we were interested in the phase behavior of grafted nanoparticles in a polymer
matrix, we were unable to generate stable trajectories in the limit where χ → 0 and
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Fig. 3.15 Pair distribution function between particles that interact through the convolution of their
shape functions as in (3.57). The prefactor κ increases the magnitude of the repulsion between
the particles, and the g(r) curves are vertically offset for clarity. Peaks consistent with hexagonal
packing emerge in the large κ limit. Figure adapted from [20]

large P/N . The trajectories generated at low χ would frequently crash, and what
data we could generate was inconsistent with the expectation that the systems would
macrophase separate. This does not indicate a general failure of the CLmethod, but it
does challenge the interpretation of results since it is not straightforward to anticipate
a priori which systems will present problems.

Monte Carlo field-theoretic simulations (MC-FTS) have also recently emerged as
a viable technique for sampling block copolymer field theories, though it has not yet
been applied to PNC-FT models [53–55]. In the most successful implementations
of MC-FTS, fields that are purely imaginary are evaluated under the mean-field
approximation. For example, in a two-field implementation of a diblock copolymer,
the partition function is approximated as

Z = z0

∫
Dw+Dw− e−H[w+,w−] ≈ z0

∫
Dw− e−H[w∗+,w−], (3.75)

wherew∗+(r) is themean-field configuration ofw+ for a givenw−. This approximation
renders the weights of the microstates positive definite and allowsMetropolis Monte
Carlo to be performed on the field theoretic model. While not justified analytically,
this approximation has shown to capture fluctuation corrections to the phase diagram
of block copolymers [53]. However, the systems where this approach can be used
will be limited to those where the mean-field approximation on the imaginary fields
is justified and of no consequence. In PNCs or other systems where strong repulsive
interactions play a dominant role, or in systems where electrostatics play a key role,
this approximation is likely to severely limit the accuracy of the model.
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Theoretically-informed Langevin dynamics (TILD) and related methods retain
many implementation details of the underlying particle model while increasing the
sampling efficiency relative to the naive implementation of the particle model. A
drawback of this method is that in the best case scenario, the polymer chains will
exhibit Rouse dynamics, and so the relaxation time of a chain will increase with
the number of discretization sites on the chain as τ ∼ N 2. However, the numerical
stability of the method combined with the ability to reproduce fluctuation effects
is a very attractive feature. In addition, the TILD methods can easily treat more
complicated intramolecular interactions, such as the potentials required to model
semiflexible polymers. Semiflexibility can be important in many conjugated poly-
mers, or in cases where a fine chain discretization is used and the backbone flexibility
of the real polymer may play a role. Spakowitz and co-workers have developed a
discrete, shearable, stretchable worm-like chain model [56, 57] that is particularly
attractive for smoothly spanning from scales where the persistence length matters to
more coarse grained levels where the chains behave more like Gaussian polymers.
Polydispersity effects are also more naturally incorporated into the TILD frame-
work, because each chain or nanoparticle can have a distinct size without the need
to calculate a distinct molecular partition function.

3.11 Challenges and Area for Development

There are numerous challenges to be resolved and further opportunities for future
extensions of the methods presented herein. One notable challenge is the implemen-
tation of hydrodynamic interactions in the dynamic methods. In polymeric systems,
hydrodynamic interactions play a important role, and the interplay with viscous
dissipation such that local fluctuations can propagate and induce long range cor-
relations. For example, dynamic phase separation can be induced by applied shear
in polymer solutions at micrometer scales [58, 59]. Another example of hydrody-
namic effects in manufacture of polymeric materials is the nonsolvent driven phase
inversion in processing porous polymer films. Hydrodynamic effects due to nonsol-
vent from the bath entering and dewetting the films contribute to the formation of
porous microstructures in the processed films [60–62]. Currently there only a few
established field-based simulation approach taking into account hydrodynamic inter-
actions atmolecular level. In the hydrodynamic self-consistent field theory developed
byFredrickson and coworkers, the “two-fluid” formalismproposed byDoi andOnuki
[63] is extendedwith constitutive relations from continuummechanics to incorporate
hydrodynamics effect [64–66]. This method, while retaining computation efficiency
over particle-based method due to field-based nature, requires input of constitutive
relations between local stress and densities/velocity fields. On the other hand the
form of free energy input in the method is typically from mean field approximation
under equilibrium.

Another promising route to address the challenge of including hydrodynamic
interactions is to extend the TILD method to capture hydrodynamic effects. Our
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current efforts along these lines [67] involves extending the framework to employ
a grid-based version of the dissipative particle dynamics (DPD) algorithm. In the
standard particle-based implementation of DPD, hydrodynamic effects are captured
because the method locally conserves momentum; both the stochastic forces and the
friction from the missing degrees of freedom are taken as pair-wise additive. In our
grid-based implementation, we apply this idea at the level of the grid used to resolve
the density fields, and we have shown that we obtain hydrodynamic coarsening of
domains during spinodal decomposition [67].

There are additionally numerous possibilities for combining field theoretic
approaches with particle based approaches that have not been explored. One inter-
esting example of this could be in the context of Gibbs ensemble simulations [27,
68] where two non-interacting simulation boxes each model phases at coexistence.
In many potentially interesting applications of FTS to study phase coexistence, the
resulting phases are such that the FTS approach is the method of choice for one phase
(e.g., a dense polymer melt) while at a disadvantage for simulating the other phase,
such as a supernatant solvent phase or a highly correlated nanoparticle packing. Since
in the Gibbs ensemble the particle-to-field transformation proceeds independently
in the two simulation boxes [27], one box could remain a particle-based simulation
while the second is a field-theoretic simulation.

Finally, as alluded to above in Sect. 3.10 in the discussion of the inability to capture
some macrophase separation using the CL-FTS method, there is a need to assess a
priori when the CL method will be the method of choice. We have additionally
encountered these “silent failures” of the CL method in attempts by Riggleman to
extend the CL method to the density-explicit formulation of a field theory. In such
a field theory for a single component system, the partition function and effective
Hamiltonian of the system take the form

Z = z
∫

Dρ

∫
Dw e−H[ρ,w], (3.76)

H[ρ,w] = 1

2kBT

∫
dr

∫
dr′ ρ(r) u(|r − r′|) ρ(r′) − i

∫
dr w(r)ρ(r) (3.77)

− n logQ[iw].

This form of a field theory is advantageous because it places fewer restrictions on
the form of the interaction potential u(r). The potential does not have to be invertible
for the application of this theory, and furthermore higher-order interaction terms,
such as those cubic in the density field ρ(r), can be included. Two numerical imple-
mentations of the CL method have been attempted: an explicit Euler integration of
the Langevin equations that arise from the functional derivatives of H in (3.76) and
an integration scheme where the effective forces are modified by a non-Hermitian
mobility matrix [69]. In the former case, we were unable to obtain stable trajectories,
while in the second case a steady state solution gave results that disagree with other
simulation methods. While we cannot rule out a possible programming error, the
algorithm behaves as expected with the noise terms disabled, and this remains an
open area for development.



3 Coarse-Grained Modeling of Polymer Nanocomposites … 77

Acknowledgements SandiaNational Laboratories is amultimission laboratorymanaged and oper-
ated byNationalTechnology andEngineeringSolutions of Sandia, LLC, awholly owened subsidiary
of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. Financial support from the National Science Foun-
dation through awardsNSFDMR-1410246,NSFPIRE-OISE-1545884,MRSEC-DMR-1720530 as
well as computational support from XSEDE award TG-DMR150034 are gratefully acknowledged.

References

1. S.K. Kumar, V. Ganesan, R.A. Riggleman, Perspective: outstanding theoretical questions in
polymer-nanoparticle hybrids. J. Chem. Phys. 147(2), 020901 (2017)

2. V. Ganesan, A. Jayaraman, Theory and simulation studies of effective interactions, phase
behavior and morphology in polymer nanocomposites. Soft Matter 10(1), 13–38 (2014)

3. K.I. Winey, R.A. Vaia, Polymer nanocomposites. MRS Bull. 32(4), 314–322 (2007)
4. T.B.Martin, T.E. Gartner III, R.L. Jones, C.R. Snyder, A. Jayaraman, pyprism: a computational

tool for liquid-state theory calculations of macromolecular materials. Macromolecules 51(8),
2906–2922 (2018)

5. A. Jayaraman, N. Nair, Integrating prism theory and monte carlo simulation to study polymer-
functionalised particles and polymer nanocomposites. Mol. Simul. 38(8–9), 751–761 (2012)

6. N. Nair, A. Jayaraman, Self-consistent prism theory-monte carlo simulation studies of copoly-
mer grafted nanoparticles in a homopolymer matrix. Macromolecules 43(19), 8251–8263
(2010)

7. L.M. Hall, A. Jayaraman, K.S. Schweizer, Molecular theories of polymer nanocomposites.
Curr. Opinion Solid State Mater. Sci. 14(2), 38–48 (2010)

8. J.B. Hooper, K.S. Schweizer, Theory of phase separation in polymer nanocomposites. Macro-
molecules 39(15), 5133–5142 (2006)

9. S.F. Edwards, The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc.
85(4), 613 (1965)

10. G. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers, vol. 134 (Oxford Uni-
versity Press on Demand, 2006)

11. W. Zheng, Z.-G. Wang, Morphology of abc triblock copolymers. Macromolecules 28(21),
7215–7223 (1995)

12. M.W. Matsen, M. Schick, Stable and unstable phases of a diblock copolymer melt. Phys. Rev.
Lett. 72(16), 2660 (1994)

13. N. Xie, W. Li, F. Qiu, A.-C. Shi, Sigma phase formed in conformationally asymmetric ab-type
block copolymers. Acs Macro Lett. 3(9), 906–910 (2014)

14. L. Leibler, Theory of microphase separation in block copolymers. Macromolecules 13(6),
1602–1617 (1980)

15. K.T. Delaney, G.H. Fredrickson, Recent developments in fully fluctuating field-theoretic sim-
ulations of polymer melts and solutions. J. Phys. Chem. B 120(31), 7615–7634 (2016)

16. R.B. Thompson, V.V. Ginzburg, M.W. Matsen, A.C. Balazs, Predicting the mesophases of
copolymer-nanoparticle composites. Science 292(5526), 2469–2472 (2001)

17. T.N. Hoheisel, K. Hur, U.B. Wiesner, Block copolymer-nanoparticle hybrid self-assembly.
Progr. Polym. Sci. 40, 3–32 (2015)

18. V.V. Ginzburg, Polymer-grafted nanoparticles in polymer melts: modeling using the combined
scft-dft approach. Macromolecules 46(24), 9798–9805 (2013)

19. S.W. Sides, B.J. Kim, E.J. Kramer, G.H. Fredrickson, Hybrid particle-field simulations of
polymer nanocomposites. Phys. Rev. Lett. 96(25), 250601 (2006)

20. J. Koski, H. Chao, R.A. Riggleman, Field theoretic simulations of polymer nanocomposites.
J. Chem. Phys. 139(24), 244911 (2013)



78 J. P. Koski et al.

21. E. Helfand, Theory of inhomogeneous polymers: fundamentals of the Gaussian random-walk
model. J. Chem. Phys. 62(3), 999–1005 (1975)

22. P.M. Chaikin, T.C. Lubensky, T.A. Witten, Principles of Condensed Matter Physics, vol. 10
(Cambridge university press Cambridge, 1995)

23. M.J. Hore, R.J. Composto, Usingmiscible polymer blends to control depletion-attraction forces
between au nanorods in nanocomposite films. Macromolecules 45(15), 6078–6086 (2012)

24. N.M. Krook, C. Tabedzki, K.C. Elbert, K.G. Yager, C.B. Murray, R.A. Riggleman, R.J. Com-
posto, Experiments and simulations probing local domain bulge and string assembly of aligned
nanoplates in a lamellar diblock copolymer. Macromolecules 52(22), 8989–8999 (2019)

25. G.H. Fredrickson, V. Ganesan, F. Drolet, Field-theoretic computer simulation methods for
polymers and complex fluids. Macromolecules 35(1), 16–39 (2002)

26. D.J. Audus, K.T. Delaney, H.D. Ceniceros, G.H. Fredrickson, Comparison of pseudospectral
algorithms for field-theoretic simulations of polymers. Macromolecules 46(20), 8383–8391
(2013)

27. R.A. Riggleman, G.H. Fredrickson, Field-theoretic simulations in the gibbs ensemble. J. Chem.
Phys. 132(2), 024104 (2010)

28. R.A. Riggleman, R. Kumar, G.H. Fredrickson, Investigation of the interfacial tension of com-
plex coacervates using field-theoretic simulations. J. Chem. Phys. 136(2), 024903 (2012)

29. E.M. Lennon, K. Katsov, G.H. Fredrickson, Free energy evaluation in field-theoretic polymer
simulations. Phys. Rev. Lett. 101(13), 138302 (2008)

30. M.C. Villet, G.H. Fredrickson, Efficient field-theoretic simulation of polymer solutions. J.
Chem. Phys. 141(22), 224115 (2014)

31. Y. Kim, H. Chen, A. Alexander-Katz, Free energy landscape and localization of nanoparticles
at block copolymer model defects. Soft Matter 10(18), 3284–3291 (2014)

32. R.J. Hickey, J. Koski, X. Meng, R.A. Riggleman, P. Zhang, S.J. Park, Size-controlled self-
assembly of superparamagnetic polymersomes. ACS nano 8(1), 495–502 (2014)

33. D.M. Trombly, V. Ganesan, Curvature effects upon interactions of polymer-grafted nanoparti-
cles in chemically identical polymer matrices. J. Chem. Phys. 133(15), 154904 (2010)

34. H. Chao, B.A. Hagberg, R.A. Riggleman, The distribution of homogeneously grafted nanopar-
ticle s in polymer thin films and blends. Soft Matter 10(40), 8083–8094 (2014)

35. J. Koski, H. Chao, R.A. Riggleman, Predicting the structure and interfacial activity of diblock
brush, mixed brush, and Janus-grafted nanoparticles. Chem. Commun. 51, 5440–5443 (2015)

36. B.J. Lindsay, R.J. Composto, R.A. Riggleman, Equilibriumfield theoretic study of nanoparticle
interactions in diblock copolymer melts. J. Phys. Chem. B 123(44), 9466–9480 (2019)

37. B. Rasin, H. Chao, G. Jiang, D. Wang, R.A. Riggleman, R.J. Composto, Dispersion and align-
ment of nanorods in cylindrical block copolymer thin films. Soft Matter 12, 2177–2185 (2016)

38. H. Chao, B.J. Lindsay, R.A. Riggleman, Field-theoretic simulations of the distribution of
nanorods in diblock copolymer thin films. J. Phys. Chem. B 121(49), 11198–11209 (2017)

39. H. Chao, B.A. Hagberg, R.A. Riggleman, The distribution of homogeneously grafted nanopar-
ticles in polymer thin films and blends. Soft Matter 10(40), 8083–8094 (2014)

40. J.D. Weeks, D. Chandler, H.C. Andersen, Role of repulsive forces in determining the equilib-
rium structure of simple liquids. J. Chem. Phys. 54(12), 5237–5247 (1971)

41. R. Everaers, M. Ejtehadi, Interaction potentials for soft and hard ellipsoids. Phys. Rev. E 67(4),
041710 (2003)

42. M. Deserno, C. Holm, How to mesh up ewald sums. i. a theoretical and numerical comparison
of various particle mesh routines. J. Chem. Phys. 109(18), 7678–7693 (1998)

43. G.H. Fredrickson, H. Orland, Dynamics of polymers: a mean-field theory. J. Chem. Phys.
140(8), 084902 (2014)

44. D.J. Grzetic, R.A. Wickham, A.-C. Shi, Statistical dynamics of classical systems: a self-
consistent field approach. J. Chem. Phys. 140(24), 244907 (2014)

45. P.C. Martin, E. Siggia, H. Rose, Statistical dynamics of classical systems. Phys. Rev. A 8(1),
423 (1973)

46. F.A.Detcheverry,H.Kang,K.C.Daoulas,M.Müller, P.F.Nealey, J.J. dePablo,Monte carlo sim-
ulations of a coarse grain model for block copolymers and nanocomposites. Macromolecules
41(13), 4989–5001 (2008)



3 Coarse-Grained Modeling of Polymer Nanocomposites … 79

47. H.Chao, J.Koski,R.A.Riggleman, Solvent vapor annealing in block copolymer nanocomposite
films: a dynamic mean field approach. Soft Matter 13(1), 239–249 (2017)

48. J.P. Koski, N.M. Krook, J. Ford, Y. Yahata, K. Ohno, C.B. Murray, A.L. Frischknecht, R.J.
Composto, R.A. Riggleman, Phase behavior of grafted polymer nanocomposites from field-
based simulations. Macromolecules (2019)

49. J.P.Koski,A.L. Frischknecht, Fluctuation effects on the brush structure ofmixed brush nanopar-
ticles in solution. ACS Nano 12(2), 1664–1672 (2018)

50. J.R. Klauder, A Langevin approach to fermion and quantum spin correlation functions. J. Phys.
A: Math General 16(10), L317 (1983)

51. G. Parisi, J. Klauder, W. Petersen, J. Ambjorn, S. Yang, F. Karsch, H. Wyld, On complex
probabilities. Stochastic Quant. 131, 381 (1988)

52. E.M. Lennon, G.O. Mohler, H.D. Ceniceros, C.J. García-Cervera, G.H. Fredrickson, Numer-
ical solutions of the complex Langevin equations in polymer field theory. Multiscale Model.
Simulation 6(4), 1347–1370 (2008)

53. B. Vorselaars, P. Stasiak, M.W. Matsen, Field-theoretic simulation of block copolymers at
experimentally relevant molecular weights. Macromolecules 48(24), 9071–9080 (2015)

54. R.K. Spencer, M.W. Matsen, Field-theoretic simulations of bottlebrush copolymers. J. Chem.
Phys. 149(18), 184901 (2018)

55. R.K. Spencer, M.W. Matsen, Critical point of symmetric binary homopolymer blends. Macro-
molecules 49(16), 6116–6125 (2016)

56. E.F. Koslover, A.J. Spakowitz, Systematic coarse-graining of microscale polymer models as
effective elastic chains. Macromolecules 46(5), 2003–2014 (2013)

57. E.F. Koslover, A.J. Spakowitz, Discretizing elastic chains for coarse-grained polymer models.
Soft Matter 9(29), 7016–7027 (2013)

58. G. Helfand, G.H. Fredrickson, Large fluctuations in polymer solution under shear. Phys. Rev.
Lett. 62, 2468–2471 (1989)

59. S.T. Milner, Dynamical theory of concentration fluctuations in polymer solutions under shear.
Phys. Rev. E 48, 3674–3691 (1993)

60. C.A. Smolders, A.J. Reuvers, R.M. Boom, I.M. Wienk, Microstructures in phase-inversion
membranes. Part 1. Formation of macrovoids. J. Membrane Sci. 73, 259–275 (1992)

61. P. Van De Witte, P.J. Dijkstra, J.W.A. Van Den Berg, J. Feijen, Phase separation processes in
polymer solutions in relation to membrane formation. J. Membrane Sci. 117, 1–31 (1996)

62. I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, H. Strathmann,
Recent advances in the formation of phase inversion membranes made from amorphous or
semi-crystalline polymers. J. Membrane Sci. 113, 361–371 (1996)

63. M. Doi, A. Onuki, Dynamic coupling between stress and composition in polymer solutions
and blends. Journal de Physique II 2, 1631–1656 (1992)

64. D.M. Hall, T. Lookman, G.H. Fredrickson, S. Banerjee, Hydrodynamic self-consistent field
theory for inhomogeneous polymer melts. Phys. Rev. Lett. 97, 114501 (2006)

65. D.M. Hall, T. Lookman, G.H. Fredrickson, S. Banerjee, Numerical method for hydrodynamic
transport of inhomogeneous polymer melts. J. Comput. Phys. 224, 681–698 (2007)

66. D.R. Tree, K.T. Delaney, H.D. Ceniceros, T. Iwama, G.H. Fredrickson, A multi-fluid model
for microstructure formation in polymer membranes. Soft Matter 13, 3013–3030 (2017)

67. H. Chao, T. Zhang, P. Español, R.A. Riggleman, A Particle-to-Mesh Implementation of Dissi-
pative Particle Dynamics (in preparation)

68. A.Z. Panagiotopoulos, N. Quirke, M. Stapleton, D. Tildesley, Phase equilibria by simulation
in the Gibbs ensemble: alternative derivation, generalization and application to mixture and
membrane equilibria. Mol. Phys. 63(4), 527–545 (1988)

69. X. Man, K.T. Delaney, M.C. Villet, H. Orland, G.H. Fredrickson, Coherent states formulation
of polymer field theory. J. Chem. Phys. 140(2), 024905 (2014)



Chapter 4
Polymer Dynamics in Polymer-
Nanoparticle Interface

Argyrios V. Karatrantos and Nigel Clarke

Abstract In this chapter, we focus on the polymer nanoparticle (either spherical,
anisotropic or free surface) interface and specifically on polymer dynamics consider-
ing attractive interaction with the nanoparticles. We concisely report the main exper-
imental and computer molecular simulation studies regarding the polymer mobility
at the interface. We show how changes of the glass transition (Tg) are correlated with
segmental dynamics and relaxation at the interface.

4.1 Introduction

By dispersing spherical [1–9] or anisotropic nanoparticles [10–18] into a dense poly-
mermatrix severalmaterial properties can be enhanced,whethermechanical [19, 20],
electrical, optical [21] or plasmonic [22]. Although there is a plethora of experimen-
tal studies into these kinds of properties or regarding the polymer structure [23–33],
there is still controversy and much less focus on the dynamics of polymers [34, 35]
in the polymer-nanoparticle interface. Some research studies claim that there is a
“bound” polymer layer around the nanoparticle surface, which is immobile [36–38],
whereas other research efforts dispute this result insisting that the polymer around
the nanoparticle has a certain translational and segmental dynamics [39, 40]. It is not
only the packing of chains in the interfacial regions that contributes to the material
property enhancements in nanocomposites [42, 43] but also the “bound” polymer
layer, which is formed on nanoparticles interacting favorably, or even the chemi-
cal heterogeneity of interfacial layers [39, 44] around the nanoparticles contributes
largely to the mechanical reinforcement that is observed in nanoparticle-filled elas-
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Fig. 4.1 Schematic
representation of the
interface region between a
filler and a polymer matrix.
Reprinted with permission
from [41]. Copyright
American Chemical Society

tomers. Polymer mobility near nanoparticle surfaces has been extensively discussed
qualitatively, however, a direct experimental measurement of polymermobility in the
nanocomposites is not easy. In this chapter, we do not aim to report on and discuss
studies that investigate the dynamics of polymers in melt [45, 46] or under con-
finement since there are excellent articles [47, 47–50, 50, 51] and reviews [45, 52]
available. Neither do we aim to report, in detail, experimental techniques (results)
[24] nor different molecular simulation techniques for measuring polymer dynamics
in the interface. In this chapter, we provide a review of theoretical and experimen-
tal research that has been undertaken, in order to shed light into chain interfacial
dynamics. We report studies that investigate this interface not only using experi-
mental methods but also with computer simulations (in particular coarse grained
molecular dynamics or Monte Carlo methods are incorporated) of both polymer–
spherical nanoparticle and also polymer–surface substrate (Fig. 4.1).

4.2 Polymer Dynamics Around Spherical or Anisotropic
Nanoparticles

4.2.1 Experiments

From the 1970s on, there were efforts to carry out nuclear magnetic resonance
(NMR) experiments that identified an immobilized region of rubber around car-
bon black particles [53, 54]. It was speculated that this was a “bound” rubber layer
around the carbon black [53]. The amount of immobilized polymer was estimated,
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using solid-state NMR, and a correlation with the mechanical reinforcement was
established, identifying a direct, strongly nonlinear dependence on the immobilized
polymer fraction. The observation of a temperature–independent filler percolation
threshold suggested that immobilized polymer fractions may not necessarily form
contiguous layers around the filler particles but could only reside in highly confined
regions between closely packed filler particles, where they dominated the bending
modulus of aggregated nanoparticles [55]. In addition to that immobilized region
around carbon black, there was a relatively mobile region, but its dynamics was
much slower than that in bulk polymer melt [53, 54, 56]. A nanosilica network
formed in industrial styrene–butadiene rubber (SBR) nanocomposites contributed to
the storage modulus at different frequencies and temperatures and demonstrated that
it was viscoelastic in nature [55]. Moreover, in mixtures such as nitrile butadiene
rubber (NBR)/nanosilicas[38] or crosslinked poly(ethyl acrylate)/nanosilicas [57],
regions with different segmental dynamics were found [57]. In particular, a “glassy”
(immobilized) layer region was observed [38, 57]. In addition, in other NMR studies
of poly(ethylene glycol)/SiO2 mixtures, the existence of a “glassy” layer [58, 59]
was also noted. It has been observed that in nanocomposites which contain attractive
polymer–nanoparticle interaction, such as nanosilica/poly(ethylene glycol) (PEG)
or poly(butylene oxide) (PBO) mixtures [60], polymer chain dynamics was reduced
by the nanoparticle surface [61] with the effect being greater where nanoparticles
loading was larger than the percolation threshold, since the interface would increase,
meaning more monomers existed into the interfacial area [62]. Thus, the mecha-
nism of such polymer diffusion reduction was due to the nanoparticle interfacial area
[62–64].

The small angle neutron scattering (SANS) technique was used to probe the tem-
poral persistence of a layer of poly(2-vinylpyridine) (P2VP) that was “bound” with
nanosilica [40, 65, 66] at two characteristic temperatures [67]. In particular, it was
observed that there is almost no long-term reorganization at 150 ◦C (which corre-
sponds to Tg,P2VP + 50 ◦C), but instead, a reduction in the “bound” layer thickness at
175 ◦C (Fig. 4.2) was found. It was claimed that this strong temperature dependence
arose from the polyvalence of the binding of a single P2VP chain to the nanosilica.
The adsorption–desorption process of polymer segments was an activated proce-
dure that occurred over a broad temperature range [67]. The interfacial dynamics of
P2VP/silica nanocomposites andmatrix-free P2VPgrafted fromnanosilicas has been
shown [40, 68] to be a significant influence, at an intermediate polymer molecular
weight, due to the impact of the chain attachment mechanism on segmental dynam-
ics, as depicted in Fig. 4.3. Similar behavior was observed on segmental dynamics
for poly(ethyl acrylate)/silica nanocomposites [69].

Furthermore, poly(ethylene oxide) nanocomposites with spherical nanosilicas
have been studied by proton NMR spectroscopy, in order to identify and charac-
terize reduced-mobility components, which may arise from either room-temperature
lateral adsorption or end-group mediated high-temperature bonding to the surface
of nanosilica [70]. In that work, neutron scattering spectroscopy showed that the
thickness of a layer, characterized by significant internal mobility, resembling back-
bone rotation, ranged from 2nm, for longer (20K) chains adsorbed on 42nm diam-
eter nanoparticles, to 0.5nm and below for shorter (2K) chains adsorbed on 13nm
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Fig. 4.2 Schematic of the polymer-nanoparticle interface. The silica core (black) has a well–
defined “bound” layer (blue, d3–P2VP) and iswell-dispersed in a polymermatrix (orange, h–P2VP).
Average shell thickness, δ, versus annealing time at 150 ◦C (green) and 175 ◦C (red), starting from
an average preannealed thickness of≈3nm (black). Green and red dashed lines are drawn as guides
to the eye. Reprinted with permission from [67]. Copyright American Chemical Society

Fig. 4.3 Cartoon based on the self consistent field theory (SCFT) results that illustrates how chain
stretching can cause the suppression of segmental mobility at the interface in polymer-grafted
nanoparticles (left) and polymer nanocomposites (right). Reprinted with permission from [68].
Copyright American Chemical Society

nanoparticles. In the same type of mixture, by using proton time-domain NMR,
three polymer layers were inferred with a different mobility: a strongly adsorbed
layer (“glassy” layer) which does not change with temperature, a solid-like layer
with intermediate relaxation times, and a highly mobile polymer layer [59]. The
fraction of polymers in the glassy state was independent of the molecular weight of
the polymer [59]. In order to investigate further the hypothesized “glassy” layer at the
nanosilica surface, local dynamics was studied by time of flight (TOF) spectroscopy.
It was concluded that PEO chains underwent fast picosecond dynamics which was
very similar to that in the bulk, thus there was no indication for the hypothesized
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“glassy” layer [59]. In a mixture of polydimethylsiloxane (PDMS) chains adsorbed
onto nanosilica particles, with PDMS molecular weight below the entanglement
molecular weight, interfacial PDMS mobility showed a suppression of dynamics
dominated by the PDMS–nanosilicas contacts as observed by broadband dielectric
spectroscopy (BDS) and thermally stimulated depolarization currents (TSDC) in a
system of [71].

As the nanosilica loading increases, the average particle spacing decreases and
approaches the distance at which “bound” polymer layers interact, and there is a
strong increase in the network polymer formation. This onset of network polymer
formation alters the rheology of the mixture. For adequate polymer nanoparticle
interaction strength, the nanoparticles result inmechanical reinforcement [59].When
acrylate polymers are adsorbed to nanosilica, increasing the temperature and adding
water can induce a softening associated with a Tg gradient, whereas in poly(ethylene
oxide) systems, temperature and water do not lead to significant changes in Tg [70].

Another neutron scattering investigation on the structure (by SANS) and dynamics
(by neutron spin echo) of a single component nanocomposite consisted of polyiso-
prene chains grafted on to silica nanoparticles [72] showing the brush crowding,
due to the mutual penetration of the coronas, which led to the topological confine-
ment of the polymer chain dynamics. In particular, on a small scale, the segmen-
tal dynamics was unchanged compared to the reference melt, whereas on a large
scale, the dynamics appears to have slowed down. By performing a mode analy-
sis in terms of end-fixed Rouse chains, it was shown that the slower dynamics was
tracked to topological confinement by the adjacent grafts. If 50% of matrix chains
were added, the topological confinement of the grafted chain decreased thus chain
motion was accelerated. A crossover from pure Rouse motion at short times to
topological confined motion beyond the time at which the segmental mean squared
displacement reached the distance to the next graft was also observed [72]. In a
strongly attractive poly(vinyl acetate)s (PVAc)–nanosilica mixture, no “dead” layer
was observed for any molecular weight used [73]. For that particular mixture, the
thickness of the interfacial layer with a hindered segmental relaxation decreased as
the molecular weight of polymer increased, in contrast to the theoretical predictions
[74–76]. It is worth noting that in (PVAc)–nanosilica mixtures [73], much higher
polymer molecular weights were used than in PEG–nanosilica mixtures [59]. Fur-
thermore, no “dead" layer was also observed, after quasi elastic neutron scattering
(QENS), in PDMS chains confined between anodic aluminum oxide pores [77]. In
nanocomposites containing nanosilicas tethered with poly(ethylene glycol) chains in
a poly(methyl methacrylate) (PMMA) matrix, PMMA dynamics underwent a tran-
sition from a bulk–like behavior at low nanosilica loading to a confinement behavior
at intermediate loading and eventually to glassy behavior at high loading [78]. The
dynamics of free polystyrene (PS) and (PMMA) chains around bare or PS grafted
nanosilica particles showed that the α–relaxation dynamics of the PS matrix was
not affected by nanosilica loading, however it decreased in PMMA nanocomposites
due to the attractive PMMA-nanosilica interfacial interaction [79]. In the case of
PS grafted nanosilica, the mobility of the interfacial layer was enhanced. However,
the α′–relaxation time in the vicinity of Tg of the polymer matrix increased when
the temperature was increased [79]. Interfacial layers around nanoparticles, consist-
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ing of both adsorbed and free matrix chains, could alter the rheological behavior of
nanocomposites. Low glass-transition temperature composites, consisting of PVAc
coated nanosilicas in PEO and poly(methyl acrylate) (PMA) matrices and of PMMA
coated silica nanoparticles in a PMA matrix have been probed using rheology and
X-ray photon correlation spectroscopy. It was shown that the miscibility between
adsorbed and matrix chains in the interfacial layers led to the reinforcement of the
material [42]. This large dynamical asymmetry between the miscible matrix and
surface-bound polymers, and their interfaces has been observed using X-ray photon
correlation spectroscopy [80]. The polymer mobility changed in the interfaces of
nanocomposites, as extracted from the length-scale-dependent slow particle motion
[80]. The local mobility gradient was signified by an unprecedented increase in the
relaxation time at length scales on the order of the polymer radius of gyration. This
effect was accompanied by a transition from diffusive to sub–diffusive behavior.

4.2.2 Simulations

Using a hybrid model comprised of an atomistic representation of a single wall car-
bon nanotube (SWCNT) and the coarse grained polymer Kremer–Grest model, it
has been shown that the polymer diffusivity depended on the enthalpic interaction
between the monomers and SWCNT, as depicted in Fig. 4.4. When the interaction
energy between SWCNT and polymers was kBT, the diffusivity of the first layer, next
to SWCNT, slowed down [35] by 80% in comparison to bulk polymer diffusivity [34,
81], as depicted in Fig. 4.4. At distance≈2Rg from the SWNCT surface, the polymer
diffusivity regained its bulk value. Similar effect was observed in a model nanocom-
posite containing spherical attractive nanoparticles, where polymer dynamics were
slowed dramatically [82]. In the case of repulsive polymer nanoparticle interaction,
interfacial dynamics appeared to be faster than in the bulk polymer melt [82–87].
In a coarse grained molecular investigation of a nanosilica (either bare or grafted
with PS chains) embedded in a coarse grained PS melt, the PS chain dynamics was
affected not only by the nanosilica surface but also by the polymer matrix length and
the grafting density [88]. The impact of the nanoparticle decreased with its distance
from the surface [89]. Moreover, the polymer matrix molecular weight could control
the dynamics in the grafted corona [90]. In particular, short polymer matrix molec-
ular weights were able to “wet” the grafted chains and induce a faster relaxation to
those chains. The higher grafting density slowed down the polymer chain dynamics
[88].

The interfacial zone alters not only the monomer segmental packing but also
the polymer mobility [92]. The scale for density perturbations around the interface
decreaseswith cooling, whichmeans that the interface becomesmore sharply defined
during cooling [92]. However, the interfacial mobility scale ξ for both nanoparticles
and supported films increases with cooling and is of the order of a few nanometers,
independent of the polymer-interfacial interaction. There is a distinct relaxation,
which is slower than the α-relaxation due to the “bound” polymer on the nanoparticle
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Fig. 4.4 Self diffusion coefficient of polymer chains (N = 60) in a monodisperse polymer melt
with a SWCNT (rSWVNT = 0.66) normalized by itsmelt value as a function of the distance r from the
SWCNT surface to the polymer center of mass: (i) no attractive interaction between polymers and
SWCNT (diamonds), (ii) attractive (kBT/2) interaction between polymers and SWCNT (circles),
and (iii) attractive (kBT) interaction between polymers and SWCNT (squares). The solid lines have
been added to guide the eye. Reprinted with permission from [34]. Copyright American Chemical
Society

surface [91, 93]. That “bound” layer “cloaks” the nanoparticle surface [91] at large
nanoparticle surface attraction, thus the polymer matrix dynamics is unaffected. The
Tg of a polymer nanocomposite depends on the local polymer segmental dynamics;
however, it is insensitive to the polymer-nanoparticle surface interaction strength
when it is stronger than the polymer-polymer interactions (Fig. 4.5).

By using molecular dynamics on model polymer nanocomposites, it is been
observed that there is a dynamic heterogeneity [82] of polymer dynamics depending
on the nanoparticle volume fraction, with its maximum at the nanoparticle volume
fraction in which the Kuhn length of polymers is equal to the average distance of the
nanoparticle. Such heterogeneity is due to the decoupling between polymer chain
dynamics and nanoparticles [94] as can be depicted in self-intermediate scattering
functionwhichmeasures the correlation of the position ofmonomers at a given length
scale 1/q (Fig. 4.6). In addition, polymer dynamics in the interface was affected less
by decreasing the nanoparticle size. However, the Tg changed more substantially
where the nanoparticle size was extremely small [95], due to the smaller nanoparti-
cle spacing on decreasing the particle size [95]. It has also been seen that for larger
sized nanoparticles, interfacial relaxations were substantially slower than the matrix,
thus the “bound” polymer dynamically decoupled from the polymer matrix, and
there were small changes in the Tg relative to those of the bulk polymer for large
nanoparticles [95]. The monomer relaxation time, as a function of distance from the
nanoparticle surface for different nanoparticle sizes, was determined by fitting the
self-intermediate scattering function Fself(q, t, r) to (4.1) (see Fig. 4.7).

Fself(q, t, r) = [1 − A(r)]e(−t/τs )3/2 + A(r)e(−t/τα(r))β(r)
(4.1)
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Fig. 4.5 Dynamical definition of Tg , namely, τ(Tg) = 103 (in Lennard Jones units). Black symbols
define Tg for the overall composite relaxation, τ , while red symbols define Tg from the matrix
component of relaxation, τ(α). Like the thermodynamic Tg, the matrix component plateaus when
“bound” polymer develops. The right-hand axis indicates Tg normalized by the corresponding bulk
material, highlighting the small amplitude of Tg changes. Reprinted with permission from [91].
Copyright American Chemical Society

Fig. 4.6 Typical snapshot of simulated polymer nanocomposite. The volume fraction of nanopar-
ticles, φ, is 0.25, and the radius of nanoparticles is 4.0σ . The self-intermediate scattering function
Fs(q, t) of polymer beads in PNCs with R = 2.0 as a function of time. The solid lines (q = 7.0)
and dotted lines (q = 0.4) correspond to different k values. From left to right, the volume fractions
are 0.00, 0.10, 0.18, 0.25, 0.36, 0.44, and 0.50, respectively. Reprinted with permission from [94].
Copyright American Institute of Physics
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Fig. 4.7 a The monomer relaxation time as a function of distance from the nanoparticle surface
for different nanoparticle sizes determined by fitting Fself (q, t, r) using (4.1) (τs = 0.29). The first
term of the equation is vibrational relaxation and the second term represents the α relaxation. For a
weak nanoparticle interaction strength εps = 0.25 (black lines), themonomer relaxation is enhanced
approaching the nanoparticle surface. For a strong nanoparticle interaction strength εps = 2.0 (red
lines), the monomer relaxation is significantly slowed approaching the nanoparticle surface. b The
relaxation time nearest to the nanoparticle surface as a function of interaction strength for different
nanoparticle sizes. The data show that the effect of interactions on surface relaxation diminishes
as nanoparticle size decreases. Reprinted with permission from [95]. Copyright American Physical
Society

4.3 Polymer Dynamics Around a Flat Surface

4.3.1 Experiments

In a polymer-substrate interface, experiments have indicated the existence of a “dead”
layer, permanently adsorbed on the substrate, for example entangled PS on an alu-
minum [96] or a gold [97] substrate. By using the resonance enhanced dynamic light
scattering (REDLS), polybutadiene (PB) dynamics were found to slow down at an
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interface,with a 25nm thickgold substrate [98]. Twodifferent interfacial regions have
been identified by NMR experiments in a polymer-film substrate. First a “glassy”, or
in other words, a “dead” layer and secondly, another immobilized layer which had
reduced segmental mobility [58]. However, some differential scanning calorimetry
(DSC) studies [61, 99–101] did not reveal any significant “glassy” layer in different
nanocomposites. The interfacial layer thickness was measured in the range of 1.5–
5nm by using various experimental techniques, such as small angle X-Ray scattering
(SAXS) [61], SANS [67], NMR [58, 59], transmission electron microscopy (TEM)
[66], BDS [24, 40, 71, 102], TGA [66], DSC [71]. The interfacial layer thickness
did not depend on polymer molecular weight [39] and increased upon cooling [24,
39]. However, other studies showed the "bound" layer thickness [103] and dynam-
ics depended on the molecular weight of the polymer [73, 104, 105]. As reported
by Zheng and coworkers in 1997, polymer (such as PS and poly(vinyl pyridine)
(PVP)) mobility exponentially decreased near a silicon substrate due to enhanced
entanglements. These effects were observed several nanometers into the polymer
film from the substrate surface [106]. Long–range substrate effects on the adsorbed
PS or PVP chains reduced their diffusivity and prevented them from diffusing into
the free polymer chains above them [106, 107]. Experimental results by dynamic ion
mass spectrometry showed that PS diffusivity was reduced due to the silicon sub-
strate up to a distance ≈4Rg [108]. The PS diffusivity was scaled down to N−2.5 at a
certain distance from the silicon surface [108]. Very recently, the polyisoprene (PI)
and nitrile butadiene rubber (NBR) relaxation dynamics at the silica interface was
investigated using 3 different techniques (time-resolved evanescent wave-induced
fluorescence anisotropy, BDS and sum-frequency generation spectroscopy) [109].
The segmental dynamics of chains in the interfacial region with the silica surface
was dependent on whether they were loosely or strongly adsorbed at the surface. In
particular, the segmental relaxation of chains in the strongly adsorbed layer at the
interface could be slower than the dynamics of bulk chains by more than 10 orders
of magnitude [109].

4.3.2 Simulations

A molecular dynamics simulation study of a chemically realistic model of 1,4-PB
chains, between graphite walls [110–112], showed a slowing down of polymer chain
dynamics in accordance with experiments by Koga et al. [97]. In addition, atomistic
molecular dynamics simulations of a chemically realistic model of atactic short-
chain PS on gold surfaces were performed and proved that the dynamics of the film
is reduced compared to bulk polymer dynamics [113]. Moreover, the mobility of
polyethylene (PE) melt near a graphite substrate was highly anisotropic. In particu-
lar, it was dramatically reduced in the direction perpendicular to graphitewhilst it was
unaltered in the direction parallel to the substrate [114]. The PE diffusivity was het-
erogeneous perpendicular to the substrate, and reached its bulk value approximately
at a distance 6Rg [114]. Such dynamics depended on the interfacial type of polymer–
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nanoparticle interaction. It was generally believed that an attractive polymer-surface
interaction could slow relaxation in thin supported polymer films [115, 116] and
polymer nanocomposites [34, 87]. Instead, a repulsive polymer-surface interaction
accelerated the polymer dynamics with respect to the bulk [82, 117]. Recent research
on nanocomposites has shown that this slowing of polymer chain dynamics [34,
118] occurred more strongly near a highly attractive nanoparticle surface where a
“bound” polymer layer [119] of a much lower mobility could be formed, strongly
influencing the dynamics of the film. By performing coarse grained simulations, a
similar “bound” interfacial layer in thin supported polymer films was observed when
the polymer-polymer attraction was stronger than the polymer-polymer interaction
strength [120] (Fig. 4.8). This “bound” polymer layer insulated the remainder of
the film from the strong substrate interfacial interaction. This layer gave rise to an
additional relaxation process in the self-intermediate scattering function, which was
not observable in the bulk material, and eventually slowed down the relaxation time
of the film.

Simulations have been performed for both unentangled and entangled polymers,
considering the film thicknesses to the bulk state [121, 122]. The relaxation time
of confined polymer chains was measured through the end-to-end vector correlation
functions. It has been shown that there is a minimum in the relaxation time of entan-
gled chains when decreasing the film thickness, due to the disentanglement induced
by the confinement [121]. For a large substrate attraction, the “bound” polymer layer
effectively “cloaked” the substrate, reducing the effect of the polymer-surface interac-
tion on Tg [92]. Very recently, a fully atomistic model of poly(vinyl–alcohol)(PVA)-
silica nanocomposite was simulated by molecular dynamics [123], where the effect
of the polymer–nanoparticle interaction on Tg was investigated. The potential of
mean force and segmental dynamics indicated that the strong binding interaction
between the hydroxylated-silica surface and PVA induced an increase in the Tg of
the nanocomposite in comparison to bulk PVA [123]. While it was expected that the
Tg of the systemwould increasewith an increasing amount of hydrogen bonds arising
from the increasing surface hydroxylation, the trend of increasing Tg reached a maxi-
mum value when the surface was about 75% hydroxylated. Beyond that value, a drop
in the Tg was observed. It was found that the competition between inter PVA-silanol
and intra silanol-silanol interactions was the main reason that contributed to the drop
of Tg. Thus, the number and strength of the different kinds of hydrogen bonds in
such nanocomposites could be tuned to enable the optimization of the Tg changes
that are desired for specific applications [123]. The Tg of PMMA/graphene model
systems was found to depend strongly on tacticity in agreement with experiments
as was investigated by atomistic simulations [124]. The local PMMA dynamics was
studied by analyzing torsional autocorrelation functions for various dihedral angles.
A spectrum of different correlation times and activation energies was observed for
the motions of different parts of PMMA chains. The dynamic heterogeneity of the
PMMA chains has been studied in detail for the different stereo-chemistries via the
temperature dependence of the stretching exponent [124]. In particular, the back-
bone dynamics, the ester group and α-methyl motion were affected by tacticity. The
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Fig. 4.8 a The relaxation time of unbound film τα and “bound” layer τb. From top to bottom, the
temperatures are 0.45 (black), 0.47 (red), 0.50 (green), 0.52 (blue), 0.55 (yellow), 0.60 (brown), and
0.65 (grey). For εps ≥ 1 and T ≤ 0.52 it is distinguished the bound relaxation, where τb is roughly
2 orders of magnitude larger than τα . b The value of the exponent β for the stretched-exponential fit
of the α-relaxation in (5) (circles); β is only weakly dependent on εps. The squares show the results
of fitting the relaxation without an additional “bound” layer (4.1), which indicates that the “bound”
layer has the effect of decreasing the fit value of β if it is not accounted for. Such a decrease of β

may provide a useful indicator that an additional process to describe relaxation data is necessary.
Reprinted with permission from [119]. Copyright American Institute of Physics

ester-methyl group and the end-chain monomers had higher tendency to adsorb on
the graphene. The adsorbed layer presented reduced mobility [124].

The dynamic behavior of polymer chains adsorbed on an attractive, homogeneous
substrate surface has been studied by dynamic Monte Carlo simulations [125]. The
translational diffusion coefficient Dxy parallel to the substrate decreased if either the
intra-polymer attraction strength, εpp, or the polymer-surface attraction strength, εps,
increased. The rotational relaxation time increased with the increase of polymer-
surface attraction strength, but the dependence of this relaxation time on intra-
polymer attraction strengthwas also dependent on the adsorption state of the polymer.
It has been found that this relaxation time decreased with increasing intra-polymer
attraction strength for a partially adsorbed polymer and increased for a fully adsorbed
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Fig. 4.9 Plot of the translational diffusion coefficient Dxy versus the intra-polymer attraction εpp
for polymer in 3D solution, on attractive surfaces at attraction strengths εps = 1, 1.5, 2, and on
2D surface. Polymer length N = 64. The insert shows the dependence of 
r2(xy) on time t for
N = 64 at εpp = 0 and εps = 1. Log-log plot of the translational diffusion coefficient Dxy versus
the polymer chain length N for polymers in 3D solution, on attractive surfaces with attractions
εps = 1, 1.5, 2 and on 2D surface. Three data sets with intra-polymer interactions εpp = 0, 1, 2 are
presented. Solid lines are linear fit of simulation data, while dashed lines are guides for the eye.
Reprinted with permission from [125]. Copyright Springer Nature

polymer [125]. The scaling relation Dxy ≈ N−a held and the rotational relaxation
time was proportional to ≈Nβ (Fig. 4.9). The scaling exponent α was not depen-
dent on the polymer-substrate attraction. The scaling parameter β ≈ 2.7 was not
dependent on polymer-substrate attraction for the adsorbed polymer at εpp = 0, but
increased with polymer-substrate attraction when εpp > 0. The β always decreased
with increasing εpp. When εps kBT polymer dynamics slowed down and for εps 4kBT
it approached glassy dynamics [86, 126–129]. In another study bymolecular dynam-
ics, the polymer diffusion of a single polymer adsorbed on surfaces with a different
roughnesswas simulated. The simulations demonstrated that when therewas a strong
adsorption and under a strong confinement, the scaling exponentβ of the polymer dif-
fusivity on the chain length exhibited three cases depending on the confinement size:
a) a Rouse plateau with β ≈ 1 (the lateral motion of the polymer chains was free),
a reptation–like plateau with β ≈ 1.5 (the polymer chains could move, through the
confinement, in the perpendicular direction) and a transition from the Rouse plateau
to the reptation– like plateau with 1.5 < β < 1 appeared (confinement hindered the
lateral motion of the polymer chains). By decreasing the confinement (increasing the
distance between obstacles) the polymer lateral motion was allowed, which resulted
in the higher plateau [130].

Usingmolecular dynamics simulations, the dynamical properties of a single poly-
mer chain dissolved in an explicit solvent and was strongly adsorbed at the solid–
liquid interface. This showed that on analytically smooth interfaces, in accordance
with the slip boundary condition, the motions of the polymer chain and the sur-
rounding solvent were hydrodynamically coupled. This led to the chain diffusion
coefficient, D, scaling with the chain degree of polymerization N as D ≈ N−3/4,
consistent with the Zimm dynamics for strongly adsorbed chains. The incorpora-
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tion of transverse forces at the interface resulted in a loss of correlation between the
motion of the polymer chain and the solvent. Consequently, the diffusion scaled as
D ≈ N−1, which was a characteristic of the Rouse dynamics [131]. In addition,
a bead-spring model for oligomers at a low temperature, showed that only a weak
temperature dependence of the mobile layer thickness existed [132]. Moreover, the
interfacial layer thickness depended on the semiflexibility of the chain [133, 134].
The segmental dynamics was slower for stiffer chains and there was a correlation
between structure and segmental dynamics in the interface as was also observed
by neutron reflectivity and dielectric permittivity experiments of PMMA thin films
[135]. Moreover it has been shown, by using the Kremer-Grest model, that there
was no “glassy” layer, and the dynamic slowing down of stiffer chains was due not
only to the densification of the adsorbed layer, but also to segment layering [133].
The segmental dynamics was less sensitive to chain stiffness [133]. Swollen “bound”
hydrogenated PB chains exhibited the collective dynamics (the so-called breathing
mode) at polymer concentrations (c) below and above the overlap polymer concentra-
tion c∗ as observed by SANS and neutron spin echo techniques [136]. Furthermore,
molecular dynamics simulations showed that polymer matrix chains, with a length
equal to that of the “bound” polymer, could be accommodated in the “bound” poly-
mer layer effectively, while the longer polymer matrix chains partially penetrated the
“bound” chains and their diffusion behavior was hardly affected compared to their
behavior in the bulk region [136].

4.4 Conclusions

In this chapter, we have briefly outlined the main studies (experimental and sim-
ulations) that deal with the problem of polymer mobility in the interface, near the
nanoparticle (or flat surface). The first studies of rubber around carbon black denoted
a “bound” polymer layer at the carbon black. Moreover, other studies of polystyrene
on metallic substrates (such as aluminum or gold) denoted the existence of a “dead”
layer due to the very high adsorption to the substrate. However, a large amount of
experimental studies in a variety of systems, with attractive surfaces, dispute the
appearance of such a layer with no mobility at temperatures above Tg. Furthermore,
coarse grained simulations verify this observation, denoting interfacial and segmental
dynamics even at high attractive interaction strengths.
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Chapter 5
The Interfacial Layers Around
Nanoparticle and Its Impact
on Structural Relaxation and Glass
Transition in Model Polymer
Nanocomposites

Wengang Zhang, Hamed Emamy, Fernando Vargas-Lara,
Beatriz A. Pazmiño Betancourt, Dong Meng, Francis W. Starr,
and Jack F. Douglas

Abstract We quantify the properties of the interfacial layers around bare nanopar-
ticles (NPs) with variable NP diameter in model polymer-NP composites and near
the solid substrate and free interfaces of supported thin polymer films using molec-
ular simulations. These interfaces alter both the segmental packing and mobility
in an interfacial layer. Variable NP diameter allows us to understand the effect of
boundary curvature, where the film sets the limiting value of zero curvature. We
find that the interfacial mobility scale ξ for both NPs and supported films increases
on cooling, reaching a scale on the order of a few nanometers at low temperatures,
regardless of the polymer-interfacial interaction strength. Additionally, we consider
the related problem of the interfacial mobility scale of supported polymer films,
which provides an upper limit for the interfacial scale of polymer-NP composites as
the particle increases in size to macroscopic dimensions. We also characterize the
interfacial density gradient scale ξρ near the NP surface and find, in contrast to the
length scale from dynamics ξ , that ξρ is even smaller and decreases on cooling in
all cases simulated. In other words, the interfaces generally become more sharply
defined on cooling. On the other hand, the scale of fluctuations in the interfacial
density σρ near solid interfaces, which reflects the degree of packing fluctuations,
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and thus “packing frustration”, grows on cooling and correlates in a near linear
fashion with the interfacial mobility scale ξ , although these characteristic thermody-
namic and mobility scales have different dependences on the strength of interfacial
interaction. Conversely, σρ for the free interface in thin films grows on heating, sim-
ilar to that of ξρ . Having characterized the thickness of interfacial layers from both
structure and dynamics, we also examine their effect on the overall relaxation of
materials and the glass transition temperature Tg based on both thermodynamic and
dynamic criteria. In particular, when the interfacial interaction strength is greater
than the polymer-polymer interaction strength, a “bound” polymer layer forms near
the interface (either the nanoparticle interface or film substrate), giving rise to an
additional relaxation process in the self-intermediate scattering function. As a result,
we find that Tg, defined from the gradient in the structural relaxation time, increases
monotonically with polymer-interface interaction strength ε. In contrast, the ther-
modynamically defined Tg, defined from “kinks” in the temperature dependence of
quasi-thermodynamic properties, is found to saturate to a nearly constant value for ε

values greater than the polymer-polymer interaction strength since this bound poly-
mer layer effectively “cloaks” theNPor substrate from the unbound polymer from the
strong interfacial interactions. Our findings emphasize the quantitative relationship
between the interfacial scales in nanocomposites and thin polymer films and show
that interfacial effects are rather universal in systems having significantly mobility
gradients.

5.1 Introduction

There is growing appreciation that the dynamics of the interfacial region of both
crystalline and amorphous glass-forming materials can be greatly altered from the
dynamics deepwithin thesematerials [1–5].Alterations in dynamical properties, such
as diffusion and the rate of structural relaxation, are especially great in thin films
and polymer nanocomposites because the relatively high surface to volume ratio
implies a much greater fraction of molecules are within the interfacial region [6–
11]. For example, polymer nanocomposites property changes can be attributed in
large part to the fact that NPs modify the dynamics near NP. Indeed, the addition of
even a small concentration of bare nanoparticles (NPs) to the polymer matrix can
significantly enhance the properties of polymer nanoparticle composites including
mechanical properties, optical properties, and electrical conductivity [1, 6, 12–17].

The design of new materials, and an understanding of many existing materials
in which interfacial properties are crucially important (nanocrystalline metal alloys
and presumably semi-crystalline polymer materials, 3-D printed materials, as well as
supported polymer films and polymer nanocomposites) requires a better understand-
ing of how to quantify and control interfacial dynamics of condensed materials [1, 6,
18–22]. In particular, the interfacial layer around nanoparticles in nanocomposites is
a topic of extensive experimental investigations due to the relevance of this layer in
understanding apparent deviations from continuum composite theory. From a prac-
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tical standpoint, understanding factors influencing the thickness of interfacial layers
is useful for material design [9, 10]. Motivated by the evidence of common fea-
tures in the interfacial dynamics and properties of nanocomposites and thin polymer
films [2, 23–25], we study the interaction of interfacial layers in both nanocompos-
ites and thin polymer films (e.g., interfacial zone near nanoparticles, polymer-air
interfacial zone, polymer-substrate interfacial zone, and often the interfacial zone of
a grafted polymer layer separating the nanoparticle from the surrounding polymer
matrix) [20–22, 26, 27]. This is a vast research field, and the present work is mainly
limited to a review of our own efforts aimed at understanding interfacial zones as
they arise in glass-forming polymer films supported on solid substrates and polymer
nanocomposites.

In particular, we compare the polymer matrix interfacial regime near the surface
of bare nanoparticles (NPs) and interfacial layers near the substrate and polymer-air
interfaces of thin polymer films.We utilizemolecular dynamics (MD) simulations on
model coarse-grained polymer melts, investigated extensively in the bulk and under
confinement, to explore how the interfacial interaction strength, interface type (free
polymer-air interface and polymer-solid interface), boundary curvature (nanoparti-
cle size) and temperature influence the thickness of the interfacial layer and changes
in both thermodynamic and dynamic properties of the interfacial zone in compari-
son to the material far from the interface [28–30]. Special emphasis is given to the
evaluation of the gradient in the segmental relaxation time, density, and the variance
of density fluctuations near the interfacial region of supported polymer films and
nanocomposites, and the characteristic scales describing these gradients. In addition
to considering local changes and in the thermodynamic and dynamic properties of
these materials, we also consider changes in the overall glass transition temperature
defined from both thermodynamic and dynamic properties. We also describe how
a bound layer forms around the NP with strong polymer-NP interactions, and how
this bound layer “cloaks” the polymer matrix from the strongly interacting NP. Con-
sequentially, the glass transition temperature of the nanocomposites or thin films as
whole by thermodynamic measurements saturates for strong polymer-NP interac-
tion. These findings offer an explanation for the observations that Tg has small to no
changes for strongly interaction NP or substrate with the polymer [2, 20, 24, 31–34].

Before proceeding, we note some of the limitations of our computational study
of the interfacial dynamics of polymer films and composite materials. All the sim-
ulations described below, unless otherwise stated, are performed under equilibrium
conditions, which practically means that the growth of the relaxation time upon
cooling is limited in extent in comparison to the range often studied in experimen-
tal systems. While it is possible to extrapolate our results to low temperatures to
estimate the glass transition temperature Tg as observed experimentally, such extrap-
olations are inherently uncertain.We nonetheless believe that such extrapolations are
physically meaningful from a qualitative standpoint, despite the uncertainties. The
coarse-grained model of the polymer chains that we utilize aims only to understand
general trends in changes in the thermodynamic and dynamic properties of the inter-
facial layer rather than results for particular polymers. In the case of composites, we
examine only ideal dispersions of NPs, so that we cannot account for effects due to
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interactions among the NPs. We also emphasize that many common polymer mate-
rials such as epoxies and block copolymer and polymer blends are multicomponent
materials in which large scale composition gradients often arise as result of phase
separation. Interphase regions can be expected to exhibit much larger dimensions
around particle additives than found for the pure polymer materials investigated in
the present work [35].

5.2 Modeling and Simulations

The simulation data presented in this chapter primarily derives from a series of
molecular dynamics simulations of model polymer nanocomposites [23, 30, 36–
39] and thin supported polymer films [29, 40–42] in our collaborative work over a
period of a few years. Here, we briefly summarize the key elements of the model and
simulation results. The complete details can be found in the original works cited.

In the case of the polymer nanocomposites, we idealize theNP to be an icosahedral
particle surrounded by a dense unentangled coarse-grained polymers with a chain
length of 20 monomers. Due to periodic boundary conditions, our simulations are
intended to represent uniformly dispersed NPs in the polymer melt. In Sects. 5.3
and5.4,we consider theNPconcentration in the dilute limit, allowingus to investigate
the effect of interfacial layer without the complication of the interactions between
NPs. We also vary the polymer-NP interaction strength to evaluate its effect on the
dynamics and glass transition temperature.

Polymer chains in the polymer-NP composites are modeled by the well-studied
Kremer-Grest spring-bead polymer chain [43]. Each chain has N = 20 monomers,
which interact via the Lennard-Jones (LJ) potential with strength ε, mass m, diam-
eter σ , and a cutoff of interactions beyond rc = 2.5 σ . Bonded monomers along
each polymer chain are connected by a finitely extensive nonlinear elastic (FENE)
potential with a bond strength kb = 30 ε/σ 2 and bond distance R0 = 1.5 σ . The NP
consists of LJ particles bonded in icosahedral shape. Specifically, LJ beads in NP
are identical to the monomers of the polymers. In Sect. 5.3, we study three different
NP sizes, consisting of 12, 104, or 356 beads, which corresponds to an inscribing
sphere with radius 1.6 σ , 3.3 σ , or 5.0 σ , respectively. In Sect. 5.4, we only consider
the largest NP size listed above. The LJ size parameter between monomers and NP
is σp−NP = 1.0 throughout this chapter, while the LJ attraction strengths are εp−NP

are varying between 0.1 and 3.0. In particular, in Sect. 5.3, we use εp−NP = 0.1 to
represent a weakly attractive polymer-NP interaction strength, about one tenth of
the polymer-polymer interaction strength, and use εp−NP = 1.5 for strongly attrac-
tive interactions, which is about 1.5 times the strength of attraction compared to the
polymer-polymer interaction. In order to study the effect of interfacial interaction
on Tg and relaxation time, we use a polymer-NP interaction strength εp−NP ranging
from 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5 to 3.0. All simulations are performed
at constant averaged pressure 〈P〉 = 0.1 over a temperature range 0.42 ≤ T ≤ 0.80.
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We also analyze data from simulations of polymer films supported by a solid
attractive substrate, where the upper interface is free, corresponding to pressure
〈P〉 = 0; thus the pressure in both composite and film is small. We briefly describe
the model details, and a complete description of parameters and simulation protocols
are provided in the original work [29, 40, 41, 44]. The polymer chains have 10 beads
per chain, half that of the chains in the composite. This difference is not significant:
in a prior study (See Fig. S4 from the supplementary information of Ref. [29])
and previously we have shown that the structural relaxation time at a segmental
scale for chain lengths 10 and 20 are essentially the identical. We use a harmonic
spring potentialUbond = kchain

2 (r − r0)2 to connect nearest-neighbormonomerswithin
a polymer chain using the equilibrium bond length r0 = 0.9 and the spring constant
kchain = 1111 [45]. Though we utilize a harmonic spring potential instead of the
FENE potential to model polymer chain in thin film for historical reasons, these two
potentials give rise to similar results in the low bond stretching regime, which is the
case in our simulations [46]. The polymer films have 600 polymer chains, resulting in
a film thickness h ≈ 15 σ with dimensions 20 σ in directions parallel to the substrate,
where periodic boundary conditions are employed. The substrate is modeled as 528
particles arranged in a triangular lattice (the 111 face of an FCC crystal). These
particles are tethered to their equilibrium (zero force) locations via a harmonic spring
potential Vsub(r) = (k/2)(r − r0)2, where r0 is the equilibrium position and k = 50
is the spring constant. We use Lennard-Jones (LJ) interactions between non-bonded
monomers and substrate particles. Here we examine interaction strengths εps = 0.1
(weakly attractive interaction) and εps = 1.5 (strongly attractive interaction) between
monomers and substrate particles. As a qualitative way of characterizing the range
of interfacial interaction strength, we note that our “weakly attractive” interfacial
interaction strength corresponds to a tenth of that of the polymer-polymer interaction
strength, while the “strongly attractive” interfacial interaction strength corresponds
to a factor of 1.5 times that of the polymer-polymer interaction strength.

For both composites and films we present results in standard LJ reduced units,
where ε is the unit of energy, σ is the unit of length, m is the unit of mass, σ

√
m/ε

is the unit of time, and ε/kB is the unit of temperature (where kB is Boltzmann’s
constant). To approximately translate to real units, we use σ = 1.0 nm, the average
Kuhn segment length for linear polystyrene (PS), and ε = 7.7 kJ/mol, which leads to
Tg ≈ 370 K, so we may loosely view our polymer model as a coarse-grained repre-
sentation of unentangled PS [47, 48]. Consequentially, the interfacial (polymer-NP
and polymer-substrate) interaction strengths in our model map to 0.77 kJ/mol and
11.55 kJ/mol for the weakly and strongly attractive interfaces, respectively. These
interaction strengths arewithin the range shown in [49], where these authors explored
the effects of polymer-NP interaction strength ε on mechanical properties of repre-
sentative nanocomposites. Additionally, our strongly attractive interface corresponds
to an atomically smooth interface having an adhesion energy about 100 mJ/m2 [50].
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5.3 Interfacial Zone Around Nanoparticles in
Nanocomposites and Near Substrate in Thin
Polymer Films

In this section, we characterize the thickness of interfacial layers ξ , defined by the
gradient of the relaxation time in the proximity to the NP surface, for a range of
NP sizes and compare it to that in thin polymer films. We use two representative
polymer-NP/substrate interactions—“strong” and “weak” interfacial interactions. In
doing so, we also quantify the interfacial density gradient scale ξρ , since it is required
to estimate ξ and is of independent interest. We show that ξρ exhibits a quite distinct
temperature dependence from that of the interfacial mobility scale ξ . To avoid the
complication of NP aggregation in the relatively high nanoparticle loading regime,
we study the case of NP concentration in the dilute limit to establish a basis of
the dynamics and local structure of the interfacial layer around NP. Our results
provide a universal framework that may potentially be useful to establish connection
between interfacial scales and the scales of cooperative rearrangements within the
glass-forming polymer materials. Note that we use the terms “thickness of interfacial
layers” and “interfacial mobility scale” interchangeably throughout the text.

5.3.1 Qualitative Description of the Influence of Interfacial
Interactions on Mobility Near Interfaces

Before quantifying the thickness of interfacial mobile layer around NPs and near
substrate in thin films, we present a qualitative description of the perturbation of
the dynamics near the interface of the NP in nanocomposites and substrate in thin
polymer film. To visualize the mobility gradient, we first shows an illustration of
the variations of segmental relaxation time of the polymer τα(r) relative to its value
far from the NP interface in Fig. 5.1a, b, for thin films, we show the variations of
relaxation time τα(z) relative to its value in the interior bulk-like region of the film
τmid
α in Fig. 5.1c, d. Specifically, the panel (a) shows that in the strongly attractive
NP-polymer interaction case (where εp−NP > εpp and the subscript p is short for
polymer), the segmental relaxation time near the NP is significantly increased, and
conversely, in panel (b) aweakly attractiveNP (where εp−NP < εpp) have significantly
reduced τα near the surface. Similarly, the panel (c) shows that in the case of thin
polymer films with strongly attractive polymer-substrate interaction (where εps >

εpp and the subscript s is short for substrate), relaxation time near the substrate
is significantly increased, and conversely, while in panel (d) a weakly attractive
substrate (where εps < εpp) have significantly reduced τα near the substrate. In both
case, there is significant increase in the mobility near the free interface. We observe
that the relaxation time τα approximately changes by a factor of 10–500 near the
NP interface (substrate) at the lowest simulated temperature T , i.e., T = 0.42. In the
equilibrium state (above Tg), this relaxation time ratio τα(r)/τfar can be expected to
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Fig. 5.1 Visualizations of the relaxation time around theNP (panel a and b) and in thin polymer film
(panel c and b). aA strongly attractive polymer-NP interaction slows down the interfacial dynamics
considerably, while b a weakly attractive polymer-NP interaction accelerates the relaxation in
the interfacial region. Similarly c a strongly attractive polymer-substrate interaction slows down
the interfacial dynamics considerably, while d a weakly attractive polymer-substrate interaction
accelerates the relaxation near the substrate. In both thin polymer film cases, the free interfacial
regions have accelerated dynamics (red color). The diameter of the model NP is 10nm in laboratory
units and the polymer film thickness is about 15nm

become much larger at lower temperature or in the case of stronger polymer-NPs
(polymer-substrate) interaction strength, which results in the formation of bound
layer near theNP or substrate [28, 29]. In the glass state, the relaxation ratio decreases
on further cooling; in thin polymer film [3, 51–54]. The formation of the bound layer
near the interface is due to a separation of time scales for the binding-unbinding
transition of the polymer matrix from the interface [28, 29]. It is visually apparent
that the width of the interfacial zone extends over several monomer diameters (σ ),
or a few nanometers in laboratory units. This is in qualitative agreement with recent
measurements on the interfacial zone of well-dispersed NPs having an attractive
interaction with the matrix to aid in their dispersal [20, 21, 26, 27, 31, 55–57]. Our
simulation results thus are reasonable from a qualitative standpoint.
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5.3.2 Mobility Gradient Near Interfaces

As a metrology for quantifying the segmental dynamics of the nanocomposites and
thin polymer films, we utilize the self-intermediate scattering function,

Fs(q, t) ≡ 1

N

〈 N∑
j=1

e−iq·[rj(t)−rj(0)]
〉
, (5.1)

where rj is the position of monomer j and q is the scattering vector. We define the
characteristic segmental relaxation time τα by Fs(q0, τα) = e−1, where q0 is defined
by the position of the first peak in the structure factor S(q). The spatial dependence of
the nanocomposites dynamics is quantified by averaging Fs over spherical “shells”
having a thickness less than a monomer diameter as a function of distance from the
NP surface. Similarly, we partition monomers in thin film into layers based on their
location and compute Fs for each layer. We sort monomers into layers based on their
location at the time origin, though we could equally well sort them based on their
position at time t = τ , since monomers move (on average) less than a monomer
diameter on the scale of the relaxation time [58].

Figure 5.2 shows the expected behavior of the relaxation Fs(q, t) for layers from
closest to furthest to the NP (substrate). We find that polymer relaxation near the NP
surface (substrate) is substantially slowed for weak polymer-NP (polymer-substrate)
interactions (Fig. 5.2a, c), or substantially enhanced for strong interactions (Fig. 5.2b,
d). To describe the time dependence of Fs(q, t) for each layer, we fit our data to a
phenomenological two-step relaxation functional form,

Fself(q, t) = (1 − A)e−(t/τs)3/2 + Ae(−t/τα)β , (5.2)

where τs = 0.29 is the short vibrational relaxation time scale, whose value is approx-
imately a constant over the range of system parameters studied here [28, 29]; this
“stretched Gaussian” dynamics at short time scale reflects dynamics that is between
ballistic and Brownian motion.

To better illustrate the variations of monomer relaxation near the NP surface
and substrate, Fig. 5.3 shows the layer-resolved relaxation time in nanocomposites
and thin films. In nanocomposites, we show the distance r dependence of τα(r)/τfar
from the center of NP for both strong and weak polymer-NP interfacial interaction
strength ε; in thin films, we show the relaxation time as a function of the distance z to
the substrate for both interactions. The interfacial relaxation time is much larger or
smaller near the NP, depending on the strength of the polymer-NP interactions, as has
been documented in many earlier works [28, 36, 37, 39]. The interfacial relaxation
increases substantially upon cooling; note the log scale of the relaxation time ratio,
τα(r)/τfar.

Similarly, Fig. 5.3c, d present the distance z dependence of τα(z) from the support-
ing substrate of the thin polymer films having strongly attractive or weakly attractive
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Fig. 5.2 The layer-resolved self-intermediate scatting function Fs(q, t) at a representative tem-
perature for both nanocomposites (panel a, b) and thin polymer films (panel c, d) having either
strongly (panel a, c) or weakly (panel b, d) attractive interfacial interaction. Symbols are simulation
data, and lines are the fit defined by (5.2). The black data and line indicates Fs(q, t) for the entire
composites or thin film, while colored data are for layers of increasing distance from the NP surface
or substrate. Note that for strongly attractive interfacial interaction, where relaxation near the NP
or substrate is greatly diminished, the overall Fs(q, t) has qualitatively different behavior at large t,
described by (5.7)

interfacial interaction strengths. As in the case of the NP interfacial zone, the relax-
ation slows down significantly near the strongly attractive substrate and becomes
faster near theweakly attractive interface. For both strong andweak substrate interac-
tions, supported films exhibit an enhanced relaxation near the free interface. Accord-
ingly, our methodology to estimate interfacial mobility scale ξ must consider both
interfacial regions and their interactions.

Importantly, the interfacial scale defined by the density gradient (ξρ ) near a surface
is generally quite different from the interfacial mobility scale ξ from dynamics [23,
29, 59].Wenext discuss the interfacial density scale ξρ in somedetail asweutilize this
quantity in the characterization of the interfacial mobility scale ξ , and then quantify
the temperature T and polymer-NP and polymer-substrate interaction strength ε

variations of ξ to better understand the nature of the mobility interfacial layers from
a molecular perspective. Furthermore, as mentioned above, we also characterize the
interfacial zones of the thin polymer film since it sets an upper limit for the interfacial
mobility scale ξ of NPs.
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5.3.2.1 Interfacial Mobility Scale ξ

Having quantified the mobility gradient in both nanocomposites and thin supported
polymer films, we next quantitatively extract an interfacial mobility scale. To do so,
we look to earlier simulation studies for inspiration. These works were motivated
by the possibility of identifying a well-defined growing length scale in cooled glass-
forming liquids. Consistent with this expectation, Scheidler, Kob and Binder [60]
observed a mobility gradient qualitatively similar to Fig. 5.3c near the “free” inter-
face of a model Lennard-Jones glass-forming film, which they quantified by fitting
log(τα) to an exponential function with a decay length ξ describing the interfacial
width. Numerous authors subsequently followed this procedure for estimating the
interfacial mobility scale [59, 61], where later evidence correlating this length scale
to the activation energy for the film structural relaxation time [62] and the extent
of cooperative exchange motion with the film [59] was noted, seemingly confirm-
ing the intuition that the mobility interfacial scale might have some relation to the
scale of “dynamic heterogeneity” within the film. One difficulty that arises with the
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approach of Scheidler et al., is that the proximity of the substrate and free interface
can potentially cause interference between ξ estimated from the substrate or free sur-
face. Accordingly, it is useful to consider a method that simultaneously incorporates
both interfaces. In addition, we should also incorporate the scale of density modifi-
cations in the formulation, so that our estimate of ξ takes into account the structural
length scale. Indeed, there is evidence that the mobility interfacial layer correlates
with the scale ξρ in simulations of proteins in water around room temperature [63–
65], suggesting that this scale is somehow related to ξ , even if these quantities are
not exactly equal.

Here we use a functional description to determine ξ that addresses these con-
cerns [30]. We first consider a model for the interfacial mobility near the surface
of an isolated NP (or a thick polymer film), and then generalize to systems having
multiple interfaces. It is natural to postulate a hyperbolic tangent functional form for
the mobility profile, by analogy with the known density profile at the polymer-air
interface [66], where the distance from the interface is taken with respect to a ref-
erence scale that includes a contribution from the density gradient scale ξρ , which
helps to determine the boundary of the material. Specifically, we model our mobility
gradient for a NP by,

ln τα(r) = ln τ0 + c0

[
1 − tanh

[
r − (rNP + ξρ)

ξ

]]
, (5.3)

where rNP = a
√
3

12 (3 + √
5) is the radius of a sphere inscribing the icosahedral NP

having an edge length a; ξ , τ0 and c0 are fitting parameters. ξρ is the interfacial
density gradient scale that quantifies the sharpness of an interface, and it is determined
from the density profile. To avoid breaking the flow of this section, we describe the
quantification of ξρ in detail in the next section. In short, rNP + ξρ determines where
the polymer interface starts. We adapt the same form for the mobility profile near a
solid substrate where the distance from the planar interface z replaces r in (5.3) and
where rNP = 0. We fit the layered resolved relaxation time τα(r) using (5.3) with
the explicit value of ξρ to obtain the interfacial mobility scale ξ . We treat the more
complex situation of a thin film where the interfaces interact (as in Fig. 5.3) using
the generalized relation for τα(z),

ln τα(z) = ln(τ0) + c1

(
1 − tanh

[
z − ξ sub

ρ

ξsub

])
+ c2

(
1 − tanh

[
(h − ξ int

ρ ) − z

ξint

])
,

(5.4)

where ξ sub
ρ and ξ int

ρ are the interfacial density gradient scales of the substrate and
free surface, respectively (defined in the next section); ξsub and ξint are the interfacial
mobility scales of the substrate and free surface, respectively; τ0 is related to the
relaxation time in the middle of the film; h is the temperature dependent film thick-
ness, defined by the height at which density decreases to 0.05 near the interfaces; c1,
and c2 are fitting parameters. We obtain excellent fits with (5.4) for all cases that we
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consider. We expect that (5.4) is also applicable to well-dispersed nanocomposites
with relatively high concentration of NPs, where the interfacial zones of NPs overlap
with each other.

5.3.2.2 Effect of Nanoparticle Size on the Interfacial Zone

Based on our MD simulations, and the analysis to characterize the interfacial mobile
layer described in the previous section, we now discuss our results for the interfa-
cial mobility scales around NP in nanocomposites for varying NP size and in thin
polymer films. To avoid the complication of NP aggregation in relatively high NP
concentration, we focus on the case of well-dispersed NPs in the low NP loading
to establish a baseline for the length scale of interfacial mobile layer around NP.
In the case of thin polymer film, we study the interfacial mobility scale near both
the supporting substrate and free interface. In Fig. 5.4, we show a comparison of ξ

estimated for a thin polymer film and our model nanocomposites with variable NP
size in the cases of a strongly attractive interface (panel a), and weakly attractive
solid interface (panel b). We expect that ξsub in the film substrate should serve as
an approximate limit for ξ of the polymer-NP composite in the limit of large NP
size. For the case of strong interfacial interactions, ξ of the composite increases with
increasing NP size, and approaches to that of the film substrate. This observation is
consistent with that observed for the magnitude of the interfacial effect on the relax-
ation time τα(r) reported in [38], and supported by measurements [56]. For the case
of weakly attractive interfaces, ξ of the composite is only very weakly dependent on
NP size, and (like the strongly attractive case) smaller than that of the polymer film
substrate. Moreover, the range ξ is diminished for weak interfacial interactions, as
compared to the case of strong interactions.

We next consider the behavior of the free interface of the polymer film, a type
of interface that does not arise in bulk nanocomposites. Figure 5.4c shows that the
interfacial mobile layer near the free interface ξfree increases on cooling, just like
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from our simulations

that of the substrate. However, the T dependence of ξfree is nearly identical for
both substrate interactions. This finding is not surprising, since the free interface is
sufficiently far from the substrate to largely avoid its effects.Moreover, themagnitude
of ξfree is very similar to that of ξsub of the weakly interacting substrate. This can
be anticipated from the fact that the relaxation profile near the weakly attractive
substrate is similar to that of a “free” interface.

We briefly compare our estimates of the interfacial mobility scale ξ in Fig. 5.5
with experimental estimates of the mobility interfacial zone thickness by Sokolov
and coworkers for several glass-forming materials (glycerol, poly(2-vinylpyridine),
polypropylene glycol, and polyvinyl alcohol) based on broadband dielectric spec-
troscopy measurements [21, 22]. To extrapolate the low T behavior of ξ(T ) from our
simulations, we use an empirical Arrhenius relation inspired by the stringmodel [67],
ξ(T ) = ξ0 exp((	H − T	S)/kT ) [67, 68] to fit the temperature dependent of ξ from
our simulations, where 	H , 	S, and ξ0 are free fitting parameters. This fitting form
also assumes that ξ scales linearly with the string length, as found in simulations
above Tg [53, 59]. We see that the scale and qualitative temperature dependence of
these experimental estimates of ξ are reasonably consistent with our coarse-grained
simulations; see Cheng et al. [21, 22] for the description of the materials, mea-
surement methods, and measurements uncertainties etc. It is notable that the order
of magnitude of the interfacial scale is not sensitive to whether the glass-former is
polymeric or not, and even the strength of interaction between the polymer and the
substrate or NP surface seems to be of secondary importance. These experimental
estimates are indirect, but later work involving direct imaging of the interfacial region
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by atomic force microscopy has conformed these observations to a good approxima-
tion [27]. The silica NPs used by Sokolov and coworkers [21] in their experimental
study has a diameter of 12.5nm, a value similar to our simulated NPs. Quantitative
comparisons with experiment will require estimating the strength of the polymer
matrix interaction strength ε [26, 34, 69–72].

5.3.3 Density Gradient Near Interfaces and Its Scale ξρ

Similar to the gradient of molecular mobility around NPs or near planar substrates,
the density near these interfaces also has a gradient. To show this, we quantify
the density profiles around NP in PNC and in the supported thin film in Fig. 5.6.
We smooth the packing fluctuations of density profiles by convolving ρ(z) or ρ(r)
with a box function. In all cases, the density reaches a well-defined mean value
ρmid far from the interfaces. In the nanocomposites, the density profile ρ(r) is more
sharply defined near the strongly attractive NP/substrate than that in the weakly
attractive NP/substrate since its density quickly converging to that far away from the
NP/substrate. In thin polymer films, the density gradients in the free interface are
nearly the same in both types of interfaces, as expected.

To quantify how sharply defined the polymer interface near NP, substrate or air
is, we define the interfacial density scale ξρ as the length from the interface at which
the density reaches within 5% of the density in the steady region, starting from the
interface (NP surface, substrate, or free surface). The starting position of the substrate
or free surface is defined by the position at which ρ = 0.05; and the starting position
of the NP surface is at the radius of sphere inscribing the NP rinscribe.

We show the variation of ξρ for both model NPs and polymer films for strongly
attractive (Fig. 5.7a) andweakly attractive (Fig. 5.7b) interfacial interactions.We find
that the boundary interaction has a significant influence on ξρ . The interfacial scale ξρ
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is evidently much larger in the case when the interfacial interactions are weak than in
the case of the strongly attractive interface; this is expected, since the strongly inter-
acting interface should give rise to a more precisely defined interfacial layer. ξρ also
exhibits a much stronger T variation for the weakly attractive interface. Specifically,
ξρ grows on heating in the case of weakly attractive interfacial interaction for both
the polymer films and polymer-NP composites. Additionally, the interfacial density
scale ξρ increases with decreasing curvature of the interface (increasing NP size) for
the weakly attractive interfaces since flat substrate is equivalent to zero curvature.

5.3.3.1 Density Variance Near Interfaces and Its the Characteristic
Length Scale σρ

The interfacial density scale discussed above quantifies how sharply an interface
is defined. Another way to characterize the interfacial density scale is to consider
density fluctuations near interfaces, i.e., quantifying the spatial range over which
the packing fluctuations near an interface vanish. This scale quantifies the local
extent of “packing frustration” and we expect this quantity to have a much more
direct relationship to dynamical changes near interfaces than that of the density
gradient. Due tomolecular packing near a solid interface, the density profile oscillates
around approximately the average density of the interior of the material with a period
on the order of one monomer distance in the red curve in Fig. 5.8a. This figure
shows the density profile of a film with thickness ≈15 having polymer-substrate
interaction strength ε = 1.5 and for T = 0.45. The interfacial density scale from
densityfluctuationaσρ can thus be defined from the density variance near the interface
from its bulk value. Similar to that from [73], we define the depth dependence of
density variance,

	2
ρ(z) = 〈

(ρ(z) − 〈ρmid〉)2
〉
, (5.5)
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where ρmid is the average density in the film middle. Figure 5.8b shows the result-
ing density variance 	2

ρ(z) for thin film at T = 0.45 having ε = 1.5. To obtain the
interfacial density variance scale σρ , we can identify σρ as the length scale at which
	2

ρ(z) plateaus. However, the resulting σρ magnitudes obtained from this procedure
depend on the degree of noise in the density profile. To avoid this, we fit 	2

ρ(z) near
the interface with an exponential function,

	2
ρ(z) = A exp

(
− z

σρ/2

)
, (5.6)

where A is the fitting parameter, to obtain σρ (Fig. 5.8b red curve). That said, we also
evaluate σρ from the plateau value of 	2

ρ(z) and find no qualitative difference with
that from the method described above.

The resulting σρ for both strongly and weakly attractive substrates increases on
cooling in Fig. 5.9a, a trend that is the opposite to the interfacial density gradient
scale ξρ in Fig. 5.7. The interfacial density variance scale quantifies the length scale
at which the density variance is nearly the same as that in the film middle. This is in
contrast to the quantity ξρ described previously, which quantifies the “sharpness” of
the interfaces. Unlike the behavior at the substrate, the interfacial density variance
scale σ free

ρ near a free polymer interface increases with increasing temperature in
Fig. 5.9b, a trend similar to ξρ near the free interface. We discuss the significance of
this finding and its relation to the interfacial mobility scale ξ defined from relaxation
profile in the next section. Here, we briefly note that the density variance scale indeed
has a much stronger correlation with the interfacial mobility scale ξ than the scale of
density gradient ξρ , both for the case of solid interfaces prevalent in nanocomposites
and free interfaces prevalent in thin polymer films. These observationswere not noted
in our previous works.
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5.3.4 Comparison Between Interfacial Mobility and Density
Scales

Wenext evaluate how the interfacial interaction strengths affect the interfacial mobil-
ity scale ξ by comparing ξ near the interface with strong and weak attraction and
ξ near free boundary in Fig. 5.10a. We find that ξ and its temperature dependence
are nearly the same for all cases studied (Fig. 5.10a). Having established this, we
directly compare the temperature variations of interfacial mobility scale ξ with that
from density gradient ξρ and density variance σρ . It is apparent that the interfacial
mobility scale ξ and interfacial density gradient scale ξρ have the opposite temper-
ature dependence (Figs. 5.4 and 5.7), while the interfacial density variance scale
σρ grows on cooling, similar to ξ(T ). To show this relation explicitly, we plot σρ

and ξρ parametrically in Fig. 5.10b and show that there is an approximately linear
correlation between σρ and ξ near the solid interface. That said, the magnitude of
interfacial density variance scale σρ for different interfacial interaction strength is
rather different in Fig. 5.9a. In contrast, ξ(T ) in Fig. 5.10a we see that σρ that has
nearly the same value for all interfaces studied here. We also find that σρ of the free
interface of thin polymer film grows on heating, the same as that of ξρ , indicating that
the linear correlation between σρ and ξ is only valid for interfacial layers near the
solid interfaces (substrate or NP surface). We conclude that while the scale from the
density gradient characterizes the “sharpness” of an interface, the interfacial density
variance scale σρ quantifies the spatial extent of the gradient in density fluctuation
near interfaces. Therefore, these two different density scales characterize different
aspects of the mean structure and amplitude of structural fluctuations near an inter-
face, accounting for their opposite temperature dependences. As for the comparison
between the density and mobility scales, although the interfacial density variance
scale correlates nearly linearly with the interfacial mobility scale, interfacial inter-
action or free surface affects their magnitudes differently. This further reinforces the
idea that the molecular structure and dynamics are distinct near interfaces.
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5.4 Effects of Bound Interfacial Layer Around NP and
Near Substrate on Polymer Relaxation and Overall Tg

Whilewe have quantified the interfacialmobile layer thickness ξ for varyingNP sizes
in nanocomposites and near interfaces in thin films and their temperature dependence
in the previous section, the influences of these interfacial layers to the overall segmen-
tal relaxation time τα and the glass transition temperature Tg warrant a separate dis-
cussion, since the correspondence between them is not necessarily straightforward.
The influence of interfaces on the glass transition temperature Tg of small molecules
and polymers has been intensively investigated and discussed [2, 6, 9, 74–77]. The
prevailing view is that surface interactions play a critical role in determining the sign
andmagnitude of the shift inTg on geometrical confinement, or effective confinement
through the addition of NP. In particular, strong, favorable interactions are typically
found to increase Tg, while weak or unfavorable interactions decrease Tg. Support
for this picture comes from molecular simulations showing that Tg increases as the
attractive polymer-surface (polymer-NP or polymer-substrate) interactions become
stronger [36, 45, 78–81]. Additionally, the free surface of supported films, which has
enhanced dynamics relative to the interior of the film, tends to decrease the overall
Tg. As a consequence, the overall change in Tg for nanocomposites or supported films
then results from the competition between these interfacial effects, as well as effects
due to the intrinsic geometrical confinement. On the other hand, a number of recent
experimental investigations report negligible changes in Tg in polymer nanocom-
posites, even when the polymer-NP interaction is so strong that a large shift might
be expected [6, 82, 83]. For example, Kumar and coworkers [2, 31, 32] found that
the Tg of three different polymers were essentially unaffected by the presence of
varying amounts of strongly interacting silica NPs. Sokolov and coworkers [20, 33]
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confirmed these findings, and their results suggest that surface chains relax on a time
scale that can be several orders of magnitude slower than the bulk chains. Indeed, in
the limit of strongly favorable polymer-NP interactions, experimental measurements
indicate the presence of an interfacial polymer layerwith a substantially slower relax-
ation [32, 57, 84–86]. In the limit of irreversible adsorbtion, it has been suggested
that the Tg changes can be related to the amount of adsorbed polymer [87]. However,
the precise effect of this “bound” layer on nanocomposite dynamics, often quantified
by shifts in the apparent Tg, remains unclear.

In this section, we investigate the influence of NP interaction in nanocomposites
and substrate interaction in thin films on the relaxation and Tg. In particular, we focus
on the conditions under which a distinct interfacial bound layer appears, how it influ-
ences nanocomposite and supported thin film relaxation, and correspondingly how it
impacts thermodynamic and dynamicmethods to estimate Tg, which sometimes have
been observed to decouple under confinement [24]. We find that when the polymer-
NP or polymer-substrate interaction strength ε exceeds the polymer-polymer inter-
action strength, a distinct relaxation process at very large time develops, associated
with the formation of an interfacial bound polymer. The NPs or substrates effectively
“cloak” themselves in this bound layer, making standard quasi-thermodynamic and
dynamic estimates of Tg, which primarily weight the matrix chains, insensitive to ε.
The bound chains also affect the overall relaxation of the nanocomposite or thin films,
but care is required to separate the unbound and bound components of the relaxation.
These considerations demonstrate that, while the dynamics of the nanocomposites
or thin film are indeed greatly altered by strongly interacting NPs or substrate, com-
monly employedmethods of estimating Tg often do not reflect these changes because
the unbound portion of thematerial and the interfacial dynamics effectively decouple.

5.4.1 Influence of Interface Interaction on Polymer
Relaxation

Although we examine the layer-resolved relaxation for both nanocomposites and
thin films in Figs. 5.2 and 5.3, experimentally, the distance dependence of Fs(q, t) is
not readily accessible, so we consider how the substantial variations in local relax-
ation time are reflected in its overall behavior. Figure 5.11a and c shows the overall
Fs(q, t) for various ε at a representative temperature for nanocomposites and thin
film, respectively. For ε � 1, a qualitative change of behavior becomes apparent;
namely, an additional relaxation process in Fs(q, t) appears at very large t, which is
most apparent in the double-log representation. This additional relaxation process
occurs due to the “bound” polymer with very slow surface relaxation that emerges
at large ε. Figure 5.11b and d further shows the emergence of the bound polymer as
a function of temperature for a strongly attractive interface (NP or substrate). Evi-
dence of an additional relaxation process in Fs(q, t) was also found in simulations
of composites with strongly interacting nanorods [88]. For cases where the bound
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Fig. 5.11 The self-intermediate scatting function Fs(q0, t) for nanocomposites (panel a, b) and
thin polymer film (panel c, d). Panels a and b show Fs(q0, t) for a nanocomposites and c thin films
at a representative temperature with varying polymer-NP interaction strengths ε. Panel a is a log-log
representation of Fs(q0, t), while the inset is a log-linear representation of the same data. For ε > 1,
a distinct third relaxation emerges due to slowly relaxing “bound” chains near the NP interface or
substrate. For ε ≤ 1, the solid lines are the result of the fit to the two-step relaxation model (5.2); for
ε > 1 the solid lines are the result of the fit to the three-step bound polymer relaxation model (5.7).
The inset of panel c shows how each term of (5.7) contributes to the overall relaxation. For clarity,
the α and vibrational relaxation terms in (5.7) are shifted upward by Ab and Ab + A, respectively.
Panels b and d show Fs(q0, t) for b nanocomposites and d thin film having a strongly attractive
interfacial interaction strength, where bound polymers play a significant role in relaxation. The inset
of panels b shows the T dependence of the matrix τα and bound τb relaxation times for ε = 1.4.
Similarly, the inset of panel d shows the relaxation time τb of bound layer and the primary relaxation
τα due to the unbound polymer as a function of T

sub-group appears, the relaxation of Fs(q, t) cannot be described by the two-step
relaxation of (5.2) in both nanocomposites and thin films. Rather, we can describe
the full t dependence of Fs(q, t) by adding a third relaxation process that explicitly
defines a time scale τb for the bound polymer relaxation,

Fs(q, t) = (1 − A)e−(t/τs)3/2 + (A − Ab)e
(−t/τα)β + Abe

−(t/τb)βb , (5.7)

where Ab ≈ Nb/N approximately associated with the fraction of bound polymer; τα

defines the relaxation of the polymer matrix in nanocomposites or unbound polymer
in thin films, which effectively averages over local polymer relaxation away from the
NP or substrate. Both the α and bound polymer relaxation processes are described
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by a stretched exponential with stretching exponents β and βb (respectively) which
are in the range 0.4–0.6 at low T . The solid lines in Fig. 5.11 show that this three-
step relaxation function can account for the relaxation over all time scales, spanning
decades of relaxation ofFs(q, t). To show these three time scalesmore clearly,we plot
contributions of each term in (5.7) to the overall relaxation in the inset of Fig. 5.11c.
The “non-ergodicity parameter”A ≈ 0.75 is nearly independent ofT and ε over theT
range investigated. In both nanocomposites and thin films, for ε ≤ 1, the bound layer
no longer exists, and so Ab = 0 within the precision of our results; for ε larger than
the polymer-polymer interaction strength, the bound fraction Ab increases weakly in
the range 0.05–0.075 in nanocomposite [28], and the same fraction Ab in thin films is
approximately ranging from 0.01– 0.13 [29]. Integrating over the monomer density
profile as a function of distance from the NP in nanocomposites or distance from
the substrate in thin films, this fraction is equivalent to a bound thickness of ≈1.5
to 2σ , similar to the interfacial mobility scale that emerges from the fit of (5.3) to
the relaxation gradient in Fig. 5.7a. Note that in the regime of unentangled poly-
mer, the thickness of this interfacial mobility layer has no detectable chain length
dependence [29]. Consistent with experimental studies of nanocomposites [20], esti-
mates of τb in nanocomposites or thin films are typically 1–2 orders of magnitude
larger than the segmental relaxation time of the polymer matrix (or unbound poly-
mer) τα (insets of Fig. 5.11b, d), and the difference grows with increasing ε. The
presence of two structural relaxations—one corresponding to the surface and one to
the bulk polymer—has been reported by several experiments [20, 89, 90], including
those on polymer films near flat surfaces. The substantial difference in the relaxation
of matrix (unbound) and bound polymers causes the overall relaxation, defined by
Fs(q, τ ) = Ae−1 ≈ 0.28, to deviate from the matrix (unbound) relaxation time τα for
ε > 1. As a consequence, Tg, as defined by a fixed relaxation time τ of the material
as whole, increases weakly with the polymer-NP (polymer-substrate) attraction ε,
even while the matrix (unbound) relaxation is nearly constant. This is the “cloaking”
effect of the bound polymer mentioned above, and we shall return to this point when
we examine a quasi-thermodynamic Tg definition. Note that the dimensions of the
chains in the bound layer are not significantly altered from those of matrix chains,
though the interfacial chains tend to align with the NP interface [36].

We did not originally anticipate that a continuous gradient of relaxation times
(Fig. 5.2c or d) would give rise to two distinct relaxation processes, though evi-
dence for this has been found theoretically [91]. To confirm consistency between
the description of a continuous gradient versus effectively distinct relaxations, we
checked that the local relaxation averaged over the matrix region (excluding the
bound layer) independently recovers the matrix relaxation time τα obtained by fit-
ting the overall relaxation to (5.7). In many cases, it may be difficult to measure
the relaxation with sufficient precision to estimate the bound polymer thickness and
relaxation. Fortunately, the separation of time scales of the bound layer can be uti-
lized to approximate the fraction Ab of bound polymer (and hence its thickness)
from (5.7). Specifically, if we treat the bound layer as frozen (τb � τα), then the
intermediate scattering function at the overall relaxation time τ defines the relation,
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Fs(q, τ ) = Ae−1 ≈ (A − Ab)e
−(τ/τα)β + Ab, (5.8)

where we drop the first term of (5.7) for the fast relaxation, which is essentially zero
at time τ . Ab can then be obtained by rearrangement of this equation,

Ab = A
e1−(τ/τα)β − 1

e1−(τ/τα)β − e
≈ A

e − 1

[(
τ

τα

)β

− 1

]
, (5.9)

where the final approximate result is obtained by expanding the exponential to first
order, and is only valid assuming that τ ≈ τα (i.e. 1 − (τ/τα)β 	 1, as is the case for
our data). Perfect NP (or substrate) cloaking would imply that the matrix (unbound)
relaxation time τα equals that of the puremelt, which should be a good approximation
when ε is very large. Thus, for strongly interactingNP or substrate, the bound fraction
can be estimated directly from the relaxations of the pure polymer and the composite
or thin films.

5.4.2 Effect of Interfacial Interaction Strength on Tg
Estimates from Thermodynamic and Dynamic Methods

Next, we wish to understand the consequences of distinct bound layer relaxations on
the glass transition temperature Tg. Specifically, we evaluate Tg using both a dynamic
(relaxation time) approach and commonly used thermodynamic approaches. We first
define Tg from thermodynamic quantities. In Fig. 5.12 we show the T dependence
of the excess potential energy 	U (T ) = U (T ) −Uglass(T ) on heating the glass in
nanocomposites (panel a), and thin films (panel b) for the range of polymer-NP and
polymer-substrate interactions considered, respectively; note that we include both
polymer andNP (substrate) contributions toU , though only the polymer contribution
is significant. Generally speaking, in the nanocomposites, the measurement of Tg is
complicated by the intrinsic spatial heterogeneity of theNPs.Additionally, in the case
of thin films, we also define Tg from the temperature dependence of film thickness,
from which we extrapolate Tg in Fig. 5.13c; this procedure is similar to that from
the excess potential energy described above [29]. In both cases, glasses were formed
by cooling at a rate of 10−5, and are reheated at the same rate. It is noteworthy that
these cooling rates are many orders of magnitude faster than in experiments, and,
correspondingly, the Tg estimated is substantially higher than would be obtained at
an experimental rate. Deep in the glass state (T < 0.3), Uglass is well described by
a quadratic function, equivalent to a linear temperature dependence of the specific
heat. Figure 5.12 shows that 	U grows rapidly in the vicinity of T ≈ 0.4 at this
rate. Analogous to the experimental procedure, we define Tg by the extrapolation of
a linear fit in the transition region to 	U → 0. We show the resulting Tg defined in
this way in Fig. 5.13a, b and Tg varies only weakly with polymer-NP and polymer-
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Fig. 5.12 The excess energy 	U (T ) = U (T ) −Uglass(T ) at fixed heating rate 10−5 for both a
nanocomposites and b thin polymer films. We define the quasi-thermodynamic rate-dependent Tg
by a linear extrapolation of the vanishing of 	U in the transition region. The circles indicate the
resulting Tg values, which increase with ε, and then plateau. Data are shifted vertically for clarity.
In panel a from top to bottom, the curves are the bulk polymer under isobaric condition 〈P〉 = 0.1,
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polymer under isobaric condition 〈P〉 = 0, polymer-substrate interaction strength ε = 0.1, 0.25,
0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, and 3.0

substrate interaction strength. We also considered alternate definitions of Tg based
on deviations from liquid-like relaxation at high T , or the extremum in specific heat;
all these definitions show the same qualitative increase and saturation of Tg at large ε.

We are now in a position to contrast the behavior of Tg from thermodynamic and
dynamic definitions (Fig. 5.13c, d). Dynamically, Tg is commonly defined by a fixed
relaxation time that corresponds roughly to accessible cooling and heating rates,
and experimentally this is typically 100 s. Since our thermodynamic definition of
Tg corresponds to a much faster cooling rate than experiments, we correspondingly
define the dynamic Tg by a shorter time scale, specifically as the temperature where
τ = 103 (in LJ units); our qualitative findings do not change if we choose a larger
time scale. There are multiple implications raised by the Tg results. First, the Tg
from the quasi-thermodynamic definition is essentially independent of polymer-NP
or polymer-substrate interaction strength for ε � 1.0 (i.e., greater than polymer-
polymer interaction strength) in both nanocomposites and films. In parallel, the
behavior of Tg defined from the relaxation of the matrix in nanocomposites and
unbound film in thin films τα also roughly saturation for ε � 1.0. Indeed, Figs. 5.2
and 5.11 confirm that this is precisely the region where a distinct bound polymer
relaxation develops. Thus, the saturation of Tg is a consequence of the bound poly-
mer layer cloaking the effects of NP or substrate interactions. On the other hand, Tg
defined by the overall relaxation τ (that includes bound chains), increases monotoni-
cally with increasing ε, although the rate of increase falls of significantly for ε > 1.0.
Apparently, the thermodynamic definition ofTg is insensitive to the very slowly relax-
ing bound polymer layer, and only reflects the dynamics of the matrix polymer. In
other words, the bound layer is thermodynamic “dead layer”. Naively, one might
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Fig. 5.13 Tg estimates for nanocomposites (panel a, b) and thin films (panel c, d) defined from
thermodynamics (panel a, c) and relaxation time (panel b, d). Tg defined from thermodynamic
quantities (Fig. 5.12) plateaus when bound polymer emerges for both a nanocomposites and c thin
films. The uncertainty estimates indicate the standard error of the mean of the Tg estimates among
5 independent runs. On the right side of the panel, we normalize Tg(ε) by the corresponding Tg
from the bulk polymer, highlighting the small amplitude of Tg changes. Specifically, in the case of
nanocomposites, Tg of the bulk polymer is under isobaric conditionwith 〈P〉 = 0.1, while in the thin
film case, the Tg of bulk polymer is under isobaric condition with 〈P〉 = 0. Panel b and d show Tg
defined by a fixed relaxation time for both b nanocomposites and d thin films. Dynamical definition
of Tg, namely τ(Tg) = 103. In particular, we examine Tg of the overall and unbound portion of
the nanocomposites (polymer matrix) and thin film (unbound film), as well as bulk polymer for
comparison. For ε > 1.0, Tg of the unbound portion is nearly an invariant of ε. This indicates the
bound polymer “cloaks” the strongly interacting substrate. Like the thermodynamic Tg, the matrix
component or unbound film plateaus when bound polymer develops

expect linear growth of Tg from the overall dynamics with increasing ε; however, the
overall dynamical Tg increases sub-linearly when bound polymer develops, since the
effect of NP/substrate interactions on matrix/unbound chains is cloaked. As a result,
even for very strong polymer-NP (polymer-substrate) interactions, the effect on any
of these measures of Tg is � 5%. In the case of nanocomposites, even for larger
NP loading fractions (when the fraction of bound polymer must be proportionally
larger), the effect on Tg defined by thermodynamic variations or matrix/unbound
chain dynamics will be small due to cloaking, consistent with experiments. We have
confirmed this effect in simulations at twice the NP concentration as the present
data (not shown). This behavior is generally a consequence of the fact that the bulk
structural relaxation decouples from the much faster surface relaxation.
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5.5 Conclusions

Since nanoparticles have a relatively large interfacial zones in comparison to the
size of macro-particle additives in bulk materials, the interfacial zones over which
the polymer matrix dynamics are perturbed can be expected to have an appreciable
influence on nanocomposite properties [28, 37, 39, 92], despite the relatively small
width of this interfacial zone. Motivated by the direct analogy between nanocom-
posites and thin polymer films, we focus on this problem by quantifying the spatial
extent and properties of the interfacial zone around nanoparticles and the closely
related problem of the interfaces of supported thin polymer films. Specifically, we
characterize the spatial extent to which the polymer structure and dynamics are per-
turbed near the interface regardless of whether it is the interface around nanoparticle,
or the interfacial region near the substrate or the free interface in thin polymer films.
Furthermore, we closely examine the effect of the interfacial layer on the overall
relaxation of materials and the glass transition temperature Tg from both thermody-
namic and dynamic estimates, especially in the case where the interfacial interaction
is strongly attractive.

To characterize the scale of spatial perturbation near the interface related to poly-
mer dynamics, we examine the relaxation gradient near nanoparticles and in thin
films from which we obtain the interfacial mobility scale ξ . For the scale of spatial
perturbation related to the polymer structure, we characterize a length scale from
the density gradient ξρ and density variance σρ near an interface separately. In short,
the interfacial density gradient scale ξρ characterizes how well-defined the struc-
tural interface is, while the interfacial density variance scale σρ describes the spatial
extent of density fluctuations near an interface, providing a measure of “packing
frustration”.

We find that the thickness of the interfacial mobile layer ξ around nanoparticles
or near interfaces in thin polymer film is typically a few nanometers when translated
to laboratory units appropriate for polystyrene. In all cases, we find that ξ grows pro-
gressively upon cooling, but remains on the order of a few nanometers. Notably, the
interfacial mobility scale ξ is sensitive to NP size for strong interfacial interactions,
but only weakly dependent on NP size for weak substrate interactions. That said, the
film appears to offer a limiting value for ξ in case of very large NP. Our findings
broadly accord with the early computational study by de Pablo and coworkers [93],
and are also in general qualitative accord with measurements of the interfacial zone
thickness by Sokolov and coworkers [20–22, 26, 27, 55]. We note that recent X-ray
scattering studies have recently provided evidence for a zone ofmodified solvent den-
sity around nanoparticles having a scale extending up to 2nmbeyond the nanoparticle
surface [94], another experimental trend in qualitative accord with the present work.
Measurements of this kind should be helpful in determining the interaction potential
between the nanoparticles and the polymer fluid matrix. In the case when the interfa-
cial interaction strength is above the polymer-polymer interaction strength, we find
that it is possible to explicitly separate a distinct fraction of bound polymers with
significantly increased relaxation time from the overall relaxation behavior of the
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materials. Indeed, a bound polymer layer forms near either the nanoparticle near the
surface in nanocomposites in this case, or near substrates in thin supported polymer
films. We also show that the effective size of the nanoparticles in these systems can
be altered by a “bound” layer of polymer. The importance of this layer is appreciated
when we consider that the interfacial mobile layer thickness can be comparable to
dimensions of the nanoparticle.

Subsequently, we examine the effect of the bound polymer layer on Tg from
the relaxation time and thermodynamic estimates for many interfacial interaction
strengths ε. We find that Tg defined from relaxation time increases monotonically
with ε, and nearly saturates for strongly attractive interaction strength, while the
same Tg (defined dynamically) of the unbound portion of the film or polymer matrix
in nanocomposites saturates as substrate interaction strength exceeds the polymer-
polymer interaction strength. In parallel, we also examine thermodynamic estimates
of Tg, which does not capture the signatures of much slower, bound polymer chains
near interfaces, and hence yield Tg estimates that mainly reflect the Tg of bulk-like
portion of polymer, which corresponds to the unbound film in thin film or polymer
matrix in nanocomposites. Specifically, the thermodynamically defined Tg is found
to saturate to nearly a constant value for ε values greater than the polymer-polymer
interaction strength, independent of the precise thermodynamic features that are
used to extract Tg. However, in the thin film case, the saturation value of Tg will
generally be thickness dependent. The slowing of dynamics induced by the substrate
can exceed the enhancement of the dynamics at the free surface, leading to no change,
or even an increase in Tg [40]. Indeed, we do not see significant Tg reductions when
the bound layer is present [95]. Similarly, numerous studies on nanocomposites have
also reported little to no change in Tg by adding strongly interacting nanoparticles [2,
20, 31–33]. This leads to the conclusion that a bound polymer layer may arise near
the strongly attractive interfaces, whether it is substrate in supported polymer films,
or nanoparticle surface in nanocomposites. In both cases, the bound polymer layer
“cloaks” the film interior or polymer matrix from interfacial interactions, resulting
in small shifts in thermodynamic estimates of Tg. As a consequence, the changes
in Tg no longer grow in proportion to the interfacial interaction strength when such
a bound layer forms. This “cloaking” effect near strongly attractive interfaces and
nanoparticles appears to be rather universal in systems having strong interfacial
interactions.

For the interfacial scale related to the polymer structure near an interface, we
find that the interfacial density gradient scale ξρ grows on heating, an opposite trend
compared to that of ξ ,while the interfacial density variance scaleσρ growson cooling,
exhibiting approximately a linear correlationwith that of ξ(T ). That said, we find that
ξ(T ) for different interfaces or interfacial interaction strengths have roughly the same
magnitude,whileσρ(T ) for different interfaces havedifferentmagnitudes, suggesting
that interfacial scale from dynamics and structure have distinct dependence on the
interfacial interactions.

Since the interfacial scale ξ defines the range of the mobility gradient, by defini-
tion, it is a scale of dynamic heterogeneity. However, it is not clear how the scale of
this mobility gradient may (or may not) relate to the scale of spatially and tempo-
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rally heterogeneous dynamics that occurs both in films and composites, as well as
in structurally homogeneous bulk materials. It has been widely argued [39, 67, 92,
96, 97], dating back to the pioneering work of Adam and Gibbs (AG), that the scale
of this spatiotemporal heterogeneity can be directly related to the growing activation
barrier for molecular rearrangement on cooling. While there has been some support
of the suggestion that the interfacial mobility scale grows in a parallel fashion to the
extent of cooperative motion [59], simulation has indicated that the extent of particle
exchange motion is essentially constant in glass-forming polymer films so that an
explanation of mobility gradients in thin films in terms of gradients in the degree
of cooperative motion with film depth can be clearly excluded [41]. Recent work
has indicated that string-like replacement motions can quantitatively account for the
variation in the activation free energy, and thus offer a concrete molecular realiza-
tion of the abstract “cooperatively rearranging regions” proposed by AG. While the
variation of ξ in Fig. 5.4 exhibits the same qualitative trend as the scale of string-like
collective motion in our simulated nanocomposites and thin polymer films, further
work is required on both nanocomposite and thin film polymermaterials to determine
if a quantitative relation exists between these quantities.
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Abstract Renewable energy production from fuel cells and energy storage in flow
batteries are becoming increasingly important in the modern energy transition. Both
batteries use polyelectrolyte membranes (PEMs) to allow proton transport. In this
chapter, both PEMs and PEMs-based nanocomposites have been discussed using
various simulational approaches. A coarse-grained model of a Nafion film capped
by the substrates with variable wettability has been used to simulate nanocomposites
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of PEMs by classical molecular-dynamics (MD) method. Classical MD modeling
results have also been reviewed for a PEM-graphene oxide nanocomposite internal
structure and dynamics. Ab-initio simulations have been implemented to describe
the proton transfer pathways in anhydrous PEMs. Finally, the large-scale meso-
scopic simulations have been introduced to shed light on the water domain features
present in the hydrated PEMs. A brief description of polybenzimidazole membrane
as electrolyte and Ionic Liquids as dopants for fuel cells is also presented.

6.1 Introduction

In this chapter, the application of themultiscalemodelingmethods has been discussed
for a very special class of the nanocomposites—polymer electrolyte membranes
(PEMs), one of the key elements of the modern fuel cells [1, 2] and flow batteries
[3]. Low-temperature fuel cells (FCs) based on polymer ion-exchange membranes
powered by hydrogen or methanol are often considered as a replacement for tradi-
tional power sources inmotor transport and household devices [1]. Theirmain advan-
tages are portability, low operating temperature (<100 °C), and simplicity of the
internal design.

The fuel cell design is quite simple, see Fig. 6.1. It consists of two electrodes and
a solid electrolyte. The following types of FC are distinguished: alkaline, carbonate,
solid oxide, with a polymeric proton-exchange membrane and phosphoric acid.
With respect to operating temperature, the FCs are divided into low-temperature
FC (operating temperature <100 °C), medium-temperature FC (<220 °C), and
high-temperature FC (600–1000 °C).

In the low-temperature hydrogen fuel cells, the role of electrolyte is played by
an ion-exchange membrane. In general, PEM represents a thin film of a polymer
with ionogenic groups. The role of membrane is to separate the flow of fuel from

(a) (b)

Fig. 6.1 Schematics of the a a hydrogen–oxygen fuel cell and b a redox flow battery
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the oxidizer and to serve as an electron insulator. Hydrogen molecules are oxidized
at the anode (H2 → 2H+ + 2e−) and the formed protons are transferred to the
cathode through the membrane [1]. The released electrons pass through an external
circuit and are transmitted to the cathode, creating electric current. At the cathode
block, in the presence of the catalyst, the reaction O2 + 4e− → 2O2− occurs. The
cycle of the recombination electrochemical transformations is completed with the
reaction of oxygen ions with protons; as a result, the water molecules are formed,
O2− + 2H+ → H2O. The theoretical value of the electromotive force (EMF) of a
hydrogen–oxygen FC at 25 °C is 1.23 V; the no-load voltage is about 1 V. Such FCs
have the lowest operating temperature of 40–80 °C, which is both their advantage
and disadvantage. The simple design of the low-temperature FCs allows them to
be made compact, but, unfortunately, at these temperatures, the platinum catalyst is
very sensitive to the degree of the fuel contamination. Therefore, research aimed to
improve the efficiency of such FCs is performed in two directions: the development
of the highly efficient membranes and the search for chemically resistant and cheap
catalysts.

It is assumed that for use in FCs, the membrane conductivity should be above
0.001 S/cm [1–3]. Since PEMs perform the functions of a gas separator and an elec-
trical insulator, it is necessary that thesemembranes possess low gas permeability and
electrical conductivity. In addition, they should have sufficient mechanical strength.
This is required for operation at high pressures. Furthermore, the membrane should
not be destroyed as a result of electrodes pressing on. Since during the electro-
chemical reactions peroxide compounds, such as H2O2, OH−, and HOO− can be
formed, the membranes should demonstrate high chemical resistance to oxidation
and hydrolysis [1–3].

PEMs are also used in redox flow batteries (RFB) as shown in Fig. 6.1b. The
catholyte and the anolyte form a redox couple in which the anolyte gets oxidized and
releases electron into the external circuit. The electron travels through the external
circuit and reaches the cathodic side to reduce the catholyte. There also exist some
protons released during this process which travel toward the cathodic side tomaintain
the charge balance in the system; the PEM helps in transport of these protons. The
speed of charging and discharging is affected by the ease of proton transport across
the PEM. The PEM also prevents the catholyte and the anolyte from crossing over
and mixing. Such mixing would reduce the efficiency of the battery and could also
lead to catastrophic power discharge and fire.

When water is added to the PEM, the microphase separation of the hydrophilic
and hydrophobic segments of the polymer chains occurs. It leads to the formation of
water domains localized near the hydrophilic groups. As a result, various hydrated
proton complexes, i.e., hydronium ions (H3O+), Zundel (H5O2

+) and Eigen (H9O4
+)

cations are formed. With the increasing amount of water, the water domains merge
into a continuous network of water channels that provide proton transport through
the membrane volume as shown in Fig. 6.2. At the same time, the hydrophobic
domains enhance the mechanical strength of the membranes. They are formed from
the fluorinated, aromatic or aliphatic segments of macromolecules. The sulfonic acid
groups (–SO3H) and the phosphate groups (–PO3H2) are the most commonly used
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Fig. 6.2 Themechanisms of proton transport: a in the ion channel, b–d the stages of proton transfer

CF2 CF2 CF CF2x y
O CF2 CF O

CF3

(CF2)2 SO3H

Fig. 6.3 The general structural formula of the Nafion® family polymers

ionic acid-type groups, dissociatingwith the release of a proton. Sulfonated polymers
are more efficient at high degree of hydration, while phosphorylated polymers can
function with a low water content and have high heat resistance.

Conventionally, theNafion derivatives (see Fig. 6.3) are the copolymers of tetraflu-
oroethylene and perfluorinated vinyl ether side chains with sulfonic acid groups at
ends. Membranes based on such polymers are durable, resistant to oxidation and
have a record high ionic conductivity (up to 0.1 S/cm at temperatures below 80 °C).
The disadvantages of Nafion are the narrow range of the operating temperatures
(<90 °C). Limitation of the temperature range leads to the need for utilization of
highly purified hydrogen, since even small CO impurities impart a destructive effect
on the platinum catalyst. Increasing the operating temperature to above 120 °C allows
to shift the equilibrium of the CO and H2 sorption on the catalyst toward hydrogen.
This prevents the poisoning of the catalyst, but it is impossible to raise the tempera-
ture above 90 °C. Upon increasing temperature, the water content in the ion channels
decreases due to water evaporation. This causes the diameter of the water channels to
narrow. If the water content is below the percolation threshold, the network of water
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channels is disrupted. It is accompanied by a sharp drop in the membrane conduc-
tivity. The ionic conductivity of the dry polymer is not sufficient for the operation of
FC. The efficient transfer of protons can be ensured only if constant hydrostatic level
is maintained. This requires introducing additional structural elements and increases
the total cost of the batteries.

In [4, 5] themodification of Nafion by silicon dioxide nanofillers has been studied.
Such nanocomposites demonstrate the ability to function effectively at temperatures
up to 140 °C, as their ability to retainwater at high temperatures increases. In addition
to the studies on the modifications of Nafion, research is actively conducted to find
alternative solid polyelectrolytes based on mass-produced polymers with an aryl
skeleton, such as polycarbonates, polyesters, polystyrenes, and polysulfonic acids
[6]. Membranes based on polybenzimidazole (PBI) modified with phosphate groups
possess high thermal stability and conductivity in dry conditions. Their operating
temperature range is 160–180 °C, which allows their use in medium-temperature
FCs. However, upon contact with water, the acid–base complex is destroyed, and the
phosphoric acid is washed out into catalytic and gas-diffusion layers. This leads to
the blockage of the gas pores, degradation of the electrodes and of the whole gas
pipeline system.At the same time, the proton conductivity of themembrane decreases
sharply. Another relatively simple method to obtain ion-exchange membranes can
be implemented by modifying the polymer matrix with side chains followed by
sulfonic acids [7]. This method to obtain ionomers requires lower costs than when
usingNafion. The proton conductivity in this case is 0.11 S/cm at 100%hydration and
T = 298 K. The main disadvantage of such membranes is a high degree of swelling,
greatly exceeding similar values for Nafion. There have been also attempts to obtain
high-performance membranes based on polysulfonic acids, polyethersulfonic acids,
polyimides, and sulfonated poly(ether-ether ketone) (SPEEK) [8–14].

The exact mechanism of the PEM protons transfer is the highly debated subject;
the proton transport is described in some detail by Agmon [15]. Two possible mech-
anisms of the proton transfer through the membrane are discussed. Sulfonic acid
groups, which are concentrated mainly on the walls of the channels, dissociate in the
presence of water to form ion pairs:−SO3H+H2O→ –SO3

– +H3O+. According to
the classical Grotthuss mechanism, the protons are transferred through a continuous
proton-exchange reaction: H2O + H+ ↔ H3O+, see Fig. 6.2a. Other mechanisms
suggest the protons transfer as a result of the hydronium ions diffusion and hops
between adjacent sulfonic acid groups [16]. In this case, the rate of proton exchange
depends on the difference in the probabilities of proton capture by water molecules
and by sulfonic acid groups.

Figure 6.2b shows the hydronium ion H3O+, surrounded by solvated water
molecules, forming the Eigen–cation H9O4

+ [17]. It is hydrated as well, but the
hydrogen bonds in the second coordination sphere of H3O+ are weaker than in the
first sphere. It is assumed that the proton exchange is initiated by a random change
in one of the hydrogen bonds between the water molecules forming the second coor-
dination sphere of hydronium. This causes a rapid change in the orientation of water
molecules (over a time of the order of 1 ps), which can lead to the breaking of one
of the hydrogen bonds. In the remaining cluster, a quick rearrangement of the bond
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lengths and angles occurs forming a complex H2O · · ·H+ · · ·H2O Zundel cation
(H5O2

+) [18] as shown in Fig. 6.2c. In this complex, in turn, as a result of fluctua-
tions in the bond lengths, the proton can join one of the two water molecules forming
a new hydronium ion as shown in Fig. 6.3d. Next, the hydration shell is formed, and
the process repeats.

Ab-initio molecular-dynamics (MD) calculations [19–21] confirm that proton
transfer is realized through a continuous chain of transformations ofEigen andZundel
cationic complexes. In the empirical valence bonds model, using the example system
of a small Nafion/water system (~5000 atoms and 40 excess protons), a detailed study
of the Grotthuss mechanism was performed [22, 23]. This model allows the hopping
movement of protons fromhydronium ions to the nearestwatermolecules. In a hybrid
model using the classical and the quantum–mechanical methods [24], the proton
migration was studied for a system containing a single Nafion oligomeric chain with
10 SO3

– groups, the same number of H3O+ ions and 156 water molecules. In [21],
using extensive 120-ps-long density-functional theory (DFT)-based simulations of
charge migration in the 1200-atom model of the hydrophilic Nafion nanochannel, a
bimodality of the van Hove autocorrelation functionGs(r, t) has been observed. This
provides direct evidence for the Grotthuss hopping mechanism being a significant
contributor to the proton conductivity.

The PEM proton conductivity strongly depends on the water content in the
membrane. The amount of water in the membrane is often characterized by the
volume fraction ϕ and the hydration parameter λ (the number of water molecules
per sulfonic acid group). Nafion becomes a proton conductor at λ ≈ 2–5 [21, 25]. In
this case, the fraction of hydrated sulfonic acid groups is very small, and they should
exist only within segmental clusters.

Hydrophilic membrane domains containing –SO3H groups have a high affinity
to water. Even after air drying, the proton of the sulfonic acid group continues to
bind two water molecules. Upon contact with water, the degree of the membrane
hydration increases dramatically due to the absorption of water [26–29], which leads
to the membrane swelling and to an extensive reformation of its structure.

The presence of well-defined maxima in the intensity of small-angle X-ray scat-
tering (SAXS) data for sulfonic acid membranes shows that their structure must
contain ordered water clusters [29, 30]. Based on the analysis of experimental data,
Gierke proposed some generalized model of the structure of perfluorinated sulfonic
acidmembranes [28, 31] as shown in Fig. 6.4.According to thismodel, themembrane
consists of an array of linked clusters connected by narrow channels. On the periphery
of the clusters, which in a first approximation have a spherical shape, sulfonic acid
groups are located. As a result, the surface energy is minimized and the contact of
the hydrophobic segments of the matrix chains with water is limited. The internal
volume of the cluster is filled with water molecules and its proton complexes, which
are formed during the dissociation of the functional groups. The migration of the
proton complexes occurs from cluster to cluster via the extensive network of chan-
nels, which can break off with low moisture content. If this happens, the membrane
loses its transport properties. Even though this model is widely used, other possible
variants of the membrane structure, which also allow the description of the SAXS
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Fig. 6.4 The cluster-channel model of Nafion, proposed by Gierke [28]

results, are present in the literature. One could mention here Fujimura’s modified
core–shell model [32, 33], Dreyfus’s local orderingmodel [34], Litt’s lamellar model
[35], and Rubat’s rod-like aggregates model [36]. A common feature of these models
is adoption of the fact that sulfonic acid groups in a hydrophobic matrix form a pene-
trating network of linked ionic clusters that swell in a polar solvent and provide ion
transport of the membrane. At the same time, each of themodels provides its descrip-
tion of the topology of the structure of the ion channels network. In addition to these
models, Schmidt–Rohr and Chen [37] proposed parallel cylindrical channels inside a
hydrated Nafion membrane. These channels were lined-up with sulfonic acid groups
and were filled with water and protons.

Based on the results of X-ray and neutron scattering experiments on samples of
Nafion membranes with different water contents, as well as on the basis of energy
considerations, Gebel [26] proposed a concept to describe the process of swelling and
dissolving ionomers. It is assumed that the dry membrane contains separate isolated
ion clusters with a diameter of about 1.5 nm. They swell when water enters the
membrane. When the water content in the membrane reaches a percolation threshold
λ∗, a linked network of the water clusters forms in the membrane, and the membrane
becomes a conductor of ions. With further absorption of water, an inversion of the
structure occurs, and, as a result, the system structure takes the form of a network
of intertwined rods. A further increase in the water content leads to the complete
dissolution of themembranewith the formation of a colloidal dispersion of individual
rod-like fibers.

PEMs which require humidification for proton conduction limit the deployment
of fuel cells with operating temperatures up to the boiling point of water. The
operation of these fuel cells at higher temperature reduces catalyst poisoning, and
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hence, suitable alternatives as proton carriers have been explored [38, 39]. Aromatic
membranes such as Poly (2,5-benzimidazole) (ABPBI), Poly[2,2-(m-phenylene)-
5,5-bibenzimidazole) doped with phosphoric acid (PA) have been explored for high-
temperature fuel cells. These membranes have excellent properties such as high
thermal, chemical and mechanical stability, high conductivity at elevated tempera-
tures and low cost [40, 41]. ABPBImembrane has nitrogen (N) atomon the imidazole
ring which serves as a proton acceptor [42] and can interact with dopants. ABPBI
shows higher affinity toward PA as compared to PBI, due to the absence of phenyl
ring. PA is amphoteric and has a high boiling point, which makes it a suitable proton
conductor for fuel cell applications [41]. PBI membrane has high glass-transition
temperature (430 °C), excellent chemical resistance, and mechanical strength which
stems from the aromatic backbone. The PA-doped PBI has high proton conductivity
(0.07 S/cm) in fully doped conditions and is comparable to the state-of-the-art PFSA
membranes. In PBI, high conductivity extends up to 200 °C. IR [40, 43, 44], Raman
[45], and NMR spectra [46] have confirmed the presence of strong hydrogen bonds
between PA and the nitrogen atom on the imidazole, resulting in the formation of
H2PO4

−.
Ionic liquids (ILs) are considered as a promising alternative to water due to their

excellent properties such as high thermal stability, low vapor pressure, wide electro-
chemical window, and high anhydrous ionic conductivity. These properties render
ILs promising dopants in electrolytic membranes, and, thus, enabling operation of
PEMFC at higher operating temperatures (>100 °C). A protic ionic liquid (PIL) is
defined as a combination of aBrønsted base andBrønsted acid,where the base accepts
a proton from the acid [47]). The use of PILs as proton carriers has been explored for
high-temperature fuel cells [47–49]. A wide range of PILs as a prospective proton
conducting material and underlying proton conduction mechanism has been investi-
gated with excess of one constituent, or in PIL-doped membranes [47, 50–54]. Sood
et al. [53] demonstrated that IL (triethylammmonium trifluorosulfonate, TFTEA)
doping in Nafion (neutralized with triethylamine, TEA) enhances the ionic conduc-
tivity anhydrous conditions. The conductivity of IL-doped membrane increases with
wt% of IL.

In the next parts of this chapter, computer simulations of some of these PEMs and
their nanocomposites are discussed in more detail.

6.2 Multiscale Modeling of Polyelectrolyte Membranes
and Their Transport Properties

By now, many theoretical studies on the properties of Nafion have been published
[21, 55–57]. However, the studies of other ion-exchange polymers, in particular,
sulfonated polyheteroarylenes, are practically absent. Although Nafion and poly-
heteroarylenes differ significantly in their chemical structure, the formation of the
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structure of sulfonated polymers must follow general principles. Therefore, the anal-
ysis of the accumulated results about Nafion can be useful in the study of other
sulfonated acid polymers.

The earliest studies were carried out in the framework of semi-empirical methods
with a large number of parameters, adjusted according to experimental data [36,
58–60]. They drew general conclusions regarding the origins of the microphase
separation in ionomers into hydrophilic and hydrophobic domains, but they did not
provide a detailed description of the membrane structure.

The next group of theoretical approaches includes methods based on atomistic
simulations [61–68]. They allow to simulate the microphase separation of polar and
non-polar segments of polymer chains and to study the diffusion of water and hydro-
nium. This helps to understand how the local ordering occurs in PEMs, depending
on the water content and on the role of the side chains of fluoropolymers containing
sulfonic acid groups.

The most rigorous level of consideration was achieved using the quantum–
mechanical methods [19, 20, 69–71]; accurate data have been obtained on the prop-
erties of different molecular groups, the dissociation of −SO3H, the conformations
of fragments of the Nafion chain, and the mechanism of the proton transport.

The experimental and theoretical studies of ion-exchange membranes show that
in order to explain the structural features of the water channels of proton-conducting
membranes, it is necessary to consider the morphology of ionomers on spatial and
temporal scales that significantly exceed the capabilities of atomistic methods. In this
case, mesoscopic approaches, such as cellular automaton method [72], MC/PRISM
(a combination of Monte Carlo methods and integral equations) [73], the dissipative
particle dynamics (DPD) method [74, 75], and a dynamic version of the density-
functional theory method (DDFT) [76, 77], can provide the most detailed informa-
tion. The predictions obtained in the framework of the aforementioned approaches
are in a good agreement with pertinent experimental results and with findings from
the atomistic modeling. However, neither DPD nor DDFT is suitable for studying
the mechanisms of ion transfer.

As has been mentioned before, the Nafion-based nanocomposites fabricated by
mixing with nanoparticles are often used in fuel cells and flow batteries to improve
proton conductivity, water retention levels and selectivity to the motion of protons
only. Classical MD simulation studies of such nanocomposites are appropriate to
understand the internal water cluster structure and transport characteristics. Nafion
nanocomposites containing highly hydrophilic nanoparticles, like modified silica,
have exhibited higher proton conductivity as compared to that of bulk Nafion [78].
Methanol crossover in direct methanol fuel cells and vanadium crossover in flow
batteries have been reduced by using such Nafion nanocomposites [79, 80]. In
[80], the reduction of methanol crossover and increased proton conduction in a
Nafion-modified carbon nanotube (CNT) nanocomposite has been observed. It was
proposed that such effects were due to the formation of long hydrophilic pathways
along the modified CNTs. All these experiments point toward the need for a better
understanding of Nafion–nanoparticle interfaces.
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Nafion nanocomposites show a large variation in nanoparticle sizes (5–75 nm)
[81, 82]. Therefore, Nafion–nanoparticle interface could be modeled using a coarse-
grained description of a Nafion film-flat substrate interface with lateral dimensions
in the range of 4–6 nm. Nanocomposites may possess different filler densities which
affect the average interparticle distances. The average interparticle distance in a
Nafion/titania nanocomposite was found to be 9 nm [81]. Also, previous experiments
have sought a more thorough understanding of the structure in Nafion films of thick-
ness less than 10 nm, because this is exactly the range of the interparticle distances
commonly met in catalyst layers [83]. Therefore, film thicknesses in the range of
6–11 nm can be chosen to perform the classical coarse-grained MD simulations.

Different types of nanoparticles like silica, zirconia, and modified carbon
nanotubes [78, 81] with varying wettabilities have been used in Nafion nanocom-
posites. In addition, Nafion also exists in catalyst layers between carbon support and
platinum nanoparticles [82, 84].

In the next paragraph, a hydrated Nafion film capped by substrates of varying
hydrophilicity will be discussed in some detail. Such a model, introduced in [78]
initially for the elastomer-based nanocomposites, has been recently used to provide
useful insights into the interfacial interactions in Nafion nanocomposites.

6.3 Confined Film Model of a Nanocomposite Membrane

Classical molecular-dynamics (MD) techniques were used for thr simulations. A
polymer nanocomposite is comprised by fillers/nanoparticles dispersed inside the
polymer matrix as shown in Fig. 6.5a. The representative volume element (RVE)
modeled in the simulations is the polymermaterial present between any two nanopar-
ticles as a confined film. This RVEwas modeled by confining 17 Nafion chains along
with water molecules and hydronium ions between structureless walls of tuneable
hydrophilicity [85, 86] as shown in Fig. 6.5b. A fixed moderate hydration level of λ

= 15 was used for the simulations. The walls represent the nanoparticle surfaces of
variable hydrophilicity.

An integrated Lennard–Jones potential [87],

E = ε

(
2

15
(σ/r )9 − (σ/r )3

)
, r < rc (6.1)

has been used to simulate structureless walls at the top and at the bottom of the
simulation box [85]. In (6.1) rc is the cut-off radius, and the interaction energy ε of the
walls with the hydrophobic parts of the system (i.e., the Nafion molecule except the
sulfonic acid groups) was εphob = 0.25 kcal/mol. Five different values of interaction
energy εphyl of the walls with the hydrophilic part of the system were used in the
simulations. Henceforth, walls with εphyl = 0.25, 0.50 kcal/mol will be referred to
as low hydrophilicity (LH) walls and those with εphyl = 1.20, 1.50, 2.00 kcal/mol
will be referred to as high hydrophilicity (HH) walls. In both cases, εphob has been
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Fig. 6.5 aA schematic representation of a nanocomposite membrane. The spheres are the nanopar-
ticles while the black bead-springs are the hydrated Nafion. The hydrated Nafion volume bound
between two nanoparticles as shown by the red square is the representative volume element (RVE).
This RVE is modeled as a capped film as shown in b hydrated Nafion film is capped by two struc-
tureless walls. Z-axis is the direction perpendicular to the walls and X- and Y-axes are parallel to the
walls. Z-direction has fixed boundaries and the film is periodic in X- and Y-directions. Blue color
represents water molecules and hydronium ions; orange color is used for Nafion molecules. Water
transport is analyzed in the five different layers of the film [66]

fixed at 0.25 kcal/mol [66, 85, 86]. Three different film thicknesses of 6.3, 8.7, and
11.5 nm were simulated for each of the εphyl values. The film thickness was varied
in the Z-direction (Fig. 6.5b). The thickness variation modeled the variation of the
filler fraction in a nanocomposite, i.e., higher film thickness corresponded to lower
filler fraction and vice versa.

Figure 6.6 shows the simulated Nafion film snapshots at the end of the produc-
tion runs for five different values of wall hydrophilicity. For low values of wall
hydrophilicity (εphyl = 0.25, 0.50 kcal/mol), there is very little accumulation of
water molecules near the walls. However, for the high hydrophilicity walls (εphyl =
1.20, 1.50, 2.00 kcal/mol), a noticeable accumulation of water near the walls is
observed.

Due to sufficiently high hydration levels, water channels in Nafion form a perco-
lated network [24] which facilitates a proton transport. However, such a percolated
network can also allow unwanted crossover of methanol and vanadium ions. Nafion
nanocomposites have been shown to reduce the crossover of methanol [80] and vana-
dium ions [88]. Therefore, water cluster analysis was usually done for the different
values of wall hydrophilicity. All the water cluster analysis shown here is for a cut-off
distance of 3.7 Å averaged over 3 ns of the simulated physical time [66].

Water cluster distribution at a fixed film thickness and different values of wall
hydrophilicity is shown in Fig. 6.7. The cluster distributions for the LHwalls (εphyl =
0.25, 0.50 kcal/mol) are almost the same as that of the bulk hydrated Nafion (λ =
15) cluster distribution. The large clusters (cluster size close to 2400) for the HH
walls (εphyl = 1.20, 1.50, 2.00 kcal/mol) occur less frequently as compared to the
LHwalls. In addition, there is an emergence of clusters in the 900–1500 size range for
the HH walls. This shows that the cluster sizes reduced considerably with increasing
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Fig. 6.6 Snapshots for a εphyl = 0.25 kcal/mol b εphyl = 0.50 kcal/mol c εphyl = 1.20 kcal/mol
d εphyl = 1.50 kcal/mol e εphyl = 2.00 kcal/mol where blue color shows the water molecules and
hydronium ions, and orange color shows the Nafion atoms. Reprinted with permission from [66].
© 2018 American Chemical Society

hydrophilicity of the walls for a fixed film thickness of 6.3 nm. Similar effects are
also seen for larger films thickness.

Figure 6.8 shows the water cluster count normalized by the bulk Nafion (λ = 15)
water cluster count, for different wall hydrophilicities and film thicknesses. All the
normalized cluster counts are larger than 1,meaning that the number of water clusters
for all the wall hydrophilicity values and the film thicknesses were greater than that
of bulk hydrated samples. This implies a more dispersed water cluster network in
the Nafion films, as compared to the bulk hydrated Nafion.

Thewater cluster count increases for theHHwalls as compared to the LHwalls for
all three different film thickness values as shown in Fig. 6.8. This effect is universal
and is weakly dependent on the film thickness. The higher cluster count indicates a
more dispersed water cluster network for the HH wall films as compared to the LH
wall films, which can also be seen in the inset for the HH wall films as shown in
Fig. 6.7. Relevant experiments have shown that unwanted crossover reduces due to
the highly hydrophilic nanoparticles like silica, clay, etc. [79] added to Nafion. In
fact, the existence of the long-range-oriented pathways along the modified carbon
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Fig. 6.7 Water cluster distribution for the 6.3 nm film at different wall hydrophilicity values, also
for bulk Nafion. The cluster distribution shown is for the cluster sizes ranging from 100 to 2380
water molecules. Reprinted with permission from [66]. © 2018 American Chemical Society
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Fig. 6.8 Dependence of water cluster count, normalized by the bulk cluster count, as a function of
different wall hydrophilicity (εphyl) for different film thickness [66]

nanotubes was the proposed mechanism for the observed enhanced proton transport
and reduced methanol crossover in a Nafion—modified CNT nanocomposite [80].
The MD simulations [66] also show the preferential accumulation of water along the
HHwalls and a concomitant increase in the water cluster count due to the emergence
of a more dispersed water phase and isolated water clusters. It is likely that less polar
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Fig. 6.9 Average water cluster size versus different film thickness for different wall hydrophilicity
(εphyl). Average cluster size for bulk Nafion is also shown. The dash-dot line shows the trend for
the low hydrophilicity walls and the dash line shows the trend for the high hydrophilicity walls.
These lines are not numerical fits. Reprintedwith permission from [66]. © 2018American Chemical
Society

molecules, likemethanol, will move away from the highly hydrophilic nanoparticles,
similar to carbon moving away from the HH walls, as shown in Fig. 6.6. This will
increase the chances of such molecules being trapped in the isolated clusters which
are found at larger distances from the HH walls as seen in the inset of Fig. 6.7.

Figure 6.9 shows the average water cluster size for different wall hydrophilic-
ities and film thicknesses. For the LH walls, the average cluster sizes remain
almost constant upon increasing the film thickness. However, the average water
cluster sizes show an increasing trend with increasing film thickness for the HH
walls. This trend for the HH walls indicates higher phase separation between the
water/hydrophilic phase and the hydrophobic phase with increasing film thick-
ness, leading to larger average water cluster sizes. Previous transmission electron
microscopy (TEM) images [83] and GISAXS experiments [89] have shown similar
trends in the water/hydrophilic phase domain sizes vs film thickness for Nafion films
supported on hydrophilic silica substrates.

Water diffusion plays a key role in the performance of Nafion. The proton attaches
itself to thewatermolecules and diffuses in themembrane. Therefore, water diffusion
constants (Dx, Dy andDz) have been computed in [66] for theX-, Y-, and Z-directions
using theEinstein relation for diffusivemotion.Water diffusion in the films’XY-plane
is studied using the in-plane diffusivity (D),

D = (Dx + Dy), (6.2)
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Fig. 6.10 Film averaged in-plane water diffusion constants (D) normalized by the corresponding
two-dimensional water diffusion (Dbulk) constant at λ = 15 for bulk Nafion. Reprinted with
permission from [66]. © 2018 American Chemical Society

and was compared to the analogous (two-third of the total water diffusion
coefficient) values for hydrated Nafion bulk (Dbulk),

Dbulk =
(
2

3

)
∗ (Dbulk−x + Dbulk−y + Dbulk−z) (6.3)

Henceforth, the diffusion in the XY-plane will be referred to as in-plane water
transport. The total water diffusion coefficient (1.5 * Dbulk) in bulk Nafion for λ =
15 at T = 353 K was found to be 1.93 × 10−5 cm2/s [65].

Figure 6.10 shows the in-plane water diffusion normalized by the bulk hydrated
Nafion water diffusion constant, for different wall hydrophilicities and different film
thicknesses. The in-plane water diffusion is noticeably higher for the HH walls
(εphyl = 1.20, 1.50, 2.00) as compared to the LH walls (εphyl = 0.25, 0.50), for all
three different film thicknesses. The cylindrical water channels/micelles in Nafion
were found to orient along the hydrophilic substrates and away from the hydrophobic
substrates in supported Nafion film experiments [90]. Experimental results further
suggested that treated nano-patterned substrates can be used to enhance the direc-
tional transport of water within the Nafion membrane since the water transport takes
placemostly along the water channels/micelles [90]. A similar enhancement of water
transport for the HH walls (substrates) was also observed in the simulations [66].

It is important to keep in mind that the average water cluster sizes decreased
significantly for the HH walls. The bulk classical MD simulations of PEMs like
Nafion [91], SPEEK [92], PFIA [65] have shown the water diffusion to increase with
increasing water cluster sizes and vice versa. However, the capped Nafion films with
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SUBSTRATE/WALL

Fig. 6.11 In-plane water diffusion constants (D), normalized by the two-dimensional water diffu-
sion constant (Dbulk) at λ = 15 for bulk Nafion, layer resolved for the 6.3 nm film with varying
wall hydrophilicity (εphyl). Relative distance (t/T ) is the distance from the bottom of the film
(t) normalized by the film thickness (T ) [66]

LH walls show much smaller water diffusion than that for the HH walls, despite
larger water cluster sizes for the LH walls. This is due to the formation of water
channels parallel to the HH walls, in contrast with the long tortuous water channel
with bottlenecks in the LH wall films.

The reason behind this enhancement of in-plane water diffusion for the HH walls
was further understood by analyzing the water transport in five layers, as shown
earlier in Fig. 6.5b. Figure 6.11 shows the layer resolved in-plane water diffusion
constant, normalized by the bulk hydrated Nafion two-dimensional water diffusion
constant, for the 6.3 nm film. The water diffusion constants for the LH walls are
slightly smaller than the bulk hydrated Nafion values. This is probably due to the
extreme confinement of the water molecules inside the Nafion film away from the LH
walls. For the HH walls, the diffusion constant near the center of the film is close to
that for the bulk hydrated Nafion, but the diffusion increases considerably on moving
closer to the walls. Similar trends are also observed for thicker films. The presence
of such highly mobile water layers near both the HH walls in a capped Nafion film
explains the considerably high film averaged in-plane water diffusion constant for
the HH walls as compared to the LH walls.
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6.4 Atomistic Simulations of Nafion/Graphene Oxide
Membranes

Conductivity in polymer electrolyte membranes is significantly affected by water
retention. In Nafion and other PFSA-based membranes, ion diffusion takes place at
the formed hydrophilic nanochannels [37, 67] and, thus, several studies aiming at
the optimization of batteries and fuel cells performance focus on the enhancement of
hydrophilicity. In this paragraph, the results have been discussed of the fully atomistic
MD simulations of Nafion-based nanocomposite membranes.

The effect of humidification on PFSA membranes has been explored by a variety
of experimental techniques such as contact angle measurements [93–95], atomic
force microscopy (AFM) [96–99], electrochemical mass-transport measurements
[100], and X-ray studies [101]. As was mentioned earlier, it has been observed that
at temperatures above 80 °C or at low hydration levels, Nafion membrane conduc-
tivity drops significantly. Therefore, the Nafion membrane must be kept sufficiently
hydrated in order to retain high proton conductivity levels [37]. In a typical fuel
cell, the supplied hydrogen gas is often humidified to enhance proton conductivity.
However, the external humidification results in an increase in the size of the fuel cell
which is not desirable for portable applications [102]. Another drawback for their
use in direct methanol fuel cells (DMFCs) is related to methanol crossover through
swelled ionic channels [103].

In order to avoid the need for external humidification and to reduce the methanol
crossover effect in DMFCs, self-humidifying membranes doped with inorganic
fillers have been examined. Inorganic fillers, such as silica, titania, zirconia, iron
oxides, carbon nanotubes, zeolites, and clay, may assist in water retention, enhance
proton-conducting properties, and increase mechanical and thermal stability of the
membrane [104]. Recently, Nafion/graphene oxide (GO) composites have been
explored as potential materials for polymer electrolyte membrane applications
[67, 105–109]. The choice of GO stems from properties like large surface area,
hydrophilic functional groups, mechanical strength, and chemical stability, which
makes it an ideal candidate to form composite membranes [110]. The hydrophilic
groups of the GO interact with the protons, which are propagated through the
hydrogen bonding network formed with the adsorbed water, allowing for conduc-
tivity levels close to 10–2 S cm−1 [109, 111]. Relevant experiments have shown
that the presence of GO modulated the ionic channels of Nafion and decreased the
methanol crossover on DMFCs while preserving high ionic conductivity [107].

More detailed studies have demonstrated that the transport ofwater andother small
molecules through graphene-based membranes depends on the interlayer channels
and the functional groups ofGO [106], like epoxy andhydroxyl groups thatmay assist
water retention due to the formation of a hydrogen bonding network [108, 112]. Inves-
tigations ofNafion/GOcompositeswithGOs functionalizedwith hydrophilic groups,
such as −SO3H, –OH, and −NH2 [105], supported the idea that functionalization of
GO with such moieties facilitates proton transport and enhances the water retention
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capability of the Nafion membranes. Pertinent experiments on Nafion/GO compos-
ites for DMFC applications [107] attested to their improved properties compared
to simple hydrated Nafion membranes. Scanning electron microscopy and trans-
mission electron microscopy studies attributed the enhanced proton conductivity to
interactions between the different functional groups in GO and Nafion [108]. The
mechanical properties of the Nafion/GO composites as measured by tensile strength
experiments [113] were shown to be significantly improved compared to the perfor-
mance of pristine Nafion membranes, without affecting their swelling properties
[108].

GO has also been incorporated in several other composite membranes, like
sulfonated polyether ketone [114], PBI [115], polyvinyl alcohol [116], and poly-
acrylic acid [117, 118] resulting in a marked improvement of their performance. In
the case of hydrogels where the water content exceeds 90 wt%, GO may influence
in a dramatic manner the physical adsorption of polyelectrolyte chains, the polymer
dynamic response at local and global length scales, the charge distributions around
the components, and themobility of the counterions [118]. The vehicular diffusion of
water molecules in the presence of GO as studied throughMD simulations was found
to be slower due to the hydrogen bonding interactions between water molecules and
hydroxyl groups of GO [67, 119].

MD simulations, particularly in the fully atomistic representation, allow the study
in atomistic detail of structural features and translational dynamics of water and
hydronium cations in the formed Nafion channels. The degree of hydration (λ) of the
membrane is usually determined by the number of water molecules per side-chain
pendant of Nafion. At λ ≥ 3, the sulfonic group loses its hydrogen and so hydronium
ions arise [71, 120].

In a recent molecular-dynamics (MD) study [67], the structure and diffusion prop-
erties in Nafion/GO systems at three different λ values, i.e., 10, 15, and 20, were
simulated. In this work, three different temperatures were examined, i.e., 250, 300,
and 350 K at a pressure of 1 bar. The Nafion structure was equilibrated by annealing
at 1000 K, while a cooling rate of 50 K/30 ns to the target temperatures was used
[67]. More details about the simulation protocol and parameters are given in [67].

In Fig. 6.12, the snapshots of a typical Nafion/GO system are shown, consisting
of Nafion, hydronium, water, and GO entities, at λ = 15, and T = 300 K. Differences
with respect to the bulk water structure and the formation of water channels can be
observed (Fig. 6.12a), a phenomenon that is independent of the presence of the GO
in Nafion membranes [65, 67]. As indicated in Fig. 6.12b, the concentration of water
onto the GO surface is lower compared to that at distances far from the surface. This
results in a lower degree of solvation of the hydronium ions, which are physically
adsorbed on the GO flake.

Morphological characteristics related to the spatial arrangement of the different
components close to the GO surface were probed by calculating the relevant density
profiles, along a direction normal to the GO flake, as shown in Fig. 6.13. It can be
observed that the concentration of water on the surface is low, exhibiting a depletion
layer. For all λ values examined, a peak is present at a distance close to 8 Å from
the surface. It appears that as the hydration level becomes higher, water retention on
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a) b)

Fig. 6.12 Snapshots [67] of aNafion/hydronium/water/GO and b hydronium/water/GO nanocom-
posite systems. Carbon atoms are shown in dark cyan, oxygen atoms in red, and hydrogen atoms
in white

Fig. 6.13 The density profiles along a direction perpendicular to the GO sheet, as a function of
the distance from GO surface, for the Nafion/GO systems. The overall density, along with the
contributions of Nafion and water, at T = 300 K and λ = 15 is presented. The black dash line
depicts the average density of the respective GO-free Nafion system. Water profiles for hydration
levels of λ = 10 (blue dot line) and λ = 20 (blue dash line), at T = 300 K are shown as well.
Reprinted with permission from [67]. © 2019 American Chemical Society

the GO tends to increase. On the other hand, the concentration profile of hydronium
ions is more uniform (see Fig. 6.3 of [67]). The profile of the Nafion chains shows a
reduced concertation close to the GO surface, while the width of the depletion zone
of the polymer chains close to GO is commensurate to the size of the side chains
[67]. Since the backbone polymer dynamics is expected to be practically frozen at
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Fig. 6.14 Number of water clusters, n(s), normalized by the total number of water molecules,Nwat,
as a function of the cluster size, s. a Bulk water cluster distributions at the examined temperatures at
two different boxes, with sizes of L ≈ 41 Å (denoted as small box) and L ≈ 126 Å (denoted as big
box) and b distributions in Nafion/GO/water and Nafion/water systems are compared with those in
bulk water. The straight dash lines indicate a slope of −2.2. Reprinted with permission from [67].
© 2019 American Chemical Society

temperatures below 400 K [103], only the relaxation of the hydrophilic side groups
is probed by the MD simulations at the examined temperatures.

Another aspect related to the morphology of the formed channels and the conduc-
tivitymechanisms inNafionmembranes is the clustering behavior ofwatermolecules
[121]. Since the degree of spatial confinement of water molecules is expected to vary
depending on the local environment, it worths studying whether different levels of
confinement affect its clustering characteristics under different confinement levels
becomes of interest. Such a study was performed in the systems of [67] using the
DBSCAN algorithm [122]. In this case, the critical radius for the identification of
clusters was taken to be 2.8 Å, based on the location of the first peak of the water–
water pair radial distribution function (RDF) [67]. Figure 6.14a depicts the clustering
behavior for two different sizes of the simulation box in pristine water systems from
the aforementioned study. It is shown that the observed behavior was not affected by
finite size effects at the examined sizes of the simulation boxes.

Apart from that, it should be noticed that at all temperatures, the highest prob-
ability for cluster formation corresponds to a minimum number of three molecules
participating in a cluster (s). As the temperature drops, DBSCAN analysis shows
that the size of the largest clusters reduces. Moreover, the distribution of the cluster
size follows a power law which is in close agreement with the universal exponent of
-2.2, as predicted by the Fisher droplet model [123]. The cluster distribution under
confined conditions (i.e., in Nafion-based systems) is shown in Fig. 6.14b. Evidently,
the bulk water structure is disrupted. The RDF arising from the centers of mass of
water molecules in bulk and under confined conditions (not shown here) remains
qualitatively the same (in terms of the number and the position of peaks [67]), but
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Fig. 6.15 Non-Gaussian parameter [α2(t)] of the water diffusion, in water/Nafion/GO (Nafion/GO)
and water/Nafion (NAF) systems (λ equal to 10 and 20) and bulk water, at 300 K. Reprinted with
permission from [67]. © 2019 American Chemical Society

the height of the first peak, which relates to the first neighbor shell, becomes higher
as the water concertation reduces (i.e., the degree of confinement increases).

Figure 6.15 depicts the non-Gaussian parameter [NGP or α2 (t)], of the centers
of mass water molecules in the examined systems, defined as.

α2(t) = 3
〈
�r(t)4

〉
5
〈
�r(t)2

〉2 − 1, (6.4)

where�r(t) is the displacement of the center ofmass from the original position, at
time t. Square brackets denote time and ensemble average. NGP essentially provides
a measure for the degree of dynamic heterogeneities in the diffusional motion of
the probed particles. It takes the minimum theoretical value (−0.4) when all centers
of mass travel the same distance, a value of 0 when Brownian diffusion is at work
and values higher than 0 when the distances traveled after time t by the particles
under examination are not Gaussian distributed. The latter case denotes an increased
level of heterogeneity in the particles’ translational motion. According to this picture,
it appears that heterogeneities in the water diffusion increase as λ decreases. This
becomes more pronounced following the inclusion of GO in the Nafion membrane.
In addition, the α2(t) parameter under confined conditions appears almost an order
of magnitude higher compared to the bulk, unconfined case.

This behavior is consistent with the heterogeneous dynamics of water molecules
related to the confined motion within the channels formed by Nafion. In the presence
of GO, additional constrictions are imposed close to the GO surface due to specific
interactions of water molecules (i.e., hydrogen bonding) with the oxidized carbon
groups of GO.
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More details regarding the characteristics of water translational motion in the
microenvironment formed in the Nafion-based systems can be obtained by studying
relevant structural relaxation processes which take place within specific spatial
dimensions. Such spatiotemporal resolution in molecular motion can be probed by
the self-part of the intermediate scattering function, defined as [124]:

Fs(q, t) = 〈
exp

(
i �q · [�ri (t) − �ri (0)

])〉
(6.5)

where −→q is the scattering vector, and �ri (t) is the position vector of the exam-
ined particle (here pointing to the center of mass of a water molecule) at time t.
In order to fit the behavior of the intermediate scattering function, the modified
Kohlrausch–Williams–Watts (mKWW) expression [125, 126] was employed for a
constant magnitude q of the scattering vector,

Fs(t) = α1 exp

[
− t

τ1

]
+ (1 − α1) exp

[
−

(
t

τ2

)β
]
. (6.6)

The mKWWfitting function assumes the first term of a simple exponential (i.e., a
Debye process) and the second term of a stretched exponential relaxation [125]. The
assumption of a Debye relaxation is consistent with the existence of an Arrhenius
component of the diffusion in the glassy region [127]. The decorrelation times are
calculated, based on the fitting parameters and the expression for the decorrelation
time,

τc = a1τ1 + (1 − a1)

(
τ2

β

)
�

(
1

β

)
, (6.7)

where� is the gamma function. In Fig. 6.16, results for the intermediate scattering
function are presented, basedon themotionof the center ofmass ofwatermolecules in
pristine water and the two extreme hydration levels studied in the composite systems.
As the evaluation of the dynamics close to the Fickian regime, at T = 250 K, is rather
ambiguous, especially for the Nafion/GO systems, water translational dynamics is
only presented for a wave vector representing a length scale commensurate with the
dimensions of the simulation box, i.e., q = 0.22 Å−1 [85].

The results indicate a more sluggish diffusion as the degree of the water
confinement increases. The activation energies were calculated to be 7.3, 10.0 and
11.3 kJ/mol for the bulk water and the water in Nafion/GO with λ = 20 and in
Nafion/GO with λ = 10 systems, respectively. The common interpretation [126] of
the increase observed in the activation energy is the presence of heterogeneities, that
is an indication of cooperative diffusion, which was implied earlier by the behavior
of the NGP (Fig. 6.15). It is noteworthy that the dynamics of water in the confined
conditions exhibits an Arrhenius behavior. An interpretation of the apparent Arrhe-
nius behavior under conditions of cooperative diffusion was provided recently, on
the basis of an extension of the super-Arrhenius region [127, 128].
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Fig. 6.16 Decorrelation times of the incoherent dynamic structure factor (6.2), q = 0.22 Å−1,
for water molecules at 300 K. The different symbols refer to the bulk state and to the Nafion/GO
systems at λ = 20 and λ = 10. Reprinted with permission from [67]. © 2019 American Chemical
Society

Apart from the translational dynamics of hydronium ions and the Grotthussmech-
anism, the conductivity in the Nafion-based nanocomposite membranes also depends
on the adsorption/desorptionmechanism of the hydronium ions from theGO surface.
This process can be explored by means of a relevant correlation function [117]:

h(t) = 〈g(t)g(0)〉〈
g2

〉 (6.8)

where g(t) assumes a value of 1 if an adsorption event is detected at time t and
0 otherwise. Angle brackets denote averaging over all pairs and time origins. As a
criterion for adsorption of a hydronium ion onto the GO surface, it was taken that
the distance between a hydronium oxygen and a hydroxyl hydrogen of GO at time t
was less or equal to a critical distance of 3.7 Å, which corresponds to the first peak
of the respective RDF function [67]. The critical distance is practically the same as
in the case of the sulfur–hydronium interaction. The results presented in Fig. 6.17
were fitted by the mKWW function (6.6).

The desorption times were evaluated to be 5 × 107, 6 × 106 and 1 × 106 ns for
hydration levels of λ = 10, λ = 15 and λ = 20, respectively. The results emphasize
the significance of the hydration level on the hydronium interfacial dynamics. At λ

= 10, the desorption time is an order of magnitude larger compared to those at higher
hydration levels. Only at λ = 20, the cations desorb from the GO at times close to
1 ms. It should be noted that the average residence time of the water and hydronium
ions on the sulfur group of the Nafion is of the order of ps and ns, respectively [129],
although cases of hydronium bound to SO3

− for longer times (approximately 1 ms)
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Fig. 6.17 Desorption autocorrelation function (6.8) of the oxygen (Oh) of hydronium ions from
the hydrogen (hO) of the GO hydroxyl. Reprinted with permission from [67]. © 2019 American
Chemical Society

had also been observed [129]. The deviation in the desorption times between GO
and Nafion sulfur groups should be attributed to the low concentration of water near
the GO, especially at the hydration levels of λ = 10 and λ = 15. Based on the above
analysis, it can be concluded that water retention at the Nafion/GO interface appears
only at high enough hydration levels of Nafion [67].

6.5 Modeling of Doped Non-humidified Membranes

A few computational studies have been performed on benzimidaozle (BIM)-based
membranes. Pahari et al. [130] investigated the structure and dynamics of phosphoric
acid-doped PBI membranes at a varying concentration of phosphoric acid using clas-
sicalMDsimulations. The authors observed no phase separation, and phosphoric acid
molecules form inter and intramolecular hydrogen bonds at all concentrations of PA.
Pahari and Roy [131] employed MD simulations on PA-doped PBI and ABPBI. The
authors showed that ABPBI has more affinity toward phosphoric acid as compared to
PBI due to the larger number ofH-bonds inABPBI than in PBI. Shirata andKawauchi
[132] employed DFT calculations to examine the interaction of PA with BIM with
different configurations. The authors explored several interactions and concluded that
N-type interactions are the strongest (followed by O–, OH–, and π-type). However,
PBI is preferred due to the loss of the mechanical strength of ABPBI with increasing
concentration of phosphoric acid. Another drawback of ABPBI membrane is its
poor solubility in common solvents employed for membrane casting methods [133].
Also, PA-doped PBI membranes have disadvantages like leaching and condensation
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of phosphate groups at high temperatures [134]. Hence, alternatives to PA such as
ionic liquids (ILs) are potentially interesting.

Iojoiu and coworkers [54] proposed that the triethylamine (TEA) saturated
and (TEATF)-doped Nafion membranes consist of nanoaggregates comprised of
proton acceptor and proton donor sites. The authors proposed three possible long-
range proton transport mechanisms, (a) via cationic clusters, (b) via a concerted
interaction between cation and anion clusters, and (c) via direct proton exchange
between cationic and anionic clusters. Kumar and Venkatnathan [135] employed
quantum chemistry calculations on IL-doped PFSAmembrane for high-temperature
fuel cells. The authors used DFT method with B3LYP/6–311++G** basis set for
all the calculations. The authors explored several proton transport pathways in a
triethylammonium-triflate (TEATF) IL-doped Nafion membrane. In TEATF-doped
PFSA membranes, both the cation and anion can access suitable sites, simultane-
ously, on the sulfonic acid end groups. For example, the cation approaches toward
the O atom, and the anion approaches the H atom. The anion abstracts the proton
from the acid and facilitates the cation to electrostatically bind to the sulfonate end
groups of the membranes. Figure 6.18a shows the structure of the resultant complex,
a side-chain fragment of a Nafion membrane with a TEATF.

Fig. 6.18 a Interaction of a Nafion® side-chain fragment with a TEATF ionic liquid unit. TFA
approaches toward hydrogen atom and TEAH+ toward the oxygen atom of the sulfonic acid end
group of the membrane fragment. bMechanism of proton transfer in a TEAH + · · ·TEA · · ·TFA−
complex (b) shows the optimization process of TEAH + · · ·TEA · · ·TFA−. The structures shown
in the figure are the configurations of the complex at the points denoted by blue circles, and the
moving hydrogen atom is denoted by a red circle. A steep decrease in system energy occurs due
to TFA− interaction with the TEAH + · · ·TEA complex. The authors showed that the transfer of
a proton from a tertiary amine cation to a tertiary amine (see panel b) occurs only on interaction
with anion. The interaction of anion with amine increases the basicity of the latter and facilitates
the transfer of proton from cation to neutral amine. Reprinted with permission from work of Kumar
and Venkatnathan [135]. © American Chemical Society
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A high boiling point (256 °C) of imidazole (compared to water) makes them
promising materials as proton carriers in high-temperature fuel cells. Hydrogen
bonding in imidazole plays a key role in proton conduction and rotation of an imida-
zole molecule in the process results in the cleavage of hydrogen bonds between
molecules. In another quantum chemistry study, Kumar and Venkatnathan [136]
explored proton transport and rotation energy barrier in imidazole chains. The authors
showed that the propagation of an excess proton along the imidazole chain occurs
with energy barriers lower than 1 kcal/mol. The authors calculated the energy barriers
for rotation of imidazole molecules in two, three, and four imidazole molecule chains
and found that the barrier is equal to the number of hydrogen bonds broken in the
process. Figure 6.19 shows the change in structure and potential energy of a chain of
three imidazole molecules with the rotation of an imidazole molecule. The rotational
barrier in two imidazole chain is 8.0 kcal/mol, in three imidazole chain, it is 17.1 and
20.0 kcal/mol in four imidazole chain.

Fig. 6.19 A PES of 3-imidazole-molecule chain. The scan is separated into two parts: left part
is due to rotation of first imidazole in structure (a); and right part is due to rotation of second
imidazole in structure (c). The rotation steps, in the marked directions, were chosen as 10° and 9.7°,
respectively. Structure (b) shows that up to 120° rotation, there is no effect on hydrogen bonding
between second and third molecule. Structure (d) shows maxima in which the second molecule
is showing minimum interaction with other molecules. In structure (e), all imidazole molecules
are flipped. Reprinted with permission from work of Kumar and Venkatnathan [136]. © American
Chemical Society
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In a different study, Venkatnathan and coworkers [137] explored proton trans-
port pathways in base-rich imidazolium ionic liquids. The authors suggested proton
transport pathways to explain the experimentally observed enhanced conductivity in
base-rich PILs. The results showed the barrierless rotation of imidazole in base-rich
ionic liquids, could be one of the possible reasons for enhanced conductivity. The
figure illustrates the overall mechanism of proton transport in imidazole rich IL.
Figure 6.20 illustrates the overall proposed mechanism of proton transport in one
such system and suggests barrierless rotation of imidazole molecule to be the reason
for the enhanced conductivity of base-rich ILs.

The addition of triflic acid, which exist in its dissociated form (TFA), is known to
enhance the efficiency of PA-doped ABPBImembranes. Sunda et al. [138] employed
MD simulations to characterize the structure and dynamics of ABPBI + PA as
shown in Fig. 6.21, ABPBI + TFA and ABPBI + PA + TFA blends with varying
levels of hydration. The structural properties such as RDFs showed that the distance
between two adjacent imidazole units on the polymer chain remains unaffected by
hydration and the type of blend. The end-to-end polymer chain distance and radius of
gyration are also unaffected by hydration and the type of blend, illustrating that the
stability of polymer membranes under various hydrated acidic environments remains
unaffected. The number of PA, TFA, and water molecules in the cluster around the

Fig. 6.20 Schematic of proton transport pathway in [MSA]/[IM] = 1:3, i.e., IMMSA with two
IM molecules. Reprinted with permission from Venkatnathan and coworkers [137]. © American
Chemical Society
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Fig. 6.21 Chemical structure with atom types of a ABPBI polymer membrane and b phosphoric
acid (PA). © Royal Society of Chemistry

polymer membrane (skewed and extended form) is found to depend significantly on
the extent of hydration. The lowest water mobility was obtained from the ABPBI
+ PA + TFA blend, which suggests that this blend could be the most effective in
reducing acid leaching from the membrane matrix.

In a different study, Venkatnathan and coworkers [139] performed MD simula-
tions to examine structure and dynamics in neat BIM, phosphoric acid, and PA-BIM
mixtures. The authors observed that diffusion coefficients of BIM decrease with
increasing phosphoric acid concentration, whereas the diffusion of PA increases.
The RDFs showed a strong hydrogen bonding interaction between the imine N of
BIM and hydrogen of phosphoric acid. Further Venkatnathan and coworkers [140]
employed MD simulations to characterize the effect of polymer chain length using a
dimer to 100-mer. Results from simulations (dimer to decamer) showed the following
trends: the inter-chain and intra-chain interactions in the membrane are unaffected
with polymer chain length and temperature, though a significant increase with PA
doping is observed. The radius of gyration linearly increases with polymer chain
length and remains unchanged with PA doping and temperature. However, the end-
to-end distance deviates from linearity with polymer chain length which suggests
increased coiling of the membrane. The diffusion coefficient of PA increases with
PAdoping and temperature but remains constant with polymer chain length. The acti-
vation energy of diffusion of PA decreases significantly with an increase in polymer
chain length at low PA doping but remains unaffected at higher PA doping. The
authors proposed decamer to be optimal chain length to calculate various structural
and dynamical properties.

6.6 Mesoscopic Simulations and Simulated Example:
SPEEK Membrane

In this section, two examples of the mesoscopic modeling of polymer ion-exchange-
based membranes will be considered. Since the average size of the polymer
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membrane domains is about 4 nm, it seems rather attractive to use the mesoscopic
simulation methods to model the morphology of such systems. These methods allow
us to study samples of PEMmembraneswith a characteristic scale of 20–100 nmover
long-time intervals of 1–1000 μs. This is achieved by abandoning atomistic detail
when moving to a larger scale using collective variables. To model a SPEEK based
membrane with different water content, the mesoscale DDFT simulations (MDDFT)
[141] and dissipative particle dynamics [142] methods were used. Although these
methods are based on the use of different simulation principles, they are united by a
common approach to the construction of coarse-grained models.

MDDFT method is based on a dynamic version of the density-functional theory
in combination with the Flory–Huggins model. As collective variables, it uses fields
of the number particle densities ρα(r, t). The evolution of density fields can be found
by solving a system of diffusion Langevin equations. All details of the method are
set out in [76, 141, 143–146].

DPD method is another mesoscale simulation technique proposed initially by
Hoogerbrugge and Koelman [142, 147] and generalized later to molecular systems
[148]. As in theMDmethod, the evolution of the coarse-grained particles is described
by the system of Newton equations of motion. One can treat as an advantage the
fact that both MDDFT and DPD methods use the same strategies for building the
mesoscopic models of the molecular systems and evaluating the force parameters
through the Flory–Huggins parameters [149]. In MDDFT and DPD method, the
simulated system is placed in a cell of a fixed volume V with periodic boundary
conditions. All molecular objects are replaced by some equivalent set of beads, called
mesoscopic particles (MPs) of various types α. They all have the same volume vα ≡
v. Each of the subsystems corresponds to a selected sequence of structural units of the
macromolecule chain (these can be its individual segments), or to a certain number
of solvent molecules. The choice of volume v is determined by the parameterization
of the system, which, in turn, determines its degree of coarsening. It introduces a
unit scale σ = (6v/π )1/3. In MDDFT, polymer chains have the same Gaussian coil
conformation, and the spatial distributionofMPcanbedescribedby thepotential field
of local densities ρα(r, t). Unlike MDDFT, the DPD method imposes no restrictions
on the conformational mobility of the polymer chains and describes the structure of
the polymer systems more accurately.

Consider the process of constructing a coarse-grained model for the sulfonated
PEEK, poly(oxy-1,4-phenyleneoxy- 1,4-phenylenecarbonyl- 1,4-phenylene),
(SPEEK) [11, 77] (Fig. 6.22). To construct a mesoscopic model of SPEEK based
membrane, it is necessary to correctly map the atomistic model of the ionomer
chain to the equivalent coarse-grained representation in the form of a sequence
of repeating mesoscopic particles and to subsequently calculate the interaction
parameters between theseMPs based on Flory–Huggins parameters [149]. Although
SPEEK can be considered a random block copolymer, for simplicity, the composi-
tion and structure of the chains was represented as [AnBm]N , where n and m are the
number of polar and non-polar beads, N is the number of the chain blocks. The n:m
ratio allows to characterize the degree of sulfonic acid (DS) of the polymer. Analysis
of the features of the chemical structure of the polymer and the requirement to
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Fig. 6.22 Mapping of a fragment of sulfonated poly(oxy- 1,4-phenyleneoxy- 1,4-
phenylenecarbonyl -l,4-phenylene) chain and a cluster of water molecules onto the equivalent
mesoscopic representation

comply with the structural characteristics of the model (contour length, rigidity and
distance between the ends of the chain) allows to select the size of the statistical
segment a of the basic chain,

a = C∞Lmon, (6.9)

whereC∞ = 3.36 is the characteristic ratio (characterizes the rigidity of the chain),
Lmon is the size of the monomer. Estimates for C∞ were done using the Bicerano
method [77, 150]. These results indicate a higher degree of conformational mobility
of the PEEK chains in comparison with Nafion and its C∞ = 7.13 [76]. Aromatic
rings were chosen as the basic fragment of the SPEEK chain, which gives Lmon =
5.3 Å (the size of the benzene ring). Based on the Lmon and C∞ values 6.9 defines
the length of the statistical segment a = 17.8 Å, that is close to the length of the
sulphonated and non-sulphonated comonomers in SPEEK (13.5 Å). Thus, chains of
SPEEK can be matched with mesoscopic particles (MPs or beads) of two types A
and B of the same size. The volume of MP can also be estimated by the Bicerano
method, which gives ν = 250 cm3/mol. Mesoscopic particles of the third type (C) are
matched to water molecules. Given the value of ν, one MP of water corresponds to
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about 14 molecules. The mapping of the system to a coarse representation is shown
in Fig. 6.22.

To determine the parameters of the intermolecular interactions εαβ used in
MDDFT [141] and aαβ used in DPD [142], it is necessary to calculate the Flory–
Huggins parameters χαβ for the A, B and C mesoscopic particles, which are related
to the Hildebrand solubility parameters δα as

χαβ = ν(δα − δβ)2

RT
− χs, (6.10)

where χ s is the entropy contribution to the free energy of mixing, R is the gas
constant. The contribution of χ s can be neglected since its estimates for many
polymer/solvent blends give the result of 0.34 [151, 152], which is only a small
correction to the first term in 6.10. The values of the parameters δα can be obtained
via the cohesion energy density Ecoh/V:

δα =
√
E (α)
coh/V (6.11)

The estimates of δα can be obtained using the Bicerano [150] and Askadsky [153]
methods. The MD-based calculations give a more accurate value of δ. The value of
E (α)
cohis equal to the change in the potential energy of a single volume of a substance

when all intermolecular forces are turned off. It characterizes the intensity of the
interatomic and intermolecular interactions. In other words, Ecoh shows the change
in the potential energy of the system during the transition of molecules into the gas
phase from the condensed state. The analysis performed in [77] allows us to choose
the parameters δα and to determine the following values for the Flory–Huggins
parameters: χAB = 21.6, χAC = 1.32, and χBC = 33.6.

In the framework of MDDFT, three SPEEK/water systems have been studied in
detail with different degree of sulfonation (DS) of the polymermatrix.DS is regulated
by the composition of the polymer chain [AnBm]N . The length of the chains in all
cases has the same value (n + m)N = 40. The following compositions are studied:
[A1B1]20 (DS = 50%), [A3B2]8 (60%), and [A3B1]10 (75%). In all calculations, the
fixed temperature was used, T = 298 K.

The second main parameter of the calculations is the amount of water in the
membrane, which is governed by λ; it was varied from 0.5 to 14 to change the
hydration level. The amount of water in the membrane is convenient to control
using the water volume fraction ϕC, which corresponds to the ratio of the number
of mesoscopic water particles to the total number of particles in the system. The
solutions to the system of MDDFT equations are searched on a grid of 32 × 32 ×
32 nodes with a step of 1 nm. This gives the modeling cell edge of the size of 32 nm.
This step is chosen according to the unit length of 0.92 nm, calculated based on the
estimate of the base volume v of the mesoscopic particles.

In Fig. 6.23, the isocontour plot of the distribution of local densities ρC of the
water MPs at the volume section V (x, y, 0) is performed for three values of DS at
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Fig. 6.23 The density distribution ρC(r, t) of the MPs of water on the section plane V (x, y, 0) at
the same volume fraction ϕC = 0.29 of water in the membrane: a [A1B1]8 (λ = 11); b [A3B2]8 (λ
= 9.5); c [A3B1]8 (λ = 7.6)

ϕC = 0.29. In the system with the lowest degree of sulfonation in the case of [A1B1]8
chain in the final state, the water forms isolated clusters separated by an average
distance of about 19 nm. The shape of the clusters is close to ellipsoidal, and their
cross-section is 10 nm. The interface zone has a clear boundary with a thickness of
0.8 nm.

For higher degrees of sulfonation, DS = 60% ([A3B2]8) and 75% ([A3B1]8), a
channel network connecting water clusters is observed in the model membranes.
At the same time, the morphologies of the membranes at DS = 60 and 75% are
very different. In Fig. 6.23, it is clearly seen that at DS = 60%, the morphology of
water channels looks the most preferable. The water forms rather wide channels in
which its average field density has high average values—from 0.5 and higher. The
average maximum cross-section diameter is about 8 nm. A comparison of the three
membrane samples allows us to conclude that the sequence [A3B2]8 is optimal, since
one can assume that the membrane will have better transport properties.

The volume visualization of the density distribution of water in the SPEEK
membrane for [A3B2]8 (Fig. 6.24) shows how the percolation of the water subsystem
occurs at different threshold densities ρC and λ. The three density values are chosen
because the concentration of water in the water channels is highly non-uniform. The
largest values of the density of the MPs of water are reached in the center of the
water channels. The thickness of the interface zone, where the overlap in the density
distributions of subsystems A and C is observed, is about 1.6 nm (Fig. 6.23). The
choice of the three values for the threshold ρC allows to produce a clearer picture of
the water channels percolation in the material as shown in Fig. 6.24. It is seen that the
connected network of the water channels is already formed with a low water content,
λ = 0.5, due to the presence of the microphase separation of the hydrophobic and
hydrophilic segments of the polymer chain in a dry polymer (Fig. 6.23b).

With an increase in the water content to λ > 1.2, the presence of the water channels
domains with densities ρC > 0.2 is clearly seen. Many elongated and dumbbell-
shaped regions are formed in the membrane as a result of the confluence of the
small water domains. An estimate of the percolation threshold λ* for the number
density of water particles ρC = 0.2 indicates that the water domains begin to form a
connected network in the range of 1.2 < λ* < 2.3, that is, when approximately two
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Fig. 6.24 Visualization of the formation of the water channels in the volume of the SPEEK
membrane in the case of [A3B2]8 monomers sequence, for the different threshold values of ρC
depending on the water content λ

water molecules correspond to one sulfonic acid group. For other threshold values
ρC, the following results are obtained: λ* = 4 for ρC > 0.5 and λ* = 7 for ρC >
0.9, which is significantly below the corresponding estimates for Nafion, λ* = 16,
as obtained in [76].

The low percolation threshold for [A3B2]8 chains can be explained by the high
degree of sulfonation of the ionomer model chain. The morphology that occurs in the
case of [A3B2]8 chains is similar to the disordered lamellar phase (Fig. 6.23) for polar
and nonpolar domains. Since the volume fraction of the sulfonated MPs in the dry
membrane is 60%, the polar domains form a continuous phase. Such a microphase
separation is ideal for the fast percolation of the water phase through the membrane
at a small λ.

Thus, the small value of the percolation thresholdλ* in the case of [A3B2]8 chains is
due to the percolation of the polar subsystem. This allows to understand the relatively
large value ofλ* forNafion-1100 in [76]. The degree of sulfonation ofNafion-1100 is
30%, which exactly corresponds to the percolation of randomly distributed homoge-
neous spheres [154]. However, the spatial distribution of the polymer chain segments
strongly depends on their conformational behavior. The percolation threshold for the
polar units and, hence, for the water phase may take higher values.

Figure 6.25 shows the dependence of the average maximum diameter D of the
channels cross-section on λ. It can be seen that as the volume fraction of water
decreases to λ* ~ 7 (for areas with ρC > 0.9), the channels contract only slightly.
Thus, the values λ > 7 should correspond to the stable operation mode for the
membrane.However, atλ ≤ 7, a sharp contraction of the cross-section of the channels
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Fig. 6.25 The maximum average diameterD of the cross-section of the water channels as function
of the volume fraction of water in case of [A3B2]8 chains. The diameters are calculated for the
following MP densities: (1) ρC ≥ 0.2; (2) ρC ≥ 0.5; (3) ρC ≥ 0.9. The dotted lines are constructed
by linear approximation, λ* is the percolation threshold

is observed. This behavior is consistent with the behavior of real membranes as a
result of water loss at high temperatures. Interesting that at λ ∼ 1.5, when the
percolation forwater occurs in the system (ρC > 0.2, see also Fig. 6.24), themaximum
cross-section of the channels is D ~ 2.5 nm. This fact allows to suppose that SPEEK
membrane in the case of [A3B2]8 chains can retain its conductive properties even
with relatively low water content in the system.

The results of the SPEEK-based ion-exchange membranes simulations show
that with a decrease in system hydration, the network of the water channels is
broken primarily due to the non-uniform distribution of hydrophilic and hydrophobic
domains in the matrix volume. The percolation threshold is higher for more hetero-
genic domain distribution. It is obvious that the best transport properties can be
provided by a material in which, as a result of the microphase separation of polar
and non-polar blocks of the polymer chain, the continual distributions of the corre-
sponding domains are formed. In the ideal case, the lowest percolation threshold
is demonstrated by ionomers, which in the dry state have the linked network of
hydrophilic domains. It can be supposed that the better topology of the structure of
the water channels will be demonstrated by ionomers based on diblock copolymers,
which contain two types of blocks: (a) susceptible to sulfonation and (b) resistant
to H2SO4 effect. This statement is confirmed in [155] where the authors changed
the degree of sulfonation of the polystyrene block and the total molecular weight of
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the polymer chain and succeeded to produce the membranes in which hydrophilic
domains of various morphologies are observed.

The optimism for the use of diblock copolymers for the production of PEM is due
to the extensive experience in the synthesis of such polymers for the production of
mesoporousmaterials [156]. Depending on the composition of the polymer chain, the
stable domains are formed as a result of themicrophase separation. The domains form
various types of supramolecular packaging, such as lamellar, hexagonal, and cubic.
The types of cubic packaging: primitive (denoted as P), double diamond (DD), and
gyroid structures (G) are bicontinuous spatial structures. Therefore, the membranes
in which such ordering of domains forms as a result of microphase separation, even
with low moisture, should have a well-organized network of the water channels. The
latter is an important factor for creating high-performance membranes for medium-
temperature fuel cells.

To build a model of an ion-exchange membrane, a linear diblock copolymer is
used, consisting of N MPs of diameter σ = 1, interacting according to Hooke’s law.
The model chain includes the polar (hydrophilic A) and non-polar (hydrophobic B)
types of thermodynamically incompatible beads. The chain structure can be written
as AnBN–n, where N = 24. The ratio of the hydrophobic and hydrophilic beads is
regulated by the parameter m, which take values from 1 to 12 (f = n/(N–n) = 0.04
÷ 0.5). The maximum value of n is limited, since for n > 12 the polymer becomes
water soluble as the polar beads become dominant. As a chemical prototype of
monomers of types A and B, the sulfonated and nonsulfonated SPEEK monomer
blocks can be considered. To determine the interaction parameters, the same (as in
the DDFT simulations) Flory–Huggins parameters χ ij have been used. To model the
membranes, the cubic cell with the edge L and periodic boundaries conditions in all
three dimensions was used. For a correct description of the hydrodynamic properties
of the system, the average number density should be ρ = 3 [148], which corresponds
to 3L3 mesoscopic particles. The total fraction of all MPs in the system is taken as a
unity.

For all the simulated systems, the clear inhomogeneous distribution of the meso-
scopic particles is observed. An example of such separation for the A5B19/water
system is shown in Fig. 6.26. It is seen that the water MPs form the cylindrical phase.
The hydrophilic phase, as shown in Fig. 6.26a, forms some transition zones with a

Fig. 6.26 The spatial distribution of the partial average number densities of MPs ρα in the
A5B19/water system: at the section V (x, y, 0) for the subsystems: a A; b B; c C. d Combined
construction for densities ρA ≥ 0.5, ρB ≥ 1.75, ρC ≥ 0.75. T = 300 K, λ = 10, L = 27 σ , t =
100,000 DPD steps
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Fig. 6.27 One-dimensional phase diagram of the system AnB24-n/water (T = 300 K, λ = 10). The
vertical lines show the boundaries of the areas of the most frequent occurrence of the following
spatial packages: body-centered (bcc), hexagonally packaged cylinders (hex), lamellar (lam), gyroid
(G), perforated lamellar (hpl). The examples of snapshots of the simulation cells in the final state
demonstrate the boundaries of hydrophobic MPs localization. The isosurfaces are built for ρB =
0.5

strongly diffused boundary between the subsystems B and C. From the snapshot as
shown in Fig. 6.26d, it is obvious that the water clusters form the cylindrical domains
with hexagonal packing; they are embedded in the ionomer matrix and covered with
a “shell” of hydrophilic beads.

Figure 6.27 presents the results of the calculation of the one-dimensional phase
diagram of the structures that occurs most often during the simulations. The most
frequently occurring morphologies are those with the largest probability ω(f, L). It is
defined as the ratio of the number of arisen states with a specific type of symmetry to
the number of independent calculations performed. For the accurate identification of
the structures found, the structural factors are calculated. Among the identified cubic
symmetries, the gyroid structure is characterized by the highest probability ω(f, L)
of occurrence; it forms in the case of the A9B15 chains.

The discussed modeling approaches clearly show that with proper selection of
the ratio of the lengths of the hydrophilic and hydrophobic blocks in the ionomer
chain, there exists a possibility to create a PEM with a penetrating system of the
water channels in the entire volume of the membrane sample.

6.7 Summary

In this chapter, the multiscale computer simulations of polyelectrolyte membranes,
the very important components of modern fuel cells and flow batteries, have been
reviewed. The primary objective of a PEM is to allowprotons to pass through it. Addi-
tionally, PEMs separate the fuel and air streams in a fuel cell and electrolytes in a flow
battery.Detailed density function theory simulations ofNafionmembrane dopedwith
triethylammonium-triflate provided insights into the proton transport reaction coor-
dinates. The classical molecular-dynamics simulations of a Nafion film confined by
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variable wettability substrates and a Nafion-graphene oxide nanocomposite provided
information about the effect of the interfacial interactions in PEM nanocomposites
on water clustering and proton diffusion. Finally, the mesoscopic dynamic density
function theory simulations of SPEEK membranes revealed the influence of the
sulfonation degree on the internal hydrated domain sizes. The MDDFT results on
the influence of the amount of PEM hydrophobic and hydrophilic blocks on water
cluster morphology have also been discussed.
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Chapter 7
Explorations into the Mechanics of Hairy
Nanoparticle Assemblies with Molecular
Dynamics

Nitin K. Hansoge and Sinan Keten

Abstract This chapter summarizes recent investigations into the mechanical
behavior of matrix-free hairy nanoparticles using molecular simulation techniques.
Generic as well as systematic coarse-graining techniques are presented, high-
lighting emerging methods for chemistry-specific modeling of polymeric mate-
rials. Applications of coarse-graining to study assembled hairy nanoparticle systems
are overviewed, with an emphasis on quantitative structure–property relationships
obtained from these investigations. Comparisons of simulations with theoretical
scaling relationships such as the Daoud-Cotton theory and experimental data are
provided. Methods to accelerate the design space through upscaling techniques
and metamodel development are briefly overviewed. Key physical insights obtained
from these studies on the effects of grafting density, grafting length, and polymer
chain chemistry are mentioned throughout the chapter to illustrate the importance of
modeling contributions. A brief outlook into the prospects of using novel mesoscopic
approaches such as those based on potentials of mean force is noted. The chapter
concludes with a summary and outlook on the state of the art of the computational
design of assembled hairy nanoparticles.
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7.1 Introduction

It has been well documented that introducing nanoparticles in a polymer matrix
enhances the thermomechanical properties of the nanocomposite [1–5]. The disper-
sion state of these nanoparticles in the matrix controls the mechanical properties of
the material [6–8]. Studies have shown that increasing nanoparticle content beyond
a certain weight fraction starts to degrade the mechanical properties [9]. An inno-
vative way to overcome these dispersion issues is to covalently graft polymers
onto nanoparticles and get rid of the polymeric matrix [10]. Such self-assembled
structures consisting of core–shell systems, called assembled hairy nanoparticles
(aHNPs) as shown in Fig. 7.1, provide structural order to the nanocomposite [11].
The grafted polymer chains themselves form the “matrix” phase and provide the
necessary balance between steric hindrance and cohesion that leads to nanocom-
posites with relatively regular spacing between the nanoparticles [12–14]. In these
assembled systems, the nanoparticles serve as both a reinforcing phase and tethering
points for the polymer chains. The improved structural order helps in tailoring the
mechanical properties accurately, thereby making this a promising new approach
making new materials with unprecedented mechanical properties [15, 16].

There have been several studies investigating the various properties of aHNPs.
Michael Bockstaller and his co-workers have used techniques such as nanoinden-
tation and Brillouin light spectroscopy to characterize the mechanical properties of
aHNPs [15–17]. They found out that Young’s modulus of polymer-grafted silica
nanoparticles is greatly influenced by the cohesive interactions between the polymer
chains and their fracture toughness increases substantially beyond a critical degree
of polymerization to values that are close to neat glassy polymers. Sanat Kumar
and his co-workers have developed theories behind the chain conformation using
polymer physics scaling laws [18, 19]. Based on these laws, they found how the parti-
cles aggregate based on the molecular weight and grafting density of the polymer
chains [20].

These studies have been foundational for explaining structure—mechanical prop-
erty relationships in aHNPs. Further insights have come from recent coarse-grained
simulations that explained key experimental observations [21]. Uncovering the
dependence of properties on molecular-scale design parameters remains challenging

AssemblyNP
Polymer

Fig. 7.1 Schematic of matrix-free assembly of polymer-grafted nanoparticles
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to address by theory or generic polymer chain models commonly used in molec-
ular dynamics. Atomistic simulations of aHNPs that can reveal these molecular
mechanisms while accounting for chemical structure are computationally expen-
sive due to spatiotemporal limitations. Hence, multiscale modeling techniques such
as coarse-grained molecular dynamics (CG-MD) simulations are being prevalently
used.While there are several approaches to develop a CGmodel, a temperature trans-
ferable energy renormalization approach that preserves the dynamics andmechanical
properties across a range of thermodynamic states is typically desired. A recently
developed approach to accomplishing this feat will be discussed in the upcoming
section.

7.2 Energy Renormalization (ER) Approach
to Coarse-Graining

Assessing the complex dynamical and mechanical properties of polymers and
polymer nanocomposites using all-atomistic (AA) MD simulations is computa-
tionally challenging due to their spatiotemporal limitations. Multiscale modeling
techniques such as coarse-graining approaches that are derived from atomistic data
can overcome the limitations imposed by AA-MD simulations. In order to improve
the computational efficiency of molecular simulations, the “unessential” atomistic
features can be removed and thereby reducing the number of degrees of freedom [22].
There have been several CG approaches proposed based on statistical mechanics and
theories, including the inverse Boltzmann method (IBM), [23] force matching (also
called the multiscale coarse-graining), [24, 25] relative entropy [26] and inverse
Monte Carlo methods [27]. Although these methods preserve the static structure of
the AA system [e.g., radial distribution function (RDF)], matching the dynamical
and mechanical properties across different thermodynamical states has been chal-
lenging [28, 29]. By introducing time-scaling factors [30] or non-conservative forces
such as frictional and dissipative forces, [31, 32], it is possible to develop the CG
model to capture the AA dynamics and thermodynamics. However, the “temperature
transferability” of CG modeling remains challenging because of the complex ways
that temperature affects molecular friction, configurational entropy, and relaxation
behavior of polymers.

7.2.1 ER Methodology

To overcome the issues of temperature transferability, a new coarse-graining strategy,
namely the energy renormalization (ER) approach, was proposed for capturing
dynamics of polymers and small molecules [33–35]. The inspiration behind this
approach is the Adam-Gibbs (AG) theory [36] and the more recent generalized
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entropy theory (GET) of glass formation [37, 38]. The essential idea borrowed from
these theories is the critical role of configurational entropy, sc, in glass formation. The
“entropy-enthalpy compensation effect” [39, 40] states that the effective enthalpy of
the system must correspondingly increase as sc decreases under coarse-graining, to
preserve the overall properties of the glass forming material. The monomeric cohe-
sive interaction in these GF systems is often described by the Lennard–Jones (LJ)
parameter ε in the nonbonded interactions. The GET predicts that ε has a strong
influence on the dynamics and mechanical response of GF liquids through its influ-
ence on sc [41, 42]. Thus by renormalizing ε as a function of temperature, the aim is
to “correct” for the activation free energy and thus preserve the dynamics of the CG
polymer during glass formation. Hence the name “energy renormalization.”

Historically, there have been a few efforts to correlate dynamics of GF systems
with Debye Waller Factor

〈
u2

〉
, a physical property that quantifies the molecular

free volume and local stiffness at picosecond caging timescale [43, 44]. Consid-
ering that the activation “barrier” to molecular motions in a condensed matter should
increase with the stiffness of the material that emerges from the mutual interactions
of surrounding molecules, Hall and Wolynes (HW) [45] proposed that the structural
relaxation time τ of GF liquid should obey the simple relation with Debye Waller
factor

〈
u2

〉
as τ ∼ exp

(
u20

/〈
u2

〉)
, where u20 is an adjustable constant. Similar rela-

tionships have been argued by Schweizer and co-workers [46–48] which has similar
features to the “shoving”model ofDyre and co-workers, [49, 50]where the activation
barrier was alternatively identified with the glassy shear modulus of the material.

Starr et al. provided the first simulations to show the qualitative validity of the HW
relation in the polymer melt [44, 51]. Leporini and co-workers [52–54] later showed
that τ data from many simulations and experiments could be related to

〈
u2

〉
if the

barrier was taken as a power series of 1
/〈
u2

〉
, while Simmons and co-workers [55]

argued that τ could be described by a localization model (LM) (i.e., an extension of

the HWmodel), τ ∼ exp
[(
u20

/〈
u2

〉)α/2
]
, where α is an exponent related to the shape

of the free volume. A problem with these τ and
〈
u2

〉
correlations is that a number

of free parameters involved limit their predictive ability. Thus, Betancourt et al. [56]
chose a reduced value of

〈
u2

〉
at the onset temperature TA for molecular caging. They

fixed the prefactor in the τ and
〈
u2

〉
relation by the observed τ value τA at TA, leading

to the scaling form:

τ(T ) = τA exp
[(
u2A

/〈
u2(T )

〉)α/2 − 1
]

(7.1)

This relation has been taken even further by Jack Douglas and co-workers [57] in
the case of Cu-Zrmetallic glass alloys, where the free volume geometry is expected to
bemore isotopic, leading toα ≈3.Remarkably, this relationwas found to describe the
dynamics of Cu-Zr metallic glass over a large range of composition and temperature
without any free parameters.

Building upon this LM of relaxation, it is hypothesized that by preserving
〈
u2

〉
of

the AA system via renormalizing ε, the temperature-dependent GF dynamics for the
CGmodeling can be recovered. To test this idea, the influence of cohesive interaction
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Fig. 7.2 a Variation of
〈
u2

〉
with temperature for polycarbonate with varying α(T ). The vertical

arrow indicates dataset with increase in α. Inset: The resultant sigmoidal form of α(T ) obtained
by preserving the temperature dependent

〈
u2

〉
of the AA model. b Variation of ρ with temperature

for ortho-ter phenyl (OTP) with varying β(T ). Inset: Polynomial form for β(T ). Reprinted with
permission from (a) [33] © 2019 AAAS and (b) [34] © 2018 American Chemical Society

ε on
〈
u2

〉
is evaluated. Specifically, an ER factor α(T ) is introduced where ε(T ) =

α(T ) ε0 and ε0 is the constant obtained from the radial distribution function using
inverse Boltzmann method. The

〈
u2

〉
is calculated from the segmental mean-squared

displacements (MSD)
〈
r2(t)

〉
at around tc ≈ 3 ps, where tc is estimated from the

localized caging effect from simulations. As shown in Fig. 7.2a, the
〈
u2

〉
increases

nonlinearly with T for the AA and CG systems with varying α. The lower
〈
u2

〉

of the CG model with higher α over T indicates a suppressed segmental mobility
due to stronger cohesive interactions. For each α, it is clear that the

〈
u2

〉
of the CG

model intersects with the AA
〈
u2

〉
at a different temperature as seen from Fig. 7.2a,

demonstrating the necessity of rescaling ε at different temperature to preserve the
AA

〈
u2

〉
. Accordingly, the α(T ) can be determined by preserving the AA

〈
u2

〉
at each

temperature state (inset in Fig. 7.2a), leading to a sigmoidal functional form

α(T ) = (αg − αA)� + αg (7.2)

where αg and αA refer to α values at in the low T glassy and high T Arrhenius
regimes, respectively; � is the two-state crossover function taking the form: � =
1/[1+ exp(−k(T − TT )], where k is a parameter related to the temperature breadth
of the transition, and TT describes the crossover point of this sigmoidal function
from the Arrhenius to glassy regimes. Note that small changes in the definition of tc
in the picosecond timescale yield nearly the same result for α(T ). The α(T ) tends to
plateau at high-T Arrhenius regimes and low-T glassy regimes and the magnitude
of α(T ) is higher at lower T. However, qualitatively similar to the picture of how
activation energy of relaxation �G(T ) changes with T, α(T ) is varied strongly with
T in the non-Arrhenius regime associated with glass formation. Both GET and AG
theory predict that the �G(T ) of glass forming liquids increases with decreasing T
as sc decreases upon cooling but saturate at high and low T limits, giving a sigmoidal
functional form [36, 58]. Many of these features have been confirmed by recent
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molecular simulations [56, 59]. Therefore, the �G(T ) of the CG model (without ε

renormalization) should follow a similar T dependence of the AA model but with
different magnitudes due to their reduced number of degrees of freedom. Similar to
matching

〈
u2

〉
to obtain a renormalization for the cohesive strength, the length scale

parameter σ is normalized by a factor β(T ) which is obtained by preserving the
temperature-dependent density of the AA system as shown in Fig. 7.2b.

7.2.2 Validation of ER Approach

Once the functional forms of α(T ) and β(T ) is determined, it needs to be validated
to ensure the CG model can capture the dynamics of AA system. The segmental
dynamics of the system was evaluated by looking at the mean square displacement
(MSD)

〈
r2(t)

〉
of the center of mass of monomer for AA and CG models at various

temperatures. Figure 7.3a shows the comparison of the
〈
r2(t)

〉
for the AA (lines) and

CG (symbols) models. Remarkably, by preserving the
〈
u2

〉
of atomistic system under

coarse-graining through ER, the CGmodel could capture the entire MSD curve over
a wide range of temperature, from low-T glassy regime to high-T Arrhenius regime.

Next the segmental relaxation time, τ , is evaluated by calculating the second
order Legendre parameter, P2, for AA and CG models which is shown in Fig. 7.3b.
As a comparison, a constant ER factor of α = αA (matching high temperature
Arrhenius regime) and α = 1 (first estimate of ε obtained from IBM by matching

Fig. 7.3 a The MSD
〈
r2

〉
of the center of mass of the monomer versus time for the AA (lines) and

CG (symbols) models of polycarbonate over a wide T range. The vertical dashed line marks the
time scale (around the “caging” time of 3 ps) when

〈
r2

〉
is obtained from the

〈
r2

〉
measurement.

b T-dependent segmental relaxation time τ for the AA and CG models. As a comparison, the τ

estimates from the CG models with constant ER (i.e., α = αA) and derived from the IBM exhibit
a growing divergence as lowering T, while the τ estimates from the ER describe the AA τ to a
much better approximation. The solid curves show the VFT fits of the τ data. The dashed curve
for the CG model from the IBM shows a high T regime where the onset of sample evaporation
leads to an increase in τ . Inset shows the activation energies of relaxation �G normalized by its
value �μ at high-T Arrhenius regime for the AA and CG models. c Self-diffusion coefficient D of
OTP molecules for the AA and CG models using both ER and IBM at varying temperatures, and
their comparison with the experimental data [60]. (Inset) The cohesive interaction strength ε(T ) (in
kcal/mol) for the CG model determined by matching the T-dependent

〈
u2

〉
of the AA model to the

CG model. Reprinted with permission from (a) and (b) [33] © 2019 AAAS and (c) [34] © 2018
American Chemical Society.
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the RDF). Apart from high-T Arrhenius regime, just a constant rescaling of ε is not
sufficient to describe the dynamics of the atomistic system. Thus, a temperature -
dependent application of ER accurately captures the slowing down on dynamics upon
approaching the glass transition temperature. The activation energy of relaxation,
�G(T ), is determined through the relationship:�G(T ) = kBT ln[τ/τ0], where τ0 is
the vibrational relaxation time on the order of 10−12 to 10−13 s. The inset of Fig. 7.3b
shows the results of�G normalized by its value�μ at the high-T Arrhenius regime.
TheCGmodelwith ER evidently describes�G of theAAmodel ratherwell, whereas
�Gwithout ER remains too small at low temperatures.

With the implementationα(T ) under theER approach, the temperature-dependent
self-diffusivity of CG models matches the AA models as well as the experimental
values over the entire temperature range. For comparison, the diffusivity of CGmodel
obtained from IBM is also shown in Fig. 7.3c and it can be seen that the value is
much higher than the AA model. This dramatic speedup of dynamics necessitates
ER under coarse-graining to preserve the AA dynamics over a wide T range.

The ER approach is broadly useful for the study of polymeric materials with more
truthful representation of dynamical and mechanical properties. Further work needs
to be done to understand how the formulation could be used for more complex
systems, such as thermosets at varying degrees of crosslinking, and copolymer
systems. In the subsequent sections, results from CG-MD simulations that utilized
the ER concept will be presented to provide insights into the behavior of hairy
nanoparticle assemblies.

7.3 Modeling of Hairy Nanoparticle Assemblies

Much of the experimental work carried out on hairy nanoparticle assemblies involve
using a homopolymer, usually polystyrene, [12, 17, 61] and a spherical nanopar-
ticle, usually silica [15, 16]. In the computational field, there have been studies
looking at the structure, [62] entanglements [63] and dynamics [64] of solvent-free
polymer-grafted nanoparticles. However, assemblies with high-aspect ratio nanopar-
ticles can provide an important blend of anisotropy and improved mechanical prop-
erties. As quoted by Christopher Li, “Anisotropic assembly of isotropic nanopar-
ticles is observed in a polymer nanocomposite system and leads to considerable
improvements inmechanical properties.One of the approach for achieving controlled
particle assembly takes its inspiration from bottom-up nanofabrication techniques
and involves encoding nanoparticles with intrinsic anisotropy to synthesize a variety
of patchy particles, magnetic particles and nanorods” [65]. An interesting choice
of anisotropic nanofiller that has come into spotlight in recent years is the cellulose
nanocrystal (CNC) [66]. These eco-friendly bio-compatible crystals can be extracted
from renewable and sustainable sources such as wood, bacteria and certain marine
animals such as tunicates. These CNCs have a high axial modulus of ~150 GPa
which is comparable to Kevlar, material currently used in bullet-proof vests. These
transparent crystals have relatively low density for such a highmodulus whichmakes
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it an ideal candidate for light weight applications. However, the key property that
makes it extremely desirable for aHNPs is the presence of reactive sidegroups (–
OH) on the CNC surface that allows for easy functionalization and polymer grafting.
Some of the common functionalization includes sulfuric acid treatment that provides
sulfate esters, TEMPO-mediated hypochlorite oxidation creates carboxylic acids and
carboxylic acid halide treatment to create ester linkages [66].

Experimentalists have grafted several polymers onto CNC and made nanocom-
posites out of it, such as poly(methyl methacrylate), [67] polystyrene[68] and poly(4-
vinylpyridine) [69]. Studies have also investigated thermal andmechanical properties
of CNC-based nanocomposites [67, 70]. From a modeling perspective, molecular
dynamics simulations have been employed to investigate structural [71] and confor-
mational [72] properties and self-assembly [73, 74] of polymer-grafted spherical
nanoparticles, but not much is done in understanding the mechanical behavior of
polymer-grafted anisotropic nanoparticle assemblies.

7.3.1 System Setup

Hansoge and co-workers have utilized the chemistry-specific CG models to carry
out CG-MD simulations and obtain the transverse mechanical properties [75] and
understand the conformational properties [76]of the CNC-grafted hairy nanoparti-
cles. The CG schemes of the different polymers and CNC are shown in Fig. 7.4.
For polymers with sidegroups, such as polystyrene (PS) and poly(methyl methacry-
late) (PMMA), two bead per monomer is used as the CG scheme, one each for the
backbone and sidegroup. For linear polymers, the choice of CG bead is based on
the functional group in the backbone, i.e., one bead for polybutadiene (PB) and four
beads per monomer for polycarbonate (PC) corresponding to phenylene, isopropyli-
dene and carbonate groups. The details of the coarse-graining schemes are described
in works carried out by Xia and co-workers [33–35]. While the same principle could
have been applied for the CG scheme of CNC as well, the properties of interest
do not require extensive parametrization of CNC. Hence, in order to improve the

Fig. 7.4 a Coarse-graining schemes for the different polymers and CNC. b Representative volume
element consisting of four polymer-grafted nanoparticles. c Snapshot of the representative volume
element at the end of the equilibraiton cycle. Reprinted with permission from (a) [76] © 2018
American Chemical Society, (b) and (c) [75] © 2018 American Chemical Society
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computational efficiency, two glucose monomers are represented by one CG bead.
The entire CNC is modeled as an FCC crystal consisting of beads with high spring
constant harmonic bonds (k = 100 kcal/mol/Å2) in the axial direction. Although the
surface of CNCs can be quite irregular, the canopy of the grafted polymeric layer
should shield these surface features from affecting the mechanical properties. Such
a high value is used as the CNC is much stiffer in the axial direction (~150 GPa)
than in the transverse direction (38 GPa) [66]. Thus, the non-bonded interactions,
which is represented by the standard 12–6 Lennard Jones potential, are parametrized
to achieve the experimental value of 38 GPa. CNCs extracted from wood can have
an aspect ratio of around 20, whereas those obtained from tunicates can have aspect
ratios in several hundreds. Computationally modeling such high-aspect ratio parti-
cles will be challenging; hence, a representative volume element of CNC is chosen
such that the length is five times thewidth or height and periodic boundary conditions
are employed in the longitudinal direction which effectively creates infinitely long
crystals.

The mechanical properties are evaluated using CNC-PMMA nanocomposite as
a model. To simulate the CNC-PMMA nanocomposite, a single polymer-grafted
CNC is first generated, where the location of graft sites is chosen arbitrarily, and
the polymer chain is grown from the designated site using a random walk algorithm
as depicted in Fig. 7.4b [77]. The system is then replicated three times (resulting
in four total aHNPs) and packed together to create a representative nanocomposite
system. The CG-MD simulations are carried out using large-scale atomic/molecular
massively parallel simulator (LAMMPS) software [78].

7.3.2 Simulation Protocols

In order to simulate the bulk behavior of the nanocomposite, periodic boundary condi-
tions are applied. This also avoids problems with the boundary effects due to finite
size. The initial structure generated by randomwalk algorithmmight have some over-
lapped atoms. Thus, before running the actual equilibration cycle, a soft interatomic
cosine potential is applied to push the polymers apart in the NVT ensemble. This soft
potential is then replacedwith the actual interatomicLennard–Jones potential to carry
out the equilibration. During equilibration, the first step is to remove any residual
stresses in the system. This is achieved by annealing at a high temperature of 1000 K
for 2 ns. The next step is to ensure that the grafted nanoparticles are packed well for
which the system is equilibrated at 600 K and a high pressure of 1000 atm for 2 ns.
Finally, the system is cooled down to 300 K (room temperature) and equilibrated for
another 2 ns under atmospheric pressure (1 atm). The relaxation of the polymer chains
is checked using the second Legendre order parameter (P2) [33] which is an average
made over all orientations of the structural units studied in a sample. A P2 values of
less than 0.1 indicate that the polymer chains are fully relaxed. The equilibrations
steps are carried out under the isothermal-isobaric NPT ensemble. Figure 7.4c shows
the snapshot of the nanocomposite system after annealing and equilibration. Since
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the CG bead encompasses several atoms, an integration timestep of 4 fs is used in
these simulations.

The tensile tests are also carried out under the NPT ensemble with zero pressure
on the sides so as to not fix the Poisson’s ratio. A strain rate of 108 s−1 is employed,
which is typical in such MD simulations. While it might seem that the strain rate
is too high as compared to experimental strain rates, the design strategies and main
conclusions drawn from this study are not affected as the strain rate dependence of
properties is relatively low in glassy regime of polymers. The properties of interest
in this study are Young’s modulus, which is obtained from the slope of linear region
in the stress–strain curve upto 0.2% strain, and toughness, which is the area under
the stress–strain curve.

7.3.3 Mechanical Property Characterization

In polymer nanocomposites, there exists a diametric relationship between Young’s
modulus and toughness of the nanocomposite. Higher nanoparticle content will
increase the modulus at the expense of ductility in the system. Effectively sweeping
the dependencies of the number of design parameters affecting the mechanical prop-
erties is computationally very expensive. Thus, in order to find the sweet spot of
achieving maximum stiffness and toughness, Hansoge and co-workers adopted a
unique strategy of combining machine learning with molecular dynamics simula-
tions [75]. While coarse-graining does provide some improvement in the computa-
tional efficiency, it is still infeasible to sweep the broad parametric range of the design
space. Thus, a metamodel-based design optimization (MBDO) [79, 80] framework is
adopted to provide design strategies for the optimal mechanical properties of aHNPs.

A multi-response Gaussian process metamodel is trained for this purpose.
The input design parameters chosen are chain length (N), grafting density (σ ),
polymer−NP interaction strength (εpnp), and NP edge length (lnp) and the outputs are
Young’s modulus and toughness. Initially, 100 CG-MD simulations are run whose
parameters span the entire design space. The input–output relationship is then used
to train the metamodel. The details of the algorithms used in training can be found
in [75]. The metamodel does a great job in replacing the computationally expen-
sive CG-MD simulations as over a million pseudo-simulations were run to populate
the entire design space. The outputs from these simulations are plotted in Young’s
modulus versus toughness Ashby plot as shown in Fig. 7.5. The color in each paned
indicated the value of the input parameter. Populating the design space reveals the
maximum limit of the properties that can be achieved which is shown in the red line
and called the Pareto frontier. For any point on the Pareto frontier, there is no combi-
nation of input parameters that can give higher modulus without compromising the
toughness and vice versa. The insets in Fig. 7.5 show the distribution of the input
parameter that lies on the Pareto frontier.

As seen from Fig. 7.5a, the toughness of the nanocomposite increases with N
(as marked by the change from blue to yellow). The main toughening mechanism
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Fig. 7.5 Young’smodulus versus toughness for theNP−polymer nanocomposite colored by a chain
length of polymer N, b grafting density σ , c polymer−NP interaction strength εpnp and d NP edge
length lnp. The insets show the distribution of each parameter that lies on the Pareto curve. Reprinted
with permission from [75] © 2018 American Chemical Society

in these aHNPs is the resistance to sliding of the polymer chains which increases
with N as effective cohesive interactions between the polymer chains increases. At
lower N, the weight % of nanoparticle is higher, which increases the modulus of
the nanocomposite. The effect of σ on the mechanical properties is a bit intricate.
Grafting polymers onto the nanoparticle strongly affects the conformations of the
chains. A detailed discussion on the conformational behavior of the polymer chains
is discussed in Sect. 3.4. Figure 7.5b reveals that as σ is increased, the modulus and
toughness both decrease, as evident near the elbow region of the plot (blue to yellow).
Thus, it is beneficial to have a lower grafting density to achieve optimal mechanical
properties. The presence of covalent bonds between the polymer and nanoparticle
limits the influence of εpnp as compared to other input parameters. However, as seen
from Fig. 7.5c, there is a higher preference for εpnp to achieve higher modulus when
the weight % of nanoparticle is high. With regards to lnp, larger length is preferred in
the high toughness region, as larger lnp provides additional grafting sites that increase
the polymer content and thus the toughness as seen from Fig. 7.5d.

The range of mechanical properties that can be achieved at different weight % of
nanoparticles provide a deeper insight into the complexity of the dependence of input
parameters (Fig. 7.6). The points are also colored based on whether the chain length
is above or below the critical chain length, Ncr, which marks the transition between
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Fig. 7.6 Young’s modulus versus toughness of the nanocomposite for different weight percentages
ofNPs. The shaded region in each plot shows the properties that can be achieved at a givenweight%,
while the red curve is the Pareto frontier for the overall material system. Reprinted with permission
from [75] © 2018 American Chemical Society

semi-dilute and concentrated brush regime (details in Sect. 3.4). The weight % of the
nanoparticle can be varied by changing N, σ , and lnp. At low weight % (below 45%,
Fig. 7.6a–c), the predicted properties do not reach the Pareto frontier as there is not
enough NPs to provide stiffness to the nanocomposite. At least 60% NP weight is
required (Fig. 7.6d and e) to reach the Pareto frontier. However, at extremely high
weight % (Fig. 7.6f), there is not enough polymer content to provide toughness to
the nanocomposite beyond 200 MPa. Thus, the ideal range of weight % seems to
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be between 60 and 90%. Another important point to note is that all the designs
that reach the Pareto frontier have chain lengths above the Ncr. Traditional polymer
nanocomposites cannot achieve such high weight % due to nanoparticle aggregation
issues, but since aHNPs can overcome these issues, optimal mechanical properties
can be achieved for the nanocomposite.

7.3.4 Evaluating Polymer Conformational Behavior

When σ is increased, the monomer segments near the nanoparticle experience steric
hindrance and are pushed away from the nanoparticle. Thus, near the nanoparticle
surface, the polymer chains are in the concentrated brush regime (CPB) and gradu-
ally relax to a semi-dilute brush regime (SDPB) away from the surface. Looking at
the scaling (Fig. 7.7a), the polymer chains are more extended in the direction perpen-
dicular to the nanoparticle surface as R⊥

g ∼ N 0.6 compared to R⊥
g ∼ N 0.5 which is

Fig. 7.7 a Scaling of radius of gyration in radial
(
R⊥
g

)
and axial

(
R‖
g

)
directions with chain

length. b Scaling relationship in CPB (R ∼ N) and SDPB (R ∼ N0.5) regimes. Ri is the distance of
ith monomer from the nanoparticle surface, and Ni is the monomer position index in the polymer
chain. The dotted line shows the transition point from CPB to SDPB, i.e., Ncr. c Snapshots of
configurations of the hairy nanoparticle showing the onset of the SDPB regime (red) from the CPB
regime (blue) with grafting density. All grafting densities are in units of chains/nm2. Reprinted with
permission from [75] © 2018 American Chemical Society
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typically observed in polymer melts. In the perpendicular direction, the distance of
the monomer from the surface, R, is measured against the monomer position index.
It is observed that near the nanoparticle surface, the monomer segments are in the
CPB regime, i.e., R ~ N. Away from the nanoparticle surface, the segments relax to
SPDB regime, R ~ N0.5. The transition from CPB to SDPB regime is denoted by the
critical chain length,Ncr. Theoretical scaling arguments can be used to determine the
dependence of the transition on features such as NP radius and grafting density. An
extension of theoretical Daoud-Cotton (DC) model [81] was proposed by Ohno et al.
[82] where they treated a star polymer as a system consisting of chains grafted onto
a spherical nanoparticle. A similar argument is applied to polymer-grafted CNCs to
come up with an equation for Ncr shown in 7.3

Ncr = 2r0
3aσ ∗1/2

0 lm

(
r−3/4
0 σ ∗3/4

0 b3/2 − 1
)

(7.3)

Ncr is an important design parameter for aHNPs. As seen from Fig. 7.6, degree
of polymerization needs to be greater than the Ncr to obtain optimal mechanical
properties [32]. Utilizing the chemistry-specific CG models, a comparison of Ncr

values is done for the four different polymers selected (PMMA, PS, PC and PB)
as shown in Fig. 7.8. For a given grafting density, PS has the largest value of Ncr

among all the polymers studied. It also indicates that semi-flexible polymers with
more prominent side groups, such as PS and PMMA, have a higher Ncr in linear
polymers. On the other hand, flexible rubbery polymers such as PB have a low Ncr.

The critical chain length,Ncr, depends on empirical parameters, a and b, nanopar-
ticle radius, r0, monomer length, lm, and grafting density, σ*. The dependencies of
these parameters are normalized on the Ri versus Ni plots for various aHNP designs

(a) (b)

Fig. 7.8 a Plot of distance of monomer from the nanoparticle surface versus monomer position
index. Ri is distance of ith monomer (Ni) from the nanoparticle surface. The linear solid line shows
the scaling relationship in CPB (R ∼ N ) regime and the dotted line shows the transition point
from CPB to SDPB R ∼ N 0.5, identified as Ncr. The inset shows the equation of Ncr. b Bar plot
showing the comparison of Ncr for the different polymers at 30% grafting density. Reprinted with
permission from [76] © 2019 American Chemical Society.
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Fig. 7.9 The monomer index Ni is normalized with Ncr and the radial distance (Ri) is normalized
withmaterial design parameters a, b, r0, lm andσ∗, shown for 110 different aHNPsystems.Reprinted
with permission from [76] © 2019 American Chemical Society

and it can be seen that all the curves fall onto a single curve (Fig. 7.9). This consistent
collapse of the data suggests the universality of the polymer chain conformations in
these hairy nanoparticle assemblies. From this universal relation, one can predict the
position of the monomer from the following equations:

Ri = 0.1abσ ∗lm
r1/20

Ni

Ncr
forNi < Ncr (7.4)

Ri = 0.1abσ ∗lm
r1/20

(
Ni

Ncr

)0.5

for Ni > Ncr (7.5)

7.4 Mesoscale Modeling of aHNPs

The length and time scales accessed by CG-MD simulations are in the order of
nanometers and nanoseconds. While such spatiotemporal scales are sufficient to
evaluate dynamics and structural conformation of polymer chains, predicting size-
dependent macroscopic properties such as fracture energy or impact resistance is not
possible. A mesoscale model that can access experimental length scales without loss
of chemical specificity and accuracy will be beneficial to carry out such analysis. One
way to improve the spatiotemporal scales is to implicitly simulate the grafted polymer
chains through an effective interaction between the nanoparticles that is function of
polymer characteristics such as chain length, grafting density and chemistry. There
are several studies in the literature that have developed such effective potentials using
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integral equation theories, [83–89] umbrella sampling approach, [90–92] and self-
consistent field theory (SCFT) [93–95]. These studies, however, have utilized generic
interatomic potentials, such as Lennard–Jones or FENE, to describe the polymer
chains. Since the confined behavior of polymers in grafted systems strongly depends
on molecular chemical features such as side-group size or backbone rigidity, there is
a critical need to develop a numerical framework for linking the effective interactions
between nanoparticles to these molecular design parameters. Hence, Hansoge and
co-workers formulated a computational framework using the potential of mean force
(PMF) approach to describe the interactions between nanoparticles in aHNPs.

7.4.1 PMF-Based Approach

The nanoparticle is idealized as a planar surface from which polymers emerge and
interdigitate, a model that could be broadly applicable to large, stiff 1D-2D nanopar-
ticles or strongly cohesive assemblies of these particles in a lamellar configuration
as shown in Fig. 7.10a. The nanoparticles are grafted with four different polymers
(PMMA, PS, PC, PB) with various chain lengths and grafting densities. Tensile and
compressive tests are carried out to obtain the PMF between the nanoparticles, which

(a)

(b)

Fig. 7.10 a Schematic of the layered polymer grafted to a high-aspect ratio nanoparticle assembly.
A representative volume is used to analyze the transverse properties of these assemblies. CG-MD
simulations are carried out by fixing the bottom plate and pulling/pushing on the top plate with a
constant velocity. b Representative plots of potential of mean force per volume (ψ) with respect to
center of mass distance between the nanoparticles normalized by their equilibrium distance. The
three plots show the variation with chain length, grafting density and polymer chemistry
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is the work required to move the plates. The schematic of the tensile and compressive
tests is shown in Fig. 7.10b. The sum of forces in the pulling direction is calculated,
multiplied with the displacement and divided by the volume to provide the potential
of mean force per volume (ψ). The total work required to completely separate the
plates starting from their equilibrium position is defined asψmax, which is the plateau
of the PMF curve or depth of the energy well. The simulation protocols are same
as mentioned above. An analytical expression is used to describe the PMF behavior
and the empirical constants in this expression are linked to the design parameters,
i.e., chain length, grafting density and chemistry.

Figure 7.10c shows representative PMFcurves for the different design parameters.
In general, it is observed that the ψmax increases linearly with chain length. The
mechanism behind this is increased in entanglements per chain that increases with
chain length. The dependence ofψmax on grafting density is quadratic. The cohesive
interaction energy between polymer chains arising from different nanoparticles is
the main contributor to ψmax. When the grafting density is low, the polymer chains
interdigitate very well and improve with grafting density improves. However, at very
high grafting densities, the steric hindrance caused due to chains being very close to
each other leads to a decrease in this cohesive energy which in turn decreases ψmax.
The chemistry dependence can also be seen from Fig. 7.10c. PB, which is a rubber
at room temperature, has the lowest value of ψmax, whereas tough glassy polymers,
PMMA and PC have a high value of ψmax. The initial curvature of the attractive part
of the PMF curve is related to the modulus of the system. PMMA, which has the
highest modulus among the four polymers, has the highest curvature, whereas PB,
being a rubber, has the lowest.

7.4.2 Functional Form of Effective Interactions

After understanding the role of chain length and grafting density onψ , the next step is
to find an analytical equation that can fit all of the PMF curves and seek to determine
a relationship between the empirical constants and the physical parameters. It is that
commonly used pairwise potentials such as Morse, Lennard–Jones and evenMei, do
not fit the data accurately. Hence, the behavior of the attractive and repulsive portion
was separately studied to come up with an analytical function. The repulsive portion
of the curve is well described the exponential form shown in 7.6.

ψr = ar ∗ e−br x + cr (7.6)

where ar , br and cr are the empirical constants and x is the center of mass distance
between the plates. The parameters ar and br are dependent on N and σ* and the
parameter cr , which is a very small number, shifts the potential to zero at equilibrium
distance. For the attractive part, it was found that an empirical sigmoid relation shown
in 7.7 fits all the PMF curves. The constant aa

ba+e−ca x0 is added to shift the curves to
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zero at equilibrium distance (x = x0).

ψa = aa
ba + e−ca x

− aa
ba + e−ca x0

(7.7)

The constants aa and ba control the plateau of the PMF curve (ψmax), whereas ca
controls the curvature of the curve. The empirical constants are obtained by fitting
the data to the above equation. For each polymer chemistry, chain length and grafting
density, five separate trials were run to get better statistics. Adding the attractive and
repulsive forms gives the final potential form:

ψ = ar ∗ e−br x + aa
ba + e−ca x

− aa
ba + e−ca x0

(7.8)

We note that aa
ba+e−cax0 − cr ∼ aa

ba+e−cax0 as cr is negligible. This five-parameter
equation describes the interaction between nanoparticles in all different designs of
aHNPs. The goodness of the fit is evaluated based on the mean square error (MSE)
and the correlation coefficient (R2) between the fit and the data. It is ensured that the
R2 > 0.99 and the MSE < 1%. Figure 7.11 shows a representative fit of the function
to the data obtained from the simulations.

The point where the derivative of the potential (given by 7.9) becomes zero is the
equilibrium distance between the nanoparticles, x0.

ψ
′ = −br ∗ ar ∗ e−br x + aa ∗ ca ∗ e−ca x

(ba + e−ca x )2
(7.9)

Fig. 7.11 Fitting the functional form to the data obtained from the CG-MD simulations. The figure
shows two curves for chain lengths 20, 60 and 100 of PMMA-grafted nanoparticle system
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The solution forψ
′ = 0 cannot be determined analytically as a general expression

for all possible values of the empirical constants. However, since the potential is
formed of two continuous smooth curves, the derivative can be found numerically for
each curve once empirical constants are determined from fitting ψ . The equilibrium
distance obtained from the derivative is compared to the equilibrium distance from
the simulations and it is observed that the two values are within 2% of each other.
This, along with the goodness of fit measures, ensures that the fitting parameters
accurately capture the equilibrium position and the shape of the curves.

The PMFmethodology now enables treatment of particles at a much coarser level
without the need for explicit modeling of polymer chains. Future investigations will
need to examine the effects of particle shape, curvature and strain rate effects, as
well as temperature on PMF functions to ensure the general form is still applicable.
Implementation of this methodology on mesoscale models will pave the way for
exciting, large-scale studies of nanocomposites and thin films that approach the
scales of experiments.

7.5 Conclusion

In conclusion, this chapter covers various modeling techniques for hairy nanopar-
ticle assemblies. The first section explains the energy renormalization method-
ology for coarse-graining polymers. This method can capture the dynamics accu-
rately over a wide range of temperature and it requires only a picosecond time
scale measure, Debye–Waller factor, for calibration. The second section goes into
describing modeling of hairy nanoparticle assemblies with cellulose nanocrystal.
A unique methodology of combining machine learning and coarse-grained molec-
ular dynamics simulation is employed to optimize the mechanical properties. A
speedup of 6–7 orders of magnitude is observed as compared to all-atomistic simu-
lations. Finally, a mesoscopic model framework is discussed that will extend the
spatiotemporal scales of MD simulations to experimental level. An analytical func-
tional form governing the interactions between nanoparticles eliminates the need
to model the polymer chain explicitly, thus improving the computational efficiency.
These modeling efforts provided important guidelines toward designing assembled
polymer-grafted nanoparticle composites to achieve optimal mechanical proper-
ties. Looking forward, these approaches will help to accelerate the materials-by-
design process and inspire future studies in advancing mechanical performance of
composites and other relevant structural materials.



198 N. K. Hansoge and S. Keten

References

1. A.C.Balazs, T. Emrick, T.P.Russell,Nanoparticle polymer composites:where two smallworlds
meet. Science 314, (17) (2006).

2. S.C. Tjong, Structural andmechanical properties of polymer nanocomposites.Mater. Sci. Eng.:
R: Rep. 53(3–4), 73–197 (2006)

3. J.R. Potts, D.R.Dreyer, C.W.Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites.
Polymer 52(1), 5–25 (2011)

4. F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, Review article: polymer-matrix nanocom-
posites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40(17),
1511–1575 (2006)

5. K.I. Winey, R.A. Vaia, Polymer nanocomposites. MRS Bull. 32(4), 314–322 (2011)
6. J. Jancar, J.F. Douglas, F.W. Starr, S.K. Kumar, P. Cassagnau, A.J. Lesser, S.S. Sternstein,

M.J. Buehler, Current issues in research on structure–property relationships in polymer
nanocomposites. Polymer 51(15), 3321–3343 (2010)

7. R. Krishnamoorti, Strategies for dispersing nanoparticles in polymers. MRS Bull. 32(4), 341–
347 (2011)

8. C. Chevigny, F. Dalmas, E. Di Cola, D. Gigmes, D. Bertin, F. Boué, J Jestin, Polymer-
grafted-nanoparticles nanocomposites: dispersion, grafted chain conformation, and rheological
behavior. Macromolecules 44(1), 122–133 (2011).

9. N. Jouault, D. Lee, D. Zhao, S.K. Kumar, Block-copolymer-mediated nanoparticle dispersion
and assembly in polymer nanocomposites. Adv. Mater. 26(24), 4031–4036 (2014)

10. S.K. Kumar, N. Jouault, B. Benicewicz, T. Neely, Nanocomposites with polymer grafted
nanoparticles. Macromolecules 46(9), 3199–3214 (2013)

11. N.J. Fernandes, H. Koerner, E.P. Giannelis, R.A. Vaia, Hairy nanoparticle assemblies as one-
component functional polymer nanocomposites: opportunities and challenges. MRSCommun.
3(1), 13–29 (2013)

12. X.W.Gu,X.Ye,D.M.Koshy, S.Vachhani, P.Hosemann,A.P.Alivisatos, Tolerance to structural
disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted
nanocrystals. Proc. Natl. Acad. Sci. U S A 114(11), 2836–2841 (2017)

13. D. Maillard, S.K. Kumar, B. Fragneaud, J.W. Kysar, A. Rungta, B.C. Benicewicz, H. Deng,
L.C. Brinson, J.F. Douglas, Mechanical properties of thin glassy polymer films filled with
spherical polymer-grafted nanoparticles. Nano Lett. 12(8), 3909–3914 (2012)

14. X. Ye, C. Zhu, P. Ercius, S.N. Raja, B. He, M.R. Jones, M.R. Hauwiller, Y. Liu, T. Xu, A.P.
Alivisatos, Structural diversity in binary superlattices self-assembled from polymer-grafted
nanocrystals. Na.t Commun. 6, 10052 (2015)

15. J. Choi, C.M. Hui, J. Pietrasik, H. Dong, K. Matyjaszewski, M.R. Bockstaller, Toughening
fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid
particles synthesized by ATRP. Soft Matter 8(15) (2012).

16. M. Schmitt, J. Choi, C.M. Hui, B. Chen, E. Korkmaz, J. Yan, S. Margel, O.B. Ozdoganlar, K.
Matyjaszewski, M.R. Bockstaller, Processing fragile matter: effect of polymer graft modifica-
tion on the mechanical properties and processibility of (nano-) particulate solids. Soft Matter
12(15), 3527–3537 (2016)

17. J. Midya, Y. Cang, S.A. Egorov, K. Matyjaszewski, M.R. Bockstaller, A. Nikoubashman, G.
Fytas, Disentangling the role of chain conformation on the mechanics of polymer tethered
particle materials. Nano Lett. 19(4), 2715–2722 (2019)

18. M. Asai, D. Zhao, S.K. Kumar, Role of grafting mechanism on the polymer coverage and
self-assembly of Hairy nanoparticles. ACS Nano 11(7), 7028–7035 (2017)

19. D. Dukes, Y. Li, S. Lewis, B. Benicewicz, L. Schadler, S.K. Kumar, Conformational transitions
of spherical polymer brushes: synthesis, characterization, and theory. Macromolecules 43(3),
1564–1570 (2010)



7 Explorations into the Mechanics of Hairy Nanoparticle … 199

20. P. Akcora, H. Liu, S.K. Kumar, J. Moll, Y. Li, B.C. Benicewicz, L.S. Schadler, D. Acehan,
A.Z. Panagiotopoulos, V. Pryamitsyn, V. Ganesan, J. Ilavsky, P. Thiyagarajan, R.H. Colby, J.F.
Douglas, Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater.
8(4), 354–359 (2009)

21. J.G. Ethier, L.F. Drummy, R.A. Vaia, L.M. Hall, Uniaxial deformation and crazing in glassy
polymer-grafted nanoparticle ultrathin films. ACS Nano 13(11), 12816–12829 (2019)

22. W.G. Noid, Perspective: coarse-grained models for biomolecular systems. J. Chem. Phys.
139(9), 090901 (2013)

23. M.P. Dirk Reith, Florian Muller-Plathe, deriving effective mesoscale potentials from atomistic
simulations. J. Comput. Chem. 24, 1624–1636 (2003)

24. W.G. Noid, J.W. Chu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth, A. Das, H.C. Andersen,
The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-
grained models. J. Chem. Phys. 128(24), 244114 (2008).

25. G.A.V. Sergei Izvekov, Amultiscale coarse-grainingmethod for biomolecular systems. J. Phys.
Chem. B Lett. 109, 2469–2473 (2004)

26. M.S. Shell, Coarse-graining with the relative entropy. Adv. Chem. Phys. 161, 395–441 (2016)
27. A.P. Lyubartsev, A. Laaksonen, Calculation of effective interaction potentials from radial distri-

bution functions: A reverse Monte Carlo approach. Phys. Rev. E Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Topics 52(4), 3730–3737 (1995)

28. D. Fritz, K. Koschke, V.A. Harmandaris, N.F. van der Vegt, K. Kremer, Multiscale modeling
of soft matter: scaling of dynamics. Phys. Chem. Chem. Phys. 13(22), 10412–10420 (2011)

29. H.A. Karimi-Varzaneh, N.F. van der Vegt, F. Muller-Plathe, P. Carbone, How good are coarse-
grained polymermodels?A comparison for atactic polystyrene. Chemphyschem 13(15), 3428–
3439 (2012).

30. P.K. Depa, J.K. Maranas, Speed up of dynamic observables in coarse-grained molecular-
dynamics simulations of unentangled polymers. J. Chem. Phys. 123(9), 94901 (2005)

31. I.Y. Lyubimov, J. McCarty, A. Clark, M.G. Guenza, Analytical rescaling of polymer dynamics
from mesoscale simulations. J. Chem. Phys. 132(22), 224903 (2010)

32. A. Davtyan, J.F. Dama, G.A. Voth, H.C. Andersen, Dynamic force matching: a method for
constructing dynamical coarse-grained models with realistic time dependence. J. Chem. Phys.
142(15), 154104 (2015)

33. N.K.Hansoge,W.Xia,W.-S.Xu, F.R. Phelan Jr, S. Keten, J.F. Douglas, Energy renormalization
for coarse-graining polymers having different segmental structures. Sci. Adv. 5(4) (2019).

34. W. Xia, J. Song, N.K. Hansoge, F.R. Phelan Jr, S. Keten, J.F. Douglas, Energy renormalization
for coarse-graining the dynamics of a model glass-forming liquid. J. Phys. Chem. B 122(6),
2040–2045 (2018)

35. W. Xia, J. Song, C. Jeong, D.D. Hsu, F.R. Phelan Jr, J.F. Douglas, S. Keten, Energy-
renormalization for achieving temperature transferable coarse-graining of polymer dynamics.
Macromolecules 50 (2017).

36. G. Adam, J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in
glass-forming liquids. J. Chem. Phys. 43(1), 139–146 (1965)

37. J. Dudowicz, J.F. Douglas, K.F. Freed, Advances in the generalized entropy theory of glass-
formation in polymer melts. J. Chem. Phys. 141(23), 234903 (2014)

38. J.F. Dudowicz, K.F. Douglas, Generalized entropy theory of polymer glass formation. Adv.
Chem. Phys. 125–222 (2008).

39. A. Yelon, B. Movaghar, Microscopic explanation of the compensation (Meyer-Neldel) rule.
Phys. Rev. Lett. 65(5), 618–620 (1990)

40. S.R. Rufus Lumry, Enthalpy-entropy compensation phenomena in water solutions of proteins
and small molecules: a ubiquitous property of water. Biopolymers 9, 1125–1227 (1970)

41. W.-S. Xu, J.F. Douglas, K.F. Freed, Influence of cohesive energy on the thermodynamic
properties of a model glass-forming polymer melt. Macromolecules 49(21), 8341–8354 (2016)

42. W.-S. Xu, K.F. Freed, Influence of cohesive energy and chain stiffness on polymer glass
formation. Macromolecules 47(19), 6990–6997 (2014)



200 N. K. Hansoge and S. Keten

43. R.J. Weiss, J.J. DeMarco, G. Weremchuk, An apparent anisotropic Debye-Waller factor in
cubic crystals. Acta Crystallogr. 9, 42–44 (1954).

44. F.W. Starr, S. Sastry, J.F. Douglas, S.C. Glotzer, What do we learn from the local geometry of
glass-forming liquids? Phys. Rev. Lett. 89(12), 125501 (2002)

45. R.W. Hall, P.G. Wolynes, The aperiodic crystal picture and free energy barriers in glasses. J.
Chem. Phys. 86(5), 2943–2948 (1987)

46. S. Mirigian, K.S. Schweizer, Unified theory of activated relaxation in liquids over 14 decades
in time. J. Phys. Chem. Lett. 4(21), 3648–3653 (2013)

47. S. Mirigian, K.S. Schweizer, Elastically cooperative activated barrier hopping theory of
relaxation in viscous fluids. II. Thermal liquids. J. Chem. Phys. 140(19), 194507 (2014).

48. K.S. Schweizer, Relationships between the single particle barrier hopping theory and thermo-
dynamic, disordered media, elastic, and jamming models of glassy systems. J. Chem. Phys.
127(16), 164506 (2007)

49. J.C. Dyre, Colloquium: the glass transition and elastic models of glass-forming liquids. Rev.
Mod. Phys. 78(3), 953–972 (2006)

50. J.C.Dyre,N.B.Olsen, T.Christensen, Local elastic expansionmodel for viscous-flowactivation
energies of glass-forming molecular liquids. Phys. Rev. B 53(5), 2171–2174 (1996).

51. F.W. Starr, J.F. Douglas, Modifying fragility and collective motion in polymer melts with
nanoparticles. Phys. Rev. Lett. 106(11), 115702 (2011)

52. L. Larini, A. Ottochian, C. De Michele, D. Leporini, Universal scaling between structural
relaxation and vibrational dynamics in glass-forming liquids and polymers. Nat. Phys. 4(1),
42–45 (2007)

53. A. Ottochian, C. DeMichele, D. Leporini, Universal divergenceless scaling between structural
relaxation and caged dynamics in glass-forming systems. J. Chem. Phys. 131(22), 224517
(2009)

54. A. Ottochian, D. Leporini, Universal scaling between structural relaxation and caged dynamics
in glass-forming systems: free volume and time scales. J. Non-Cryst. Solids 357(2), 298–301
(2011)

55. D.S. Simmons, M.T. Cicerone, Q. Zhong, M. Tyagi, J.F. Douglas, Generalized localization
model of relaxation in glass-forming liquids. Soft Matter 8(45), 11455–11461 (2012)

56. B.A. Pazmino Betancourt, P.Z. Hanakata, F.W. Starr, J.F. Douglas, Quantitative relations
between cooperative motion, emergent elasticity, and free volume in model glass-forming
polymer materials. Proc. Natl. Acad. Sci. U S A 112(10), 2966–2971 (2015)

57. J.F. Douglas, B.A. Pazmino Betancourt, X. Tong, H. Zhang, Localization model description
of diffusion and structural relaxation in glass-forming Cu–Zr alloys. J. Stat. Mech.: Theory
Experiment 2016 (5) (2016).

58. J. Dudowicz, K.F. Freed, J.F. Douglas, Entropy theory of polymer glass formation revisited. I.
General formulation. J. Chem. Phys. 124(6), 64901 (2006).

59. P.Z. Hanakata, J.F. Douglas, F.W. Starr, Interfacial mobility scale determines the scale of
collective motion and relaxation rate in polymer films. Nat. Commun. 5, 4163 (2014)

60. D.W. McCall, D.C. Douglass, D.R. Falcone, Molecular motion in ortho-terphenyl. J. Chem.
Phys. 50(9), 3839–3843 (1969)

61. Y. Jiao, A. Tibbits, A. Gillman, M.-S. Hsiao, P. Buskohl, L.F. Drummy, R.A. Vaia, Defor-
mation behavior of polystyrene-grafted nanoparticle assemblies with low grafting density.
Macromolecules 51(18), 7257–7265 (2018)

62. A. Chremos, A.Z. Panagiotopoulos, H.Y. Yu, D.L. Koch, Structure of solvent-free grafted
nanoparticles: molecular dynamics and density-functional theory. J. Chem. Phys. 135(11),
114901 (2011)

63. J.G. Ethier, L.M. Hall, Structure and entanglement network of model polymer-grafted
nanoparticle monolayers. Macromolecules 51(23), 9878–9889 (2018)

64. A.Chremos,A.Z. Panagiotopoulos,D.L.Koch,Dynamics of solvent-free grafted nanoparticles.
J. Chem. Phys. 136(4), 044902 (2012)

65. C. Li, Anisotropy unnecessary. Nat. Nanomater. 8 (2009).



7 Explorations into the Mechanics of Hairy Nanoparticle … 201

66. R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review:
structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)

67. S.A.Kedzior, L.Graham,C.Moorlag,B.M.Dooley,E.D.Cranston, Poly(methylmethacrylate)-
grafted cellulose nanocrystals: one-step synthesis, nanocomposite preparation, and character-
ization. Can. J. Chem. Eng. 94(5), 811–822 (2016)

68. S. Harrisson, G.L. Drisko, E. Malmstrom, A. Hult, K.L. Wooley, Hybrid rigid/soft and
biologic/synthetic materials: polymers grafted onto cellulose microcrystals. Biomacromol
12(4), 1214–1223 (2011)

69. K.H. Kan, J. Li, K. Wijesekera, E.D. Cranston, Polymer-grafted cellulose nanocrystals as
pH-responsive reversible flocculants. Biomacromol 14(9), 3130–3139 (2013)

70. K.J. De France, K.J. Chan, E.D. Cranston, T. Hoare, Enhanced mechanical properties in cellu-
lose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels
through control of physical and chemical cross-linking. Biomacromol 17(2), 649–660 (2016)

71. S. Goyal, F.A. Escobedo, Structure and transport properties of polymer grafted nanoparticles.
J. Chem. Phys. 135(18), 184902 (2011)

72. M. Murat, G.S. Grest, Polymers end-grafted onto a cylindrical surface. Macromolecules 24,
704–706 (1991).

73. S.C. Glotzer, W. Paul, Molecular and mesoscale simulation methods for polymer materials.
Annu. Rev. Mater. Res. 32(1), 401–436 (2002)

74. T.D. Nguyen, Z. Zhang, S.C. Glotzer, Molecular simulation study of self-assembly of tethered
V-shaped nanoparticles. J. Chem. Phys. 129(24), 244903 (2008)

75. N.K. Hansoge, T. Huang, R. Sinko, W. Xia, W. Chen, S. Keten, Materials by design for Stiff
and Tough Hairy nanoparticle assemblies. ACS Nano 12(8), 7946–7958 (2018)

76. N.K. Hansoge, S. Keten, Effect of polymer chemistry on chain conformations in Hairy
nanoparticle assemblies. ACS Macro Lett. 8(10), 1209–1215 (2019)

77. G.S. Grest, K. Kremer, Molecular dynamics simulation for polymers in the presence of a heat
bath. Phys. Rev. A Gen. Phys. 33(5), 3628–3631 (1986)

78. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
117, 1–19 (1995)

79. H. Fang, M. Rais-Rohani, Z. Liu, M.F. Horstemeyer, A comparative study of metamodeling
methods for multiobjective crashworthiness optimization. Comput. Struct. 83(25–26), 2121–
2136 (2005)

80. J.-M.Miao, S.-J.Cheng, S.-J.Wu,Metamodel baseddesignoptimization approach inpromoting
the performance of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 36(23),
15283–15294 (2011)

81. M.Daoud, J.P.Cotton, Star shapedpolymers: amodel for the conformation and its concentration
dependence. J. De Physique 43(3), 531–538 (1982)

82. K. Ohno, T. Morinaga, S. Takeno, Y. Tsujii, T. Fukuda, Suspensions of silica particles grafted
with concentrated polymer brush- effects of graft chain length on brush layer thickness and
colloidal crystallization. Macromolecules 40, 9143–9150 (2007)

83. A. Jayaraman, K.S. Schweizer, Effective interactions and self-assembly of hybrid polymer
grafted nanoparticles in a homopolymer matrix. Macromolecules 42(21), 8423–8434 (2009)

84. T.B. Martin, A. Jayaraman, Using theory and simulations to calculate effective interactions in
polymer nanocomposites with polymer-grafted nanoparticles. Macromolecules 49(24), 9684–
9692 (2016)

85. N. Nair, N. Wentzel, A. Jayaraman, Effect of bidispersity in grafted chain length on grafted
chain conformations and potential of mean force between polymer grafted nanoparticles in a
homopolymer matrix. J. Chem. Phys. 134(19), 194906 (2011)

86. M. Doxastakis, Y.L. Chen, J.J. de Pablo, Potential of mean force between two nanometer-scale
particles in a polymer solution. J. Chem. Phys. 123(3), 34901 (2005)

87. M. Doxastakis, Y.L. Chen, O. Guzman, J.J. de Pablo, Polymer-particle mixtures: depletion and
packing effects. J. Chem. Phys. 120(19), 9335–9342 (2004)

88. L.Zhao,Y.G.Li,C.Zhong, J.Mi, Structure and effective interactions in polymer nanocomposite
melts: an integral equation theory study. J. Chem. Phys. 124(14), 144913 (2006)



202 N. K. Hansoge and S. Keten

89. A.J. Clark, J. McCarty, M.G. Guenza, Effective potentials for representing polymers in melts
as chains of interacting soft particles. J. Chem. Phys. 139(12), 124906 (2013)

90. V. Pryamtisyn, V. Ganesan, A.Z. Panagiotopoulos, H. Liu, S.K. Kumar, Modeling the
anisotropic self-assembly of spherical polymer-grafted nanoparticles. J. Chem. Phys. 131(22),
221102 (2009)

91. D. Meng, S.K. Kumar, D. Lane, J. Matthew, G.S. Grest, Effective interactions between grafted
nanoparticles in a polymer matrix. Soft Matter 8(18) (2012).

92. W. You, Z. Tang, C.A. Chang, Potential mean force from umbrella sampling simulations: what
can we learn and what is missed? J. Chem. Theory Comput. 15(4), 2433–2443 (2019)

93. D.M. Trombly, V. Ganesan, Curvature effects upon interactions of polymer-grafted nanoparti-
cles in chemically identical polymer matrices. J. Chem. Phys. 133(15), 154904 (2010)

94. S.A. Egorov, Interactions between polymer brushes in solvents of variable quality: a density
functional theory study. J. Chem. Phys. 129(6), 064901 (2008)

95. F. Lo Verso, L. Yelash, S.A. Egorov, K. Binder, Interactions between polymer brush-coated
spherical nanoparticles: the good solvent case. J Chem Phys 135(21), 214902 (2011)



Chapter 8
Predicting Mechanical Properties Using
Continuum Mechanics-Based Approach:
Micro-mechanics and Finite Element
Analysis

Pavan K. Valavala and Gregory M. Odegard

Abstract Themechanical properties of nano-structuredmaterials are important field
of exploration in the fields of materials science and other engineering disciplines.
Thorough understanding of underlying material structure and resulting properties
require a variety of tools depending on the length scales of interest. This chapter
reviews continuum mechanics-based techniques, with an emphasis on micro-scale
modeling techniques: analytical and computational. In addition to micro-mechanics,
different approaches to multiscale modeling are presented. With the appropriate
choice of techniques, models can be bridged across multiple length scales leading to
mechanistic understanding of themechanics ofmaterials. Some illustrative examples
are also discussed that utilize the techniques presented here.

8.1 Introduction

Mechanical properties are of great interest in many applications and can be predicted
from the structure of the material. Modeling the mechanics of nanostructured mate-
rials can be accomplished using amultitude of techniques that span various length and
time scales leading to structure–property relationships (Fig. 8.1). From the nanoscale
to sub-micronscale, computational chemistry-based tools provide the best means to
capture the mechanics of the material systems. At larger length scales typically
micronscale and above, continuum mechanics-based techniques provide a robust
toolkit that can be employed to model material behavior with a high degree of accu-
racy. Each of these techniques provides certain unique advantages that make them
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desirable to model the mechanics of nanostructured materials. This chapter will
provide a brief overview of the techniques employed at the sub-micron length scales
followed by a more detailed overview of the continuum-based techniques generally
applied at micronscale and above. Finally, the chapter will conclude with discussion
on combining these different techniques to achieve a structurally informed modeling
strategy to understand the behavior of nanostructured materials.

8.2 Discrete-Medium Modeling Tools

At the smallest length scales, the physics of the material is accurately modeled as
a discrete system with defined structure. Some of the defining features of material
systems at this scale are atomic structures, molecular configuration, nanoparticles,
etc. The modeling tools that are widely employed at this scale spanning from nano
to sub-micronscales are based on quantum mechanics and molecular mechanics,
respectively. In quantummechanics-based techniques, the underlying atomic system
is modeled to help elucidate the physics of the material of interest. These models
typically solve for the electron density of the atoms for prescribed position of the
atomic center [2, 3]. These models are able to capture the influence of external
applied forces to the system as required. While providing high degree of accuracy
in prediction of properties that depend on electron density, the models are mostly
used for a collection of few tens to hundreds of atoms and timescales of the order of
femto- to pico-seconds. This significantly hinders their applicability to macro-scale
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engineering problems. Some of the widely used techniques are based on methods
such as the density functional theory, tight-binding approximation, andHartree–Fock
method [2, 3].

At the next larger length scales,molecularmechanics provides an effectivemethod
to model systems. These models are able to explore molecules and the collec-
tion thereof including their configurational space and the resulting properties [4–6].
Unlike quantum mechanics-based approach, these methods approximate the under-
lying atomic physics through simplifications to ignore certain electron cloud charac-
teristics in favor of longer scale interactions to enable the modeling up to sub-micron
length scales. Atoms are assumed to be hard spheres with interactions that can be
described entirely based on the center of the atom. The interatomic interactions
are generally captured through semi-empirical analytical expressions, for instance,
chemically bonded 2-body interaction can be described by a quadratic expression
using a spring constant (KBond) and an equilibrium bond length parameter (req).
EBond = KBond(r − req)2, where Ebond is the potential energy of the 2-body bonded
interaction, Kbond is the spring constant, r is the separation distance of two atoms,
and req is the equilibrium distance of the two atoms. Similar expressions are utilized
to describe numerous interactions such as: angular energy (3-body), torsional energy
(4-body), electrostatic interactions, and non-bonded interactions [4–14]. Techniques
such asmolecular dynamics (MD) build upon the framework ofmolecularmechanics
and enable modeling of the mechanics of the material systems [15–19]. Application
of these tools enable connecting of sub-micron length scale structure to a variety
of physical behavior of the system beyond mechanical properties such as prediction
of glass transition temperature to diffusion [15, 20]. But the inherent limitation of
techniques like MD are the accessible length and time scales that are governed by
the stiffest interactions in the model, i.e., Kbond, the time stepping in the model scales

with �tModel ∝
√

mAtom
KBond

where mAtom is the mass of an atom in a bonded interaction.

Thus, the longest timescales that are typically accessible for these models are of the
order of nanoseconds. Some improvements in length and time scales can be achieved
through techniques such as coarse-graining that combine multiple atoms into a
heavier collective unit “pseduo-atom” of mass mpseudo

Atom (�mAtom), and to account
for the collection of atoms within such a “pseudo-atom” the effective bond stiff-

ness is changed to K Super-atom
Bond (�KBond) leading to�tCoarse-grain ∝

√
mpseudo

Atom

K Super-atom
Bond

. Hence,

�tCoarse-grain � �tModel [21, 22]. However, even with coarse-graining, models typi-
cally achieve timescales much less than millisecond. Similar to the atomic modeling
techniques, these tools are unable to access larger length and timescales.

8.3 Continuous-Medium Modeling Tools

At lengths starting at around microns, continuum mechanics provide a variety of
tools to model the effective mechanical properties of homogenous and multi-phase
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heterogeneousmaterials. Unlike the discretemediummodeling tools described in the
previous sections, continuum-based approaches neglect underlying structure of the
material at lower length scales, the material is assumed continuous at any arbitrary
length scale. Also, classical continuum mechanics assumes local interaction, in that
stress at a given point depends on the current values and the history of deformation
and temperature at that point only. Material points interact with neighboring points
through transfer of mass, momentum, energy, and entropy only [23]. Some non-local
continuum theories eliminate this restriction by allowing for longer range interac-
tions that resemble discrete systems as described in the previous section [24–27].
The remainder of this chapter will focus only on the classical continuum approaches.
For heterogeneousmaterials withmultiple phases, micro-mechanics-basedmodeling
techniques were developed to account for interactions at the constituent level,
i.e., inclusion/matrix. These methods were primarily used to predict the proper-
ties of traditional composite materials developed during a period when computa-
tional resources were expensive. In the past few decades, micro-mechanics-based
approaches have evolved from analytical expressions to a more complex and much
more computationally rigorous approach. The continuum-based approaches can be
broadly classified into these categories: analytical and computational.

8.3.1 Analytical Modeling: Micro-mechanics

The original closed-form solutions to materials with inhomogeneous inclusions was
presented by John Eshelby. He proposed a virtual experiment to derive the stress and
strain fields for this problem [28]. Consider a linear elastic material with a stiffness
(Cijkl) bounded by a surface (∂�) and an enclosed volume (�) with a sub-volume
(�i) (homogeneous inclusion) of material bounded by (∂�i). Assume that this sub-
volume (�i) was extracted from the material, and subject to an inelastic stress-

free transformation, i.e., eigen-strain
(
ε∗

i j

)
as shown in Fig. 8.2. This homogeneous

inclusion is subjected to tractions to facilitate returning it back into the original

Fig. 8.2 Schematic representation of a thought experiment proposed byEshelby to compute stresses
and strains for a material with homogeneous inclusion
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material bounded by surface (∂�). Upon replacement, both the inclusion and matrix
experience a localized strain in the vicinity of the replaced inclusion. The resultant

strain in the homogeneous inclusion is known as the “constrained strain”
(
εC

i j

)
. The

stress and strain fields in the material can be expressed as:

εi j (x) = εi j + ε′
i j (x)

σi j (x) = σi j + σ ′
i j (x)

where εi j (x), εi j , ε′
i j (x) are the strain at any spatial position described by a coordinate

vector ‘x’, averagemacroscopic strain and the spatially fluctuating strain respectively.
σi j (x), σi j , σ ′

i j (x) are the corresponding stress counterparts. The average fields over
the domain can be calculated using [29]:

1

V

∫
f (x)dV = f

where f (x) is a microscopic field. The stress and strain fields need to satisfy the
micro–macro energy equivalence (Hill-Mandel Principle [30, 31]):

1

V

∫
σi jεi jdV = σi jεi j

The constrained strain is related to the eigen-strain through a fourth-order tensor
referred to as the Eshelby tensor:

εC
i j = Si jklε

∗
kl

The Eshelby tensor has minor symmetry: Si jkl = Sjikl = Si jlk = Sjilk . The
Eshelby tensor (hence strain) is constant within the homogeneous inclusion in an infi-
nite matrix of the same material, and depends only on the inclusion shape, and inclu-
sion orientation, and elastic properties of the host [32, 33]. Closed-form solutions
have been proposed for some regular shapes such as a spherical inclusion:

S1111 = S2222 = S3333 = 7 − 5ν

15(1 − ν)

S1122 = S1133 = S2233 = 5ν − 1

15(1 − ν)

S1212 = S1313 = S2323 = 4 − 5ν

15(1 − ν)
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where ν is the Poisson’s ratio of the matrix material. The stress in the inclusion can
be calculated as:

σ I
mn = Cmnkl(Smnkl − δmnkl)ε

∗
kl

where σ I
mn is the stress in the inclusion, and δmnkl is the fourth-order identity tensor.

Through the application of the Eshelby approach, the mechanics of multi-phase
materials can be studied. Mean-field homogenization (MFH) provides equivalent
properties of a composite material from the constituent phase properties, geometry,
and volume fractions [32, 33]. These techniques are generally applicable when there
is sufficient scale separation between the inclusion phase and the matrix, typically
an order of magnitude in length scales.

8.3.1.1 Mean-Field Homogenization: Linear Elastic Behavior

Following the Eshelby approach, we can calculate the stresses and strain fields in
a composite with multiple phases with different properties [28, 32, 33, 34]. Unlike
the case presented in the previous section, a heterogeneous inclusion with different

material properties
(

C I
i jkl

)
than the matrix

(
C M

i jkl

)
is shown in Fig. 8.3a. A solution

to the inhomogeneous inclusion can be calculated through solving an equivalent
homogeneous inclusion that results in the same strain field as the inhomogeneous
inclusion. The average strain (or eigen-strain) in the inclusion was provided in the
previous section:

εi j = Si jklε
∗
kl

The micro-strain in the inclusion can be related to the macro-strain:

ε I
i j = Adil,I

i jkl ε0kl and σ I
i j = Bdil,I

i jkl σ 0
kl

where ε0i j and σ 0
i j are the macro-strain and stress, respectively, and Adil,I

i jkl and Bdil,I
i jkl

are the strain and stress concentration tensors, respectively. The strain concentration
tensor, also known as the dilute approximation tensor is given by:

Adil,I
i jkl =

[
δi jkl + Si jmn

(
C M

mnpq

)−1(
C I

pqkl − C M
pqkl

)]−1

Generically, the effective stiffness of the material with multiple inclusions can be
expressed as:

Ci jkl =
[∑

α

(
vαCα

i jmn Adil,α
mnkl

)]−1
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Mori-Tanaka
Self-consistent 
method

Mori-Tanaka
Self-consistent 
method

(a)

(b)

Fig. 8.3 Schematic of a heterogenous inclusion in a matrix. a Eshelby approach leading to a dilute
approximation. bApproximation used to arrive atMori–Tanaka and self-consistent homogenization

where vα = �α

�
is the volume fraction of the α phase and

∑
α vα = 1.

8.3.1.2 Mori–Tanaka Method

The Mori-Tanaka approach assumes that each heterogeneous inclusion (α) acts as
though it is embedded in an infinite matrix without any interaction with other inclu-
sions, which leads to ε I

i j = Adil,I,0
i jkl εM

kl , where Adil,I,0
i jkl is the dilute approximation

strain concentration tensor [35–37]. The Mori-Tanaka strain concentration tensor
for inclusion is given by:

Adil,α
i jkl =

[
δi jkl + SM

i jmn

(
C M

mnpq

)−1
{

C I,α
pqkl − C M

pqkl

}]−1

AMT,α
i jkl = Adil,α

i jmn

[
vMδmnkl +

∑
α

vα Adil,α
i jkl

]−1
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And the effective stiffness becomes:

C MT
i jkl = C M

i jkl +
∑

α

vα

(
C I,α

i jmn − C M
i jmn

)
AMT,α

mnkl

8.3.1.3 Self-consistent Method

This method assumes that each phase acts as though it is embedded in an effective
material with the average “composite” stiffness (C SC M

i jkl ) [29, 33, 38, 39]. This leads
to a strain concentration tensor:

ASC M,α
i jkl =

[
δi jkl + Si jmn

(
CC SM

mnpq

)−1{
C I,α

pqkl − C SC M
pqkl

}]−1

And the resulting effective stiffness of the material can be expressed as:

C SC M
i jkl = C M

i jkl +
∑

α

vα

(
C I,α

i jmn − C M
i jmn

)
ASC M,α

mnkl

It can be seen from the above equations that the effective stiffness (C SC M
i jkl ) appears

on both sides of the equations requiring it to be calculated iteratively until a specified
level of convergence is achieved.

8.3.1.4 Property Bounds

Each homogenization scheme relies on a set of assumptions to provide an elegant
solution to calculate the effective behavior of a composite. It is often difficult to
determine which one of these schemes will yield an accurate prediction for a given
material system. In addition, all of these techniques are built on the Eshelby approach
of an effective single inclusion problem that does not explicitly account for attributes
of the inclusion such as distribution of sizes, orientations, etc. To account for such
variability one can explore bounds of properties for a material system in addition to
the techniques presented in the previous section.

Voigt-Reuss Bounds

An effective method to understand the effect of an inclusion (secondary phase) in a
material is through the use of Voigt and Reuss bounds [32, 33, 40, 41]. The resulting
bounds for the elastic modulus of a two-phase composite can be expressed using the
rule of mixtures (Voigt/iso-strain) and inverse rule of mixtures (Reuss/iso-stress):



8 Predicting Mechanical Properties Using Continuum … 211

EVoi gt = vEI + (1 − v)EM

1

E Reuss
= v

E I
+ 1 − v

E M

where E I and E M is the elastic modulus of the inclusion and the matrix, respectively,
and v is the volume fraction of the inclusion in the two-phase material system.

Hashin–Shtrikman Bounds

The work of Hashin and Shtrikman was based on the variational principles to derive
bounds for the effective stiffness of a two-phase material [32, 33, 42, 43]:

C H S+
i jkl = C I

i jkl + (1 − v)
[(

C M
i jkl − C I

i jkl

)−1 + vSI
i jmn

(
C I

mnkl

)−1
]−1

C H S−
i jkl = C M

i jkl + v
[(

C I
i jkl − C M

i jkl

)−1 + (1 − v)SM
i jmn

(
C M

mnkl

)−1
]−1

where C H S+
i jkl and C H S−

i jkl are the bounds for the effective stiffness, respectively, and v
is the volume fraction of the inclusion in the two-phase material system, and Ci jkl,

and Si jkl are the stiffness tensors of the inclusion and the matrix, respectively, and
the superscripts I and M refer to the different phases within the composite.

8.3.2 Comparison of the Different Analytical
Micro-mechanical Models

For a composite material with a spherical inclusion of 10× stiffness relative to
the matrix material, Fig. 8.4 shows a comparison of predicted modulus with the
different micro-mechanics-based estimates [39]. The Voigt-Reuss bounds provide
the widest bounds encompassing the predictions from all other homogenization tech-
niques, while Hashin–Shtrikman provides tighter bounds. TheMori-Tanaka and self-
consistent approaches are relatively close until 30% volume fraction beyond which
they deviate. At low volume fractions (<5% approx.) of the inclusion, most of the
approaches are in reasonable agreement with each other. This would fall into the
truly dilute approximation where each inclusion behaves as though it is embedded
in an infinite matrix. As the inclusion volume fraction increases, the predictions
deviate from each other. At higher concentrations, the stress fields from each of the
inclusions starts to perturb the stress fields produced by the neighboring inclusion
leading to nonlinear behavior. Also, as the inclusion volume fractions increase, the
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Fig. 8.4 Comparision of stiffness predicted by different homogenization techniques for a two-phase
composite

definition of matrix, generally assumed to be the continuous phase, starts to break
down. The upper limit is a face-centered cubic (fcc) crystal for which the maximum
volume fraction is 74%, which leads to spherical inclusion becoming the continuous
phase. In general, beyond a certain concentration, the roles of matrix and inclusion
have to be rethought as the continuous (matrix) and discontinuous (inclusion) phases
may have to be reversed. The predictions of effective properties are also sensitive to
the magnitude of difference between the matrix and inclusion stiffness. Typically, as
the stiffness discrepancy between the matrix and inclusion is reduced, the different
homogenization schemes predict values closer to each other and in the limit case of
identical properties of matrix and inclusion, all predictions collapse to a single value.

8.3.3 Laminate Plate Theory

In the previous section, the focus was on understanding the resulting mechanics of a
composite from the knowledge of the constituent behavior. However, for many engi-
neering applications, the properties of interest are typically a few length scales larger
in magnitude. To address these engineering-scale problems, laminate mechanics are
typically employed. A laminate is series of layers of composite materials, typically
fiber reinforced, bonded together to form a plate. Each of these constituent layers
is referred to as “ply”. Most structural laminate applications involve withstanding
in-plane stretch loading or bending moments. The mechanics of these structures
can be understood through calculation of in-plane stresses/strains and the resulting
curvature, respectively [33, 44–46].
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Utilizing the symmetry of the Cauchy stress tensor, it can be expressed in Voigt
notation as:

σi j = σ j i i.e. σi j =
⎡
⎣

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎤
⎦

Voigt Notation: σi =
[
σ11 σ22 σ33 σ23 σ13 σ12

]T =
[
σ1 σ2 σ3 σ4 σ5 σ6

]T

For laminate plate theory, if we assume that the thickness of the plate is very small
when compared to the other dimensions of the plate and the plane stress conditions

apply, the stresses and the corresponding strains reduce to σi = [
σ1 σ2 σ6

]T
and

εi = [
ε1 ε2 γ6

]T
where γ6 = 2ε6 for each ply. The inter-laminar shear can be

neglectedunder this approximation.The stress–strain relationship for a unidirectional
fiber-reinforced ply is given by: σi = Qi jε j where Qi j is the reduced stiffness matrix
in the local coordinates of the ply, i.e., 1-direction is aligned to the length of the fiber
[44–48].

Qi j =
⎡
⎢⎣

E1
1−υ12υ21

υ12E2
1−υ12υ21

0
υ12E2

1−υ12υ21

E2
1−υ12υ21

0

0 0 G12

⎤
⎥⎦

where E1, E2 andG12 are themodulus of the ply in the 1, 2, and 6 directions of the ply,
respectively, with the 1-direction aligned to the length of the fiber. For a laminate
consisting of multiple plies, the forces and moments are related to the mid-plane
strains and curvatures:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Nx

Ny

Nxy

Mx

My

Mxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 B11 B12 B13

A12 A22 A23 B12 B22 B23

A13 A23 A33 B13 B23 B33

B11 B12 B13 D11 D12 D13

B12 B22 B23 D12 D22 D23

B13 B23 B33 D13 D23 D33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε0x
ε0y
γ 0

xy

κx

κy

κxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

where ε0x , ε
0
y, γ

0
xy and κx , κy, κxy are the mid-planes strains and curvatures, respec-

tively, of the laminate. Ai j = ∑
k Qk

i j tk ;Di j = ∑
k Qk

i j

(
tk zk

2 + t3k
12

)
; Bi j =

∑
k Qk

i j tk zk; are the in-plane stiffness matrix, bending stiffness matrix, and the
bending-extension coupling matrix, respectively. ‘k’ is the summation over all plies
in the laminate. Qk

i j is the stiffness matrix of the kth ply in the local coordinates, and
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Qk
i j is the stiffness matrix in the global coordinates obtained through a transforma-

tion operation such that Qk
i j = T −1

im Qk
mnT −1

jn and Ti j =
⎡
⎣

m2 n2 2mn
n2 m2 −2mn

−mn mn m2 − n2

⎤
⎦ with

m = cos θ and m = sin θ , where θ is the angle between the local fiber axis for the
kth ply and the global xyz axes.

The stresses in any ply can be calculated with σ k
i = Qi jε

k
j , where εk

i = ε0i + zκi

and z is the distance of the kth ply from the mid-plane of the laminate.

8.3.3.1 Failure in Laminate Plate Theory

The previous section describes the calculations for the stress and strain for a laminate
from the individual ply material properties, fiber orientation, and ply lay-up. This
analysis can be extended to situations where the composite is expected to fail [33,
44–49]. The failure criterion can be expressed simply from the knowledge of stress
and strain in the individual plies, and a determination of ply failure can be made.
First ply failure does not necessarily mean laminate failure, after the first ply failure,
the redistributed load may still be sustained by the laminate. For ply failure, if the
maximum stress or strain (i.e., σ k

i >
(
σ k

i

)Ult.
or εk

i >
(
εk

i

)Ult.
) is exceeded, in certain

cases, it can be assumed that the laminate has failed. These simple failure criteria
based on maximum stress and maximum strain implicitly assume there is a clearly
dominant stress/strain direction as compared to the others. In situations, where more
than one stress component is comparable to themaximum, themaximum stress/strain
criterion does not yield very realistic results.Other improved failure criteria have been
suggested such as Tsai-Hill, Tsai-Wu, Hasin, and Hashin-Rotem.

The Tsai-Hill criterion addresses the drawback of the failure criterion based on
only one of the components of stress (or strain) through use of an approach similar to
the von-mises criterion used for isotropic, homogenous systems. The failure envelope

is defined as σ 2
1

F2
1
− σ1σ2

F2
1

+ σ 2
2

F2
2
+ σ 2

6

F2
6
−1 = 0where F1, F2, F6 are the failure stresses along

1, 2, and 6 local directions of the ply that can be determined either experimentally or
through the use of micro-mechanical theories. However, there are certain drawbacks
to theTsai-Hill criterion as it does not distinguishbetween the tensile and compressive
asymmetry of strength of composites particularly in polymer-based materials. The
Tsai-Wu criterion addresses this strength asymmetry in the expression for the failure
envelope: f1σ1 + f2σ2 + f11σ 2

1 + f22σ 2
2 + 2 f12σ1σ2 + f66σ 2

6 − 1 = 0 where f1 =
1

F1t
− 1

F1c
, f2 = 1

F2t
− 1

F2c
, f11 = 1

F1t F1c
, f22 = 1

F2t F2c
, f66 = 1

F2
6
, and f12 = −1

F2
1t
.

Fxt and Fxc, where ‘x’ is 1, 2, and 6 are the strength of the composite in tension and
compression along the respective direction for the ply [44]. Different expressions for
f12 have been suggested by others [49]. Details of the Hashin [50], Hashin-Rotem
[51], and other failure criterion can be found elsewhere [49, 52].

Figure 8.5 shows the comparison of failure criterion for a uniaxial composite
(AS4/3501-6 Graphite/Epoxy), where σ1 and σ2 are the stresses along the length of
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Fig. 8.5 Comparision of the four different failure criterion for a uniaxial fiber composite:Maximum
stress, maximum strain, Tsai-Hill, and Tsai Wu

the fiber (1-axis) and the direction perpendicular to it direction (2-axis), respectively,
[49, 53]. σ f

1 and σ
f
2 are the failure stresses in the 1 and 2 direction of the composite,

respectively. The maximum stress criterion ignores any interactions between the
stress components hence the failure envelope is just a rectangle. The maximum
strain criterion also ignores interaction between the different strains, however, the
Poisson’s effects lead to a parallelogram for the failure envelope. Tsai-Hill has a
quadratic failure envelope in its classical form and does not include tensile and
compression asymmetry of strength, however Sun et al. [49] modified it to account
for the asymmetry. Tsai-Wu accounts for both linear and quadratic terms.

8.4 Computational Modeling: Finite Element Analysis
(FEA)

The primary goal of FEA is to provide an estimated elasticity solution (that is,
complete knowledge of the stress and strain fields inside an engineering structure
or component) for a complex geometry that does not have a closed-form elasticity
solution [54]. This is achieved by discretizing the overall geometry into a series of
smaller primitive geometries (elements) that have analytical solutions. For example,
consider the truck frame structure shown at the top of Fig. 8.7 represented by a
computer-aided design (CAD) image. The structure is clearly very complex and
contains welds (pink regions), holes, dimples, curves, and attached parts (brown
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regions); all of which form a structural model for which there are no known elasticity
solutions (try and find an elasticity solution to this complex geometry!). Rather than
attempting to solve such a complex problem, the frame geometry has been discretized
into a series of connected elements (mesh) such that the entire structure can be
reproduced with the complete set of structural features (e.g., welds, holes, dimples,
and curves), as shown in the bottom of Fig. 8.6. In the case of the structure shown
in Fig. 8.6, the elements types are hexahedrons and tetrahedrons. The FEA software
keeps track of the element connectivities, and material properties are assigned to
each element. Generally, each corner of each element contains a node, with adjacent
elements sharing common nodes.

The information regarding the element shapes, element connectivities, material
properties, and boundary conditions are combined to establish a single stiffness
equation for the entire model [54]:

[ f ] = [K ][d]

where [f ] is a N × 1 matrix containing the known nodal forces (force vector compo-
nents acting at each node), [d] is aN × 1matrix containing the known nodal displace-
ments, [K] is the N × N stiffness matrix, and N is the number of degrees of freedom
in the model (usually three displacement components associated with each node).
Finite element models can contain up tomillions of degrees of freedom. The stiffness
equation is solved computationally such that all nodal forces and displacements are

CAD drawing
of truck frame

FEA mesh of
truck frame

Fig. 8.6 CAD and FEA models of truck frame (Image courtesy Prathamesh Deshpande using
HyperWorks modeling software). Reproduced with permission from [1]. Copyright (2018) Elsevier



8 Predicting Mechanical Properties Using Continuum … 217

Fig. 8.7 Image showing a three-dimensional RVE of a composite material (left) and the constituent
high aspect ratio inclusions (right) [62, 63]

determined, and the corresponding stress and strain fields are calculated thereafter.
The stress and strain fields are typically visualized with a contour plot. It is important
to note that FEA is very powerful and flexible. Not only can it be used to simulate the
behavior of engineering structures, it can also be used to predict material properties
based on microstructure which will be presented later in this section.

8.4.1 Computational Micro-mechanics

The FEA approach can ultimately provide the best predictions of bulk properties
of composites based on the properties and geometry of the constituents relative
to other micro-mechanics methods. This is due to the ability of FEA to accurately
predict internal stress fields of a composite to a high degree of precision. The required
approachwith FEA is to simulate amaterial volume sample [55, 56]. A representative
volume element (RVE) is a volume of material whose effective behavior is represen-
tative of that of the bulk material [32, 33]. For a material system with a stochastic
nature (e.g., reinforcing fibers randomly aligned), the RVE must be large enough to
represent material symmetries that are the same as those of the bulk (e.g., isotropic,
transversely isotropic) [57–61].For example, consider RVE shown in Fig. 8.7. The
RVE contains whole small spheres, and symmetric portions of medium and large
spheres. Together, these various sizes of spheres represent the bulk material. For a
RVEmodeledwith FEA, each domainwithin the RVE ismeshedwith the appropriate
material properties applied.
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For heterogeneousmaterial systems that contain a periodically repeating structure,
a representative unit cell (RUC) is appropriate [60, 61, 64–68]. AnRUC is the volume
of thematerial that repeats itself to generate the overallmaterial structure.Anexample
of a RUC is shown in Fig. 8.8 for a unidirectional fibrous composite. Sometimes,
there are multiple RUCs that can be defined for a material structure, as shown in
Fig. 8.8. Regardless of the size of the RUC, special boundary conditions must be
applied onto the RUC sides within the FEA framework that effectively simulate the
structure as a component inside an infinite medium of repeat RUCs. These boundary
conditions are known as periodic boundary conditions, which are not to be confused
with periodic boundary conditions associated with DFT and MD models (although
they are conceptually very similar). In FEA models, periodic boundary conditions
provide the appropriate deformations of the model (RUC region) that would be
normally observed if external loads were applied onto the bulk sample. This will be
discussed in more detail below.

Although FEA-based micro-mechanical approaches are powerful and accurate,
they suffer from the same drawback as some of the other micro-mechanical models
discussed above, they are not easily accessible to many materials design engineers.
The building of the model and the application of the correct boundary conditions is a
complex process. An alternative computational approach is available that is accurate,
reliable, and relatively easy to implement into a composite material development
process. The generalized method of cells (GMC) [69] was developed for this purpose
and consists of a modeled RUC composed of subcells representing different material
phases (e.g., fibers and matrix). A first-order displacement field is assumed to exist
within the subcells (higher order displacement fields can be assumed if necessary),

Fiber

Matrix

Larger RUC

Smaller RUC

Fig. 8.8 RUC for a fiber composite. Reproduced with permission from [1]. Copyright (2018)
Elsevier
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Matrix
subcell

RUC

Fiber
subcell

Fig. 8.9 GMCRUC for a fiber composite. Reproduced with permission from [1]. Copyright (2018)

and traction and displacement continuity are imposed between adjacent cells. An
example of a GMC RUC is shown in Fig. 8.9 for a fibrous composite.

In this manner, internal fields are simulated within the composite without the need
for discretizing the phases into elements, as is required with the FEA method. The
GMC method has been implemented in the software program MAC/GMC (Micro-
mechanics Analysis Code base on the generalized Method of Cells). The software
is publicly available and easy to learn, making it much more accessible to materials
design engineers, with a level of accuracy that is sufficient for most computational
material modeling (CMM) efforts. Comprehensive details on this method can be
found elsewhere [69].

8.5 Multiscale Modeling Concepts

So far, we have discussed the primary predictive tools available for modeling of
composites at various length scaleswith particular emphasis on techniques applicable
at themicronscale. From this discussion, it should be clear that these tools vary greatly
in the time and length scales, as well as their assumption of a discrete/continuous
framework. As is evident in Fig. 8.1, the prediction of the bulk-level response of an
engineering component based on atomic structure requires the usemultiplemodeling
tools acrossmultiple time and length scales. This section discusses someof the impor-
tant concepts related to the linking of different predictive tools across multiple length
and time scales. Multiple options exist for incorporating information from different
length scales in computational material modeling (CMM). The first option is to start
with a lower-length scale modeling approach, and use the predicted information as
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input into a higher length scale model. This is known as the bottom-up approach.
This corresponds to moving from left to right in the length scale spectrum shown in
Fig. 8.1.

8.5.1 Bottom-Up Approach: Equivalent Continuum

Perhaps the most difficult conceptual aspect of multiscale modeling is the need to
represent a discrete system (all materials are discrete at ~nanometer length scales)
using concepts that rely on the assumption of a continuum. For example, the definition
of Young’s modulus applies only in the continuum mechanics realm. The prediction
of Young’s modulus based on atomic structure (particularly complex atomic struc-
tures) requires a transition from the discrete to continuum realms. We need some
governing rules to be able to safely navigate this transition.

An equivalent continuum is a material model in the continuum realm that has
typical engineering concepts tied to it (e.g., Young’s modulus, stress, strain, thermal
conductivity, glass transition) that describe a material behavior that is observed (or
predicted) in either the discrete realm or a lower-scale continuum realm. The chal-
lenge is to find a way to take lower-length-scale-level predictions/observations and
establish an equivalent continuum. The first step in this process is typically to estab-
lish a RVE (or RUC in the case that the lower-level structure is very simple; we
will henceforth just refer to the RVE with the understanding that a RUC can also be
used in certain cases). There are multiple factors in selecting an RVE size, including
boundary conditions used, crystalline/amorphous nature of thematerial, desired level
of accuracy, and availability of sufficient computational resources.

8.5.1.1 Boundary Conditions

Consider the molecular RVE shown in Fig. 8.10. Suppose that an equivalent volume
and shape of the equivalent continuum material are used to represent (overlay) the
RVE, denoted as region R with boundary ∂ R. The equivalent continuum model
should mimic the behavior of the heterogeneous model as closely as possible under
all mechanical loadings. It is important to note that an equivalent continuum model
will ideally represent the behavior of an arbitrary volume of the actual material, not
just the shape defined by the RVE. The definition ofR is only necessary for relating
the mechanical response of the RVE to that of the equivalent material points in the
equivalent continuum.

The mechanical response of the RVE is usually established by applying boundary
conditions onto the RVE boundary and predicted the corresponding behavior. This
is usually performed computationally. There are four types of boundary conditions
for RVEs in static equilibrium: displacement-controlled boundary conditions (also
called kinematic or Dirichlet boundary conditions), traction-controlled boundary
conditions (also called static or Neumann boundary conditions), periodic boundary
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RVE Equivalent Con nuum



L(1) 

L(2) 

L(3) 

Fig. 8.10 Equivalent continuummodeling.Reproducedwith permission from [1].Copyright (2018)
Elsevier

conditions, or a mixture of these three [33]. For displacement-controlled boundary
conditions, the components of the prescribed (denoted with overbar) displacement
vector are specified everywhere on ∂ R

ui = ui ∀X ∈ ∂ R

where u is the displacement vector and X is the material coordinate vector. For
traction-controlled boundary conditions, the components of the prescribed traction
vector are specified everywhere on ∂ R as

si = Si j N j ∀X ∈ ∂ R

where S is the stress tensor and N is the surface unit normal vector. For periodic
boundary conditions, the prescribed displacements and tractions are given by

ui (X + L) = ui (X) + uave
i s(X + L) = −s(X) ∀X ∈ ∂ R

where uave is the average displacement vector associated with the bulk deformation
of the solid material, and L is the periodicity vector of the RVE (shown, for example,
in Fig. 8.10). For the case of mixed boundary conditions, the boundary of region R
can be divided into three sub-boundaries ∂ Rd, ∂ Rt, and ∂ Rpr such that

∂ R = ∂ Rd ∪ ∂ Rt ∪ ∂ Rp ∂ R◦
d ∩ ∂ R◦

t ∩ ∂ R◦
p = ∅

where ∅ is the null set and the superscript ° denotes the relative interior. The
corresponding boundary conditions are
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ui = ui ∀X ∈ ∂ Rd

si = Si j N j ∀X ∈ ∂ Rt

ui (X + L) = ui (X) + uave
i ; s(X + L) = −s(X) ∀X ∈ ∂ Rp

Although the simplest approach to applying boundary conditions to a RVE (either
computationally or analytically) is to use the displacement- or traction-controlled
boundary conditions, it has been shown [59, 64] that the application of periodic or
mixed boundary conditions to the RVE results in a more realistic predicted material
response.

8.5.1.2 RVE Size

It was stated above that the type of boundary conditions used could influence the
necessary RVE size. Specifically, theminimum size of an RVE for a periodicmaterial
is the minimum size of a possible repeatable structure, as shown in Fig. 8.8 for
the smaller RVE of the fiber composite material. However, if periodic boundary
conditions are applied to the edges of the RVE, then the minimal size of the RVE is
theminimum size necessary to construct thematerial structurewithout rigid rotations
of the RVE, such as the larger RVE in Fig. 8.8 and the RVE in Fig. 8.10. If periodic
boundary conditions are not used, then the computational results will depend on
the RVE size. This dependence will depend on the morphology and properties of
the material. Generally, the larger the RVE, the more accuracy is obtained with
the results. For example, consider the elastic properties of aligned-fiber composites
established by Jiang et al. [64]. Traction-controlled, displacement-controlled, and
periodic boundary conditions were applied for bulk-level transverse shear (shear
in the plane transverse to the fiber direction). Two cases were simulated, one that
contained inclusions that were stiffer than the matrix by an order of magnitude and
one in which the matrix was stiffer than the inclusions by an order of magnitude.
The Young’s modulus of the matrix was assumed to be 1 GPa. The corresponding
transverse shear modulus was determined using all three boundary conditions for
the two composite systems for RVE sizes of δ = δ0, 2δ0, 3δ0, and 4δ0 where δ0 is
the RVE size shown in the inset of Figs. 8.11 and 8.12. Figures 8.11 and 8.12 show
the calculated shear modulus for the stiff inclusions and matrix, respectively, for the
different RVE lengths. The data has been plotted with smooth lines to emphasize
the overall trend. Clearly, for the case of stiff inclusions shown in Fig. 8.11, the
discrepancy between the predicted modulus from the periodic and displacement
boundary conditions is larger than that between the periodic and traction boundary
conditions. Both discrepancies decrease as the RVE size increases. For the case of the
stiff matrix shown in Fig. 8.12, the predicted shear modulus from the displacement
boundary conditions has better agreement with the periodic boundary conditions
than does the modulus predicted with the traction boundary conditions. Again, as the
RVE size increases, the different sets of boundary conditions predict a more similar
shear modulus.
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Fig. 8.11 Transverse shear modulus of fiber composite with stiff inclusions. Reproduced with
permission from [1]. Copyright (2018) Elsevier

Fig. 8.12 Effect of boundary conditions in equivalent continuum modeling. Reproduced with
permission from [1]. Copyright (2018)

For amorphous materials, such as that shown in Fig. 8.10, the minimum size of
the RVE is the size that statistically represents the structure of the material. This is a
fairly ambiguous statement; however, there is no general agreement of a minimum
necessary size of an RVE that produces more accurately predicted bulk-level prop-
erties. Of course, as the RVE size increases, the more likely the predicted properties
will agree with those measured at the bulk-length scale level. Consider the molecular
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Fig. 8.13 RVE sizes for an equivalent continuum. Reproducedwith permission from [1]. Copyright
(2018) Elsevier

model RVEs shown in Fig. 8.13. The small molecular model RVE may be too small
to effectively represent a continuum, as there is a poor mapping between the very
limited number of atoms in the molecular model to the continuum of points in the
equivalent continuum model. This would likely result in an equivalent continuum
that does not accurately represent the behavior of the molecular model. However, as
the RVE is expanded to include more atoms, the overall structure gradually comes
closer to representing a material continuum. The large molecular model is likely
sufficient in size to be accurately represented by a continuum.

8.5.1.3 Equivalence of Average Scalar Fields

Once an RVE is established, and the appropriate boundary conditions are chosen,
the next step is to determine the properties that allow the continuum representation
to mimic the RVE behavior. In general, an equivalent continuum must meet two
requirements in order to accurately predict the behavior of a particular material:

1. Under identical applied far-field deformations (or loads), the RVE and the equiv-
alent continuum must have identical (or nearly identical) values of one or more
scalar fields that are averaged over the volume of the RVE and volume R

2. The material points of the equivalent continuum volume R must have the same
kinematic motion as material points (atoms in some cases) of the heterogeneous
RVE at the same locations relative to some defined basis set and origin.
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Requirement #1 expresses the need to have one or more scalar parameters; such
as the scalar strain energy density or the six scalar components of the stress tensor
averaged over the RVE; to have equal values under identical loads applied to the RVE
and equivalent continuum models. For example, suppose boundary conditions are
applied to the RVE shown in Fig. 8.10. The total potential energy is calculated before
and after the application of the boundary conditions using the assigned force field and
atomic coordinates. The change in this potential energy correlates to the strain energy
of the equivalent continuum that is deformed under the same exact conditions. The
material parameters (e.g., Young’s modulus) can be adjusted such that the energies
of the two models match. It is important to note that many researchers choose to
match components of virial and continuum stress tenors (from the RVE and effective
continuum models, respectively) under identical conditions. Although this approach
makes intuitive sense, it may be unnecessary to do so if Requirement #2 is enforced.
Further, it is much more efficient to match a single scalar value (strain energy) than
to match six independent components of a symmetric stress tensor. Further details
on this requirement can be found elsewhere [70]. Once Requirement #1 is satisfied,
then Requirement #2 must be considered.

8.5.1.4 Kinematic Equivalence

Requirement #2 is often referred to as the Cauchy-Born Rule, which requires the
kinematic motions of the RVE and the equivalent continuum to match for each atom
(in the case of a molecular RVE) or each material point (for a heterogeneous micro-
scale model) of the RVE. For example, in the case of the RVE shown in Fig. 8.10, the
equivalent continuum should deform in the same identical manner on both the RVE
surface and in the interior as the atoms in the RVE. This requirement often requires
higher-order elasticity theories [24, 26, 27] to be used to accurately match RVE and
effective continuum deformations.

Although this requirement can be easily satisfied for the deformations of simple
RVEs such as those shown in Figs. 8.11 and 8.12, this rule is usually ignored for
more complex RVEs, such as that shown for an amorphous polymer in Fig. 8.10
for one of the following reasons. Either (a) this requirement is over-restrictive and
unnecessary given the required predictive accuracy of the effective continuum, or (b)
this requirement is extremely difficult to impose on very complex RVEs. An example
of point (a) is captured with the heterogeneous RVE of Fig. 8.8. In the composites
community, it is often unnecessary to have predictive effective continuum models to
predict the point-to-point kinematic mechanical behavior of the microstructure. The
relaxation of this requirement has presented few difficulties in the successful design
and implementation of most fiber-reinforced composite materials in the last several
decades. An example of item (b) is for the amorphous RVE shown in Fig. 8.10. Given
the complex atomic interactions that occur on this length scale for a set of atoms that
have no local geometric order, the kinematicmotion of the atoms is not expected to be
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uniform. Establishing a higher-order effective continuum model to match a highly
non-uniform deformation field would be an exhausting task. Therefore, although
Requirement #2 is rigorously followed for simple crystalline (or highly ordered)
material systems, it is rarely followed for amorphous or structurally complex mate-
rials. Perhaps themost successful use of requirement #2 is for predicting the response
of crystalline materials, as is detailed elsewhere [71].

8.5.1.5 An Example: Silica/Polyimide Nanocomposite

Odegard et al. modeled a nanocomposite system with silica reinforcement in a poly-
imide matrix, to study the effect of the particle size on the effective mechanical prop-
erties of the composite [72]. Homogenized properties from Mori–Tanaka technique
for this two-phase material system was compared to the equivalent continuum prop-
erties of a molecular model using the approaches described in the previous section.
At larger silica particle sizes (>100 nm), the models agreed quite well; however, at
small silica particle size, the predictions these the two approaches deviate. This can be
explained due to the fundamental assumption in continuum based micro-mechanics
homogenization techniques such as Mori–Tanaka is the presence of continuum at
all length scales techniques. At small enough length scales, the local interactions
between the nano-particle and the matrix result in a breakdown of this assumption.
The region of localized influence of the reinforcement (silica) on the matrix (poly-
imide) is generally referred to as an “interphase”. Classical Mori–Tanaka does not
readily provide options to incorporate the effect of the interphase. The interphase can
be regarded as a third phase in this material system in addition to the matrix and the
reinforcing particle. In molecular models, the perturbation in the local density due
to the introduction of a reinforcing phase serves to validate this presence of inter-
phase. However, as the particle size increases due to changes in the surface to volume
ratio of the particle, the interphase contribution to the mechanics becomes negligible
and the classical micro-mechanics approaches such as Mori–Tanaka become good
approximation for their mechanical behavior. At length scales where interphase is an
important contributor to the overall mechanics of the material system [73, 74], modi-
fications to the micro-mechanics approach have been proposed such as the effective
interface model that introduces a third phase to account for this localized influence
from reinforcing particle, and the stiffness of the composite can be expressed as [72]:

Ci jkl = C M
i jkl + [(vI + vi )

(
Ci

i jmn − C M
i jmn

)
AI i

mnkl

+vI
(
C I

i jmn − Ci
i jmn

)
AI

mnkl

][
vI δi jkl + (vI + vi )AI i

i jkl

]−1

where AI
i jkl = δi jkl − SI

i jmn

[
SI

mnkl + (C I
mnop − C M

mnop

)−1
C M

opkl

]−1
and
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AI i
mnkl = δi jkl − SI

i jmn

{
vI

vI + vi

[
SI

mnkl + (C I
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)−1
C M

opkl

]−1

+ vi

vI + vi

[
SI

mnkl + (Ci
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}

In the above equations, AI
i jkl and AI i

i jkl are strain concentration tensors, vI and
vi are the volume fractions of the inclusion and the interphase, respectively. C M

i jkl ,

C I
i jkl, Ci

i jkl and Ci jkl are the stiffness tensors for the matrix, inclusion, the interphase,
and the average for the composite, respectively. SI

i jkl is the Eshelby tensor for the
inclusion.

The influence of the particle size can be captured using the effective inter-
face model based on micro-mechanics and in conjunction with the equivalent
continuum approach can be used for bottom-up modeling of nanostructured mate-
rials. Figure 8.14 compares the predicted Young’s modulus for the silica/polyimide
system for different sizes of a functionalized silica particle bonded to a polyimide
matrix [72]. The role of interphase is a significant contributor to the mechanics of the
materials belowcertain particles sizes due to the surface interactions between the rein-
forcement and thematrix, which can be accounted for with appropriate modifications
to continuum based approaches.
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Fig. 8.14 Comparison of Mori–Tanaka and an effective interface micro-mechanical models as a
function of the silica particle size for prediction of the modulus of a binary composite of silica
functionalized to a polyimide matrix



228 P. K. Valavala and G. M. Odegard

8.5.2 Top-Down Approach

The second option is to use information from higher length scale model as input into
lower-length scale models[55, 56], known as the top-down approach as shown in
Fig. 8.15, for the specific case of a double notch four point bend (DN4PB) sample
subject to impact loading.ADN4PB test is typically used to probe pre-failure damage
in multiphase materials [75]. Details of the DN4PB test can be found elsewhere
[75]. An FEA model was developed for a stationary crack for a two-phase rubber
toughened material [62, 63]. It assumes plane strain conditions and the macro-scale
FE model (Fig. 8.15a) are based on an average material behavior calculated using
the Mori-Tanaka homogenization technique. The matrix material is assumed to be
elastic–plastic with linear hardening and the rubbery inclusion is described using a
hyper-elastic material model of arbitrary material constants. Figure 8.15b provides
a zoomed in view of the FE mesh and the stress contours for the material showing
localization of stresses at the crack tip. The butterfly pattern of the stresses ahead of
the crack tip [76] is typical in the DN4PB test. In a localized region ahead of the
crack tip (Fig. 8.15b, c), a micro-scale model that explicitly accounts for the two
phases can help understand the failure behavior of the two-phase material and the
tougheningmechanisms. First themacro-scalemodel is solvedwith the homogenized
two-phase material behavior, and for each loading step the displacement boundary
condition in the localized region are passed to themicro-scalemodel to evolve stresses
explicitly in the two phases of the material. Figure 8.15c shows the visualization of
stress triaxiality in this localized region. Stress triaxiality can be used to understand
the competition between cracking (local pressure dependent) and shearing within a
material to understand crack propagation.

(a) Macro-scale 

(b) Zoom-in

(c) Stress tri-axiality
Micro-scale model with two-phases modeled explicitly

Fig. 8.15 A top-downmodeling approach to understanding fracture behavior of a rubber toughened
material in a double notch four point bend test (DN4PB). a Stress countours of a macro-scale FE
model. b Zoomed-in view of the stresses at the crack tip of the left crack. c Micro-scale model
showing stress triaxiality with explicit rubber doamins within the matrix ahead of the crack tip
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The top-down models can be carried out with the macro-scale solution providing
the displacement boundary conditions for the micro-scale model with one-way
coupling, i.e., macro-FEA model driving the micro-model. However, it is possible
to build coupled models, where the two-scales of models can be solved in a coupled
fashion to enable information flow both ways [55, 56]. For both bottom-up and top-
down approach, the transition from different modeling schemes is relatively painless.
However, these approaches do not provide a direct interaction between modeling
schemes.

8.5.3 Concurrent Modeling

A third option is to have two different modeling schemes interact directly such that
information can be passed back and forth between the two, and this continuous flow
of information influences both simulations. This is known as concurrent modeling.
This approach makes it possible to simulate the influence of a larger-scale event on
the material at a smaller length scale, and vice versa. For example, it is sometime
desirable to understand how a large-scale propagating stress wave might affect the
atomic behavior of the material. The stress wave is best simulated with a simulation
in the continuum realm, while the atomic behavior is best simulated in the discrete
realm. For the two different simulations types to “talk to each other”, it is necessary
to establish an interface in which information can be shared, called a handshake
region. Figure 8.16 shows a general diagram of the handshake region to interface

Atomic model

FEA model

Handshake region

Fig. 8.16 Handshake region between discrete and continuousmodels. Reproducedwith permission
from [1]. Copyright (2018) Elsevier
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an atomic and FEA model. The atoms don’t necessarily correspond directly to FEA
nodes. A wide range of methods has been developed to couple concurrent models
using the handshake approach. More detailed reviews of these methods can be found
elsewhere [71, 77, 78].

8.6 Summary

Mechanical properties ofmaterials can bemodeled at various length scales depending
on the need for understanding the causal relationship between the structure at a certain
length scale and the resulting properties. The current chapter presented a fewdifferent
techniques of achieving this with particular emphasis on micro-scale modeling tech-
niques: analytical and computational. A few examples demonstrating options for
multiscale modeling were discussed that are capable of advancing a mechanism-
based understanding of the mechanics of materials. The holy grail for complete
elucidation of material physics is a fully coupled atomistic to macro-scale model,
which does not quite yet exist. However, stringing together the different modeling
techniques at various length scales certainly enhances the study of structure–property
relationships.
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Chapter 9
Modeling the Thermal Conductivity
of Polymer-Inorganic Nanocomposites

Valeriy V. Ginzburg and Jian Yang

Abstract Inmany applications (LED lighting, consumer electronics, transportation,
and others), successfully managing/removing the excess (“waste”) heat is crucial
to successful performance. This, in turn, requires materials with sufficiently high
thermal conductivity values. However, most polymers are characterized by rela-
tively low thermal conductivities (κ < 1 W/m K). Thus, in many applications, it
is necessary to design hybrid materials (composites and nanocomposites) with the
processability of polymers and thermal conductivity close to that of ceramics or other
inorganics (κ ~ 1–10 W/m K). Theory and modeling are widely used to understand
the design rules for the development of such composite materials. Here, we review
the recent progress in this field, describing methods of predicting thermal conduc-
tivity of (nano)composites as function of their composition and the properties of the
constitutive materials (matrix and fillers).

9.1 Introduction

In the last several decades, the need for materials combining high thermal conduc-
tivity (TC) and good processability has increased dramatically. This need is partic-
ularly acute in electronic industry where the miniaturization of devices results in
a continuing increase in the waste heat generated during the device operation [1–
3]. Thus, it is necessary to direct this waste heat from the high-power elements to
the eventual heat sink; otherwise, the high-power elements would overheat quickly
and their performance would degrade over time. The heat management system, then,
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requires various “thermal interfacematerials” (TIM) such as greases, elastomers, and
others [4]. Those TIMs need to combine processability (they need to be sufficiently
malleable to fit the spaces between the other elements of the device without leaving
any voids) and high thermal conductivity. These attributes, however, are somewhat
contradictory. Typical high-TC materials (metals and ceramics) are usually hard and
brittle, while most polymers have low TC [5]. Thus, typical TIMs are composites,
where high-TC fillers are dispersed in a polymer matrix, either crosslinked or un-
crosslinked. The fillers could be ceramic, metal, or carbon-based (such as carbon
nanotubes or CNT); they could be nano-sized, micro-sized, or a combination thereof
(see Sect. 9.2 for more details).

Given the complexity of the parameter space, the development of theoretical and
modeling tools to map it out is critically important. Indeed, prediction of thermal
transport in polymer-inorganic composites has been an active field over the past
several decades. We refer the reader to a number of reviews on the topic published
in recent years [5–10]. Here, we generally follow the discussion from our earlier
review, with some updates and modifications.

To begin with, let us define the goal of the study. In a homogeneous material, the
heat flux q is proportional to the negative of the temperature gradient ∇T (Fourier’s
law),

q = −κ(∇T ) (9.1)

where the proportionality constant κ is the thermal conductivity of the material,
measured (in SI units) in W/m K. Fourier’s law is valid over large length-scales, and
expected to break down at the molecular length-scales. Now, the question we would
like to address is as follows—knowing the thermal conductivities of the matrix (κm)
and the fillers (κ f), as well as the filler volume fraction φ, can we find out the thermal
conductivity of the overall composite (κc)?

The problem is rather non-trivial, because it contains two separate sub-problems
(Fig. 9.1). The first problem is to determine how the fillers are organized in the
composite—are they oriented (if anisotropic), aggregated, well-dispersed, etc. The
second problem is—assuming the morphology is known, determine the thermal
conductivity. In general, most studies concentrate on the second problem, and this is
what will be our focus here as well.

Our chapter is structured as follows. First (Sect. 9.2), we briefly discuss the types
of fillers and polymers used for thermal management applications and recap the
typical values of thermal conductivities for most relevant polymers and fillers. Then,
we describe the analytical effective medium approximation (EMA)-type theories
(Sect. 9.3) and numerical simulations (Sect. 9.4). Finally, we will discuss the current
status of the theory, opportunities, and challenges (Sect. 9.5).
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Fig. 9.1 From components to composites. Fillers are compounded into the polymer matrix to result
in a nano- or micro-composite material. The final properties of the composite depend not just on
the composition, but also on the “morphology” (how the particles are dispersed in the composite),
which, in turn, is influenced by the processing (compounding)

9.2 Thermal Conductivities of Typical Polymers and Fillers

9.2.1 Polymers

The polymer matrix TC plays a crucial role in determining the overall TC of thermo-
plastic composites [11, 12]. In principle, thermal conductivity of a single polymer
chain or an “ideal” polymer crystal can be quite high, as predicted in computer simu-
lations [13–16]. Henry and Chen [13] found that the TC of single polyethylene (PE)
chains with an extended conformation could be as high as 350 W/(m K) when a
chain length is longer than 100 nm (Fig. 9.2). In another example, spider dragline
silkwith amicrometer-sizewas recently reported to have exceptionally high TC up to

Fig. 9.2 Thermal conductivity (circles) and corresponding thermal conductance (triangles) predic-
tions for a single PE chain. The τ∞ curves assume that the large-wavelength modes have infinite
phonon–phonon relaxation times. The fit curves use extrapolated values for the relaxation times of
these modes. Reproduced with permission from [21]. Copyright 2008 American Physical Society
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416W/(mK) [17], which is due to its well-organized, highly crystalline, ordered, and
oriented morphology, formed by a near-perfect self-assembling process. However,
real-life polymers in practice have much lower values of TC, as can be seen in Table
9.1 (also see [18–20]).

The reason that the thermal conductivity of polymers is relatively low stems from
the following. In general, thermal conductivity is given by,

Table 9.1 Thermal conductivities of selected thermoplastic polymers

Thermoplastic polymers Thermal conductivity at room temperature
(W/m K)

High-density polyethylene (HDPE) 0.33–0.53

Ultrahigh molecular weight polyethylene
(UHMWPE)

0.41–0.51

Commercial thermotropic liquid crystalline
polymers (LCP)

0.30–0.40

Polyoxymethylene (Homo) (POM) 0.30–0.37

Low density polyethylene (LDPE) 0.30–0.34

Poly(ethylene vinyl acetate) (EVA) 0.35

Polyphenylene sulfide (PPS) 0.30

Poly(butylene terephthalate) (PBT) 0.25–0.29

Polytetrafluoroethylene (PTFE) 0.27

Polyamide-6,6(PA66) 0.24–0.33

Polyamide-6 (PA 6) 0.22–0.33

Polyetheretherketone (PEEK) 0.25

Polysulfone (PSU) 0.22

Polymethylmethacrylate (PMMA) 0.16–0.25

Polycarbonate (PC) 0.19–0.21

Urethane base TPE (TPU) 0.19

Poly(acrylonitrile–butadiene–styrene)
copolymer (ABS)

0.15–0.20

Polyvinyl-chloride (PVC) 0.13–0.29

Polyvinylidene difluoride (PVDF) 0.19

Styrene/polybutadiene copolymer (SB) 0.17–0.18

Styrene-acrylonitrile copolymer (SAN) 0.15–0.17

Poly(ethylene terephthalate) (PET) 0.15

Polystyrene (PS) 0.10–0.15

Polyvinylidene chloride (PVDC) 0.13

Polysobutylene (PIB) 0.12–0.20

Polypropylene (PP) 0.11–0.17

Polyimide, thermoplastic (PI) 0.11

Reprinted with permission from [5]. Copyright (2016) Elsevier
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κ = 1

3

∑

j

v j l jCp, j (9.2)

where the summation is over various phononwavenumbers andpossibly over electron
modes (if available—they are significant in metals and some CNT and graphenes,
but not in polymers or ceramics); v,Cp, and l are the carrier speed, the contribution to
the heat capacity, and the mean free path of the carrier, respectively. For amorphous
polymers, the mean free path of the phonons is extremely low, and thus the overall
thermal conductivity is also low. In general,most amorphouspolymers (thermoplastic
and thermoset) have TC ~ 0.1–0.5 W/m K; highly oriented liquid crystalline or
crystalline polymers usually have higher TC ~ 0.5–1.0 W/m K. For more detailed
discussion, see [5].

9.2.2 Fillers

Thermal conductivities of several filler types are summarized in Table 9.2. Note that
these generally should be considered “bulk” thermal conductivities. For nanoparti-
cles, especially in the case of metals, the actual thermal conductivity could be lower
(see, e.g., [22]).

While thermal conductivity of a filler is important in determining the properties
of the overall composite, there are several other factors. First, the primary filler

Table 9.2 Thermal conductivities of selected fillers

Fillers Category TC W/(m K) Electrically conductive?

Aluminum Metal 234 Yes

Copper Metal 386 Yes

Silver Metal 427 Yes

Carbon nanotube (CNT) Carbon-based 1000–4000 Yes

Carbon fiber Carbon-based 300–1000 Yes

Graphene Carbon-based 2000–6000 Yes

Graphite Carbon-based 100–400 Yes

β-Silicon nitride (β-Si3N4) Ceramics 103–200 No

Hexagonal boron nitride (h-BN) Ceramics 185–300 No

Aluminum nitride (AIN) Ceramics 100–300 No

Diamond Ceramics 1000 No

β-Silicon carbide (β-SiC) Ceramics 120

α-Alumina (α-AI2O3) Ceramics 30 No

Beryllium oxide (BeO) Ceramics 270 No

Reprinted with permission from [5]. Copyright (2016) Elsevier
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particles could come in different shapes, from high-aspect ratio fibers (like carbon
nanotubes) to spheres to “flakes”. Second, the primary particles can be weakly or
strongly agglomerated. Lastly, the surface treatment (if any) and the interactions
between the filler and the matrix can impact the interfacial thermal resistance.

9.3 Analytical Theories and Micromechanical Models

Analytical theories andmicromechanical models aim to calculate (in an approximate
fashion) the property of a composite (e.g., thermal conductivity, electrical conduc-
tivity, Young’s modulus, viscosity, etc.) as a function of its composition and the
properties of the individual components.

9.3.1 The Parallel and Series Models as the Upper and Lower
Limit Estimates

The simplest approach as the first approximation is to consider two limiting cases:
linear mixing rule (also known as the parallel model) and inverse mixing rule (often
referred to as the series model), see Fig. 9.3. It is generally believed that all linear
properties (TC, electrical conductivity, tensile modulus, etc.) have the series model
calculating the lower bound and the parallel model predicting the upper bound. The
equations for the two models are given by,

κc = φκf + (1 − φ)κm (Parallel) (9.3)

κ−1
c = φκ−1

f + (1 − φ)κ−1
m (Series) (9.4)

Fig. 9.3 Schematic of the
series (left) and parallel
(right) composite models
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Equations (9.3) and (9.4) could be easily generalized to an arbitrary number of
fillers.

Most experimental data fall between these two bounds, with the series model
usually closer to the experimental data as compared to the parallel model [23]. Obvi-
ously, neither series nor parallel model is expected to be very accurate, given that
they do not consider factors like the particle shape, orientation (for the non-spherical
particles), or the actual morphology. Those are accounted for in the so-called effec-
tive medium approximation (EMA) models. Some of the most widely used EMA
approaches are described below.

9.3.2 EMA for Spherical Fillers

In the Maxwell-Garnett (MG) model [24], the conductivity of the composite having
spherical fillers is given by,

κc = κm

(
1 + 3φ(δ − 1)

2 + δ − φ(δ − 1)

)
(9.5)

where δ = kf/km, andφ is the filler volume fraction. Theφ-dependence of the relative
thermal conductivity of the composite within MGmodel is shown in Fig. 9.4. At low
filler loadings, the dependence of composite TC on filler content is nearly linear.

The MG model equations are generally applicable to composites with low filler
volume fractions (“dilute regime”) and also disregard the role of the interfacial

Fig. 9.4 Effective thermal conductivity of composites as a function of filler loading based on MG
model prediction. Different curves correspond to different filler thermal conductivities
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thermal resistance (“Kapitza resistance” [25]). The latter problem was addressed
by Nan et al. [26]. Nan’s model can be written as,

κc = κm

(
1 + 3Aφ

1 − Aφ

)
(9.6)

A =
1 −

(
κm
κf

+ aK
a

)

1 + 2
(

κm
κf

+ aK
a

) (9.7)

where aK = Rκm is theKapitza radius,R is the interfacial thermal resistance between
the matrix and the particle, and a is the particle radius [27]. As the Kapitza resis-

tance is increased, the “effective filler thermal conductivity”, κeff
f = [

κ−1
f + R

a

]−1

decreases correspondingly and the overall composite TC would be reduced as well.
The dependence of thermal conductivity on the filler volume fraction based on Nan
model is shown in Fig. 9.5; here, we kept the “nominal” ratio kf/km = 100 constant
but changed the aK/a. It can be clearly seen that if the Kapitza radius starts to exceed
the radius of the filler, the overall composite thermal conductivity would decrease,
rather than increase, with the filler loading. In the limit of aK

/
a → 0, one recovers

the original MG-like behavior (top curve).
The above approaches are, strictly speaking, accurate primarily in the “dilute

limit” where the interactions between the particles can be neglected. Ordonez-
Miranda and co-workers developed a novel “crowding-factor” model that results
in a more accurate description of composites with high filler volume fractions [10,
27–29]. Their approach is based on the ideas originally utilized by Mooney [30] in

Fig. 9.5 Effective thermal conductivity of composites as a function of filler loading based on Nan
model prediction. Different curves correspond to different Kapitza radius values
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analyzing the viscosity of concentrated suspensions.After accounting for the “crowd-
ing” effects as the filler volume fraction approaches the maximum packing fraction,
the Nan (9.6) is replaced by,

κc = κm exp

(
3Aφ

1 − Aψφ

)
(9.8)

ψ = 1 + φ
1 − φ0

φ0
(9.9)

where φ0 is the maximum packing fraction. While the proposed approach showed
a good agreement with experiments in some cases, more validation is still needed.
Indeed, at sufficiently high filler loading, thermal conductivity predicted by (9.8) is
expected to diverge, rather than smoothly approach κ f; this is unphysical and thus
implies that the model still needs modifications.

9.3.3 Non-spherical Fillers

Fricke [31] generalized the MG model for the case of the spheroidal inclusions. In
the dilute limit, suspended particles are considered to be thermally isolated one from
another. Fricke’s equation can be written in a form resembling the MG (9.5):

kc = km

(
1 + nφ(δ − 1)

n − 1 + δ − φ(δ − 1)

)
(9.10)

where

n = β(δ − 1)

(δ − 1) − β
(9.11)

β = 1

3
(δ − 1)

[
2

1 + L11(δ − 1)
+ 1

1 + L33(δ − 1)

]
(9.12)

The factors L11 and L33 depend on the filler aspect ratio r (which is defined as the
size divided by thickness and always larger than unity).

L11 = r2

2(r2 − 1)
− r

2(r2 − 1)3/2
cosh−1 r

L33 = 1 − L11 (9.13)

For a sphere, r = 1 and the geometrical factors are all equal to 1/3. In this case,
the shape factor n becomes equal to 3, and (9.10) reduces to the Maxwell-Garnett
formula.
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9.3.4 Bruggeman Model

The effective medium approaches described above assume separated particles in the
effective medium, disregarding direct contacts between the fillers possibly leading to
thermally conductive paths [32]. The so-calledBruggemanmodel [33] does not suffer
from this limitation. It was originally developed to describe thermal or electrical
conductivity in polycrystals [34] and can be qualitatively accurate without limita-
tion on the concentration of inclusions. The Bruggeman model yields the following
implicit equation for κc, for a binary composite containing matrix and spherical
fillers,

φ

(
κf − κc

κf + 2κc

)
+ (1 − φ)

(
κp − κc

κp + 2κc

)
= 0 (9.14)

We demonstrate how the composite TC depends on the matrix TC and the filler
loading based on the Bruggeman model in Fig. 9.6. Here, the filler is assumed to
have κ f = 300 W/m K (similar to, for example, boron nitride), and the matrix TC is
varied. Note that at intermediate particle loadings (~20–30 vol%), thermal conduc-
tivity exhibits behavior similar to percolation transition. This is indeed a typical
characteristic of the Bruggemanmodel [10], although the determination of the perco-
lation threshold or percolation exponent in 3D is not very accurate (The question of
“thermal conductivity percolation” remains very intriguing [35]—it is certainlymuch
less pronounced than for electrical conductivity). Post-percolation, the composite TC
becomes relatively independent of the matrix TC, smoothly approaching κ f as the
filler volume fraction approaches 100%.

Fig. 9.6 Bruggeman model prediction of composite TC as a function of particle loading (volume
fraction) with filler TC (300 W/m K) and various matrix TC (Kp) ranging from 0.2 to 1.0 W/m K.
Reproduced with permission from [5]. Copyright (2016) Elsevier
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9.3.5 Combined Approaches

The micromechanical models described above are based on the assumption that
the fillers are uniformly dispersed and (for the case of anisotropic fillers) randomly
oriented. This assumption is often incorrect because of the filler aggregation. Thus, a
combined approach, describing the aggregates first, and the overall composite second,
are needed. One example of such a combined approach could be found in the Brune-
Bicerano micromechanical model for the Young’s modulus of partially exfoliated
polymer–clay nanocomposites [36]. To describe thermal conductivity in composites
where the fillers are partially aggregated, one can use a similar combination approach.
First, the Bruggeman model is used to predict the effective TC of particle clusters.
Then, one can apply the MG model to approximate the effective TC of composites
[37]. The schematics of this approach are shown in Fig. 9.7.

Apart from the abovemodels, someothermodels [38] include equations byHashin
and Shtrikman [39, 40], Hamilton and Crosser [41, 42], Hatta and Taya [43], Agari
[44], Cheng and Vachon [45] as well as by Lewis and Nielsen [46–48]. These models
also appear to reasonably fit most of the experimental data for composites based on
isotropic particles as well as short fibers and flakes with limited aspect ratio, up to
loadings of about 30% in volume. The development of newEMAapproaches remains
an active field [49].

9.4 Computer Simulations

The following two sections are reproduced with minor changes from our earlier
review [5]: “Thermal conductivity of polymer-based composites: Fundamentals and

Fig. 9.7 Schematic representation of well-dispersed aggregates in composite materials with a
highlighted thermally conductive path. Reproduced with permission from [5]. Copyright (2016)
Elsevier



246 V. V. Ginzburg and J. Yang

applications”, Progress in Polymer Science, 59, 4185 [2016], https://dx.doi.org/10.
1016/j.progpolymsci.2016.03.001.

9.4.1 Finite Element Modeling

While the EMA approaches described in the previous section are useful for quick
evaluation of the trends expected upon changes in filler loading or filler type, they are
limited to specific conditions (e.g., monodisperse spherical fillers in a homogeneous
matrix or perfectly aligned ellipsoidal fillers in a homogeneous matrix). In many
cases, numerical approaches, such asfinite element analysis (FEA)or finite difference
(FD) modeling, could be better suited [50–54].

In a typical FEA approach, one considers a realistic composite morphology
(based on experimental inputs such as miscroscopy or taken from molecular-level
simulations) and attempts to solve the heat transfer equation,

∇(κ(r)∇T (r)) = 0 (9.15)

It is convenient to use a cubic box and apply a constant heat flux, q, to one of
its faces while maintaining the opposite face at constant temperature T 0. The initial
condition is T (r)= T 0. Once the temperature profile reaches steady state, the average
thermal conductivity can be computed as κeff = qX0

〈T (x=0)〉−T0
. Here, we assumed that

the heat flux is applied at the X = 0 plane, the length of the cube is X0, and 〈〉 refers to
averaging in the YZ-plane. If the composite is anisotropic, similar calculations could
be done in other directions to compute the principal components of the symmetric
tensor kij (the symmetry of the tensor follows from the Onsager reciprocal relations
[55, 56]). In most cases, polymer-based composites are either isotropic (so that only
one thermal conductivity number is needed) or having a preferential filler plane
orientation (so that two thermal conductivity numbers, in-plane and through-plane,
are required).

One of the early numerical studies of thermal conductivity in polymer-inorganic
composites was performed by Kumlutas et al. [57]. They investigated compos-
ites of high-density polyethylene (HDPE) and spherical aluminum metal particles.
The particles were dispersed uniformly and homogeneously in the matrix, and
there was no anisotropy or directionality. The authors took electron microscopic
images of composites corresponding to various filler loadings, and used finite differ-
ence modeling in two dimensions to compute thermal conductivity, assuming that
κ(LDPE) = 0.543 W/m K and κ(Al) = 204 W/m K. Numerical results were then
compared to experimental data, as well as to number of theoretical models (Fig. 9.8).
It was observed that the numerical predictions (squares) and the experimental data
(triangles) were in a fairly good agreement at high filler loadings (>15 vol%); at lower
filler loadings, numerical predictions were substantially higher than the measured
values. There can be a number of explanations for this discrepancy. For example,
the model did not consider the role of interfacial resistance [26, 58, 59] (we will

https://dx.doi.org/10.1016/j.progpolymsci.2016.03.001
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Fig. 9.8 Composite thermal conductivity in HDPE/Al binary mixtures as function of Al filler
volume fraction. Experimental data are compared with predictions using various micromechanical
models, aswell as FEAsimulations.Reprintedwith permission from [57].Copyright (2003)Elsevier

address this topic in more detail below). Also, the digitization of the images could
have led to incorrect assignment to some pixels in the regions crowded with filler
particles. On the other hand, it was shown that constitutive models, such as Cheng
and Vachon [45], predict thermal conductivity fairly well at filler loading of less than
10 vol%. This is consistent with the notion that the effective medium theories lose
accuracy at higher filler volume fractions as the fillers tend to form large aggregates.
Interestingly, though, the authors did not attempt to compare their results with the
Bruggeman model which is expected to work better at high filler loadings.

Annapragada et al. [60] studied thermal conductivity of particulate composites
with polydisperse spherical fillers. They developed packing algorithms to generate
representative volume elements (RVE), both in two and three dimensions. The
predicted thermal conductivity was shown to be fairly close to the experimental
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Fig. 9.9 Comparison between experimental data (line) and FEA simulations (2D-filled squares;
3D-open circles) for the polypropylene/hollow glass particle composites. Reprintedwith permission
from [62]. Copyright (2007) Elsevier

value, and the approach certainly could be generalized to other composites with
spherical fillers. Liang and Li [61, 62] studied thermal conductivity of polypropy-
lene filled with hollow glass latex particles; in this case, thermal conductivity of the
composite is lower than that of the pure matrix. As shown in Fig. 9.9, the predicted
thermal conductivity agrees with the measured data reasonably well, both when
two-dimensional and three-dimensional FEA models were used. Again, the role of
thermal resistance at interface was not considered.

Nayak et al. [63] investigated thermal conductivity of epoxy/pine wood dust
(PWD) composites; again, the filler thermal conductivity (κ(PWD)= 0.068W/mK)
was less than that of the matrix (κ(epoxy) = 0.363 W/m K), so the overall thermal
conductivity should decrease as the filler loading is increased. The authors used three-
dimensional (3D) sphere-in-cube lattice model, varying the effective sphere radius
to change the volume fraction. The problem was solved using ANSYS software.
Figure 9.10 shows the dependence of thermal conductivity on the PWD volume
fraction; simulations and experiment are in a reasonable agreement, although the
non-monotonic behavior of the simulated thermal conductivity is not fully explained
and could be an artifact of the lattice model.

The examples above considered composites with spherical fillers, monodisperse,
or polydisperse. Anisotropic fillers provide further complexity since both positional
and orientational distribution of fillers needs to be considered. In recent years,
many studies have been devoted to polymer-carbon nanotube (CNT) composites
[18, 64–67]. Indeed, with nominal thermal conductivity of CNTs being in excess
of 1000 W/m K, one can expect to produce high-thermal conductivity composites
with relatively small CNT volume fractions. It has been shown [11, 64, 68] that for
polymer/CNT nanocomposites, their electrical conductivity, σ , increases dramati-
cally (by 5–6 orders of magnitude) as the CNT volume fraction is changed from
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Fig. 9.10 Thermal conductivity of epoxy/pine wood dust (PWD) composites as function of the
filler volume fraction. Triangles are FEA simulation results, and squares are experimental data.
Reprinted with permission from [63]. Copyright (2010) Elsevier

about 0.2 vol% to about 1 vol%. Indeed, according to percolation theory, high-
aspect ratio fillers such as CNT form continuous network at very low concentra-
tions (for the dependence of percolation threshold on aspect ratio, see, for example,
review by Bicerano et al. [69]). This percolated network accounts for most of the
charge conduction, making polymer/CNT nanocomposites reasonably good conduc-
tors, even if not on the same scale as metals. However, thermal conductivity increases
in polymer/CNT nanocomposites are not as significant as the electrical conductivity
increases, despite the similarity between the two transport properties.Moniruzzaman
and Winey [64] review a number of experimental studies on polymer-CNT thermal
conductivity, concluding that in general, the composite TC can exhibit about two-
to three-fold increase over the matrix TC; this is a substantial increase but nowhere
near what is seen for electrical conductivity. Accordingly, several computational and
theoretical studies have been performed to explain this discrepancy. For example,
Shenogina et al. [35] simulated the heat flow between two nearby nanotubes in a
polymer matrix using ABAQUS finite element software. They concluded that the
rate of heat flow was fairly independent of the distance between the nanotubes, thus
suggesting either absence or weakness of percolation effects. Singh et al. [59] used
element-free Galerkin method to numerically compute effective thermal conduc-
tivity of polymer/CNT composite as function of CNT volume fraction and interfa-
cial thermal resistance. The nanotubes were assumed to be perfectly aligned, and
the calculated thermal conductivity was along the direction of their alignment. The
overall TC thermal conductivity was shown to be a strong function of the CNT
volume fraction and the interfacial thermal resistance.

More recently, Li et al. [70] used 3D finite element modeling of polymer/single-
wall-carbon nanotube (SWCNT) composite with disordered nanotubes, and
compared results with experimental data on two model systems, epoxy/SWCNT and
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polyolefin/SWCNT (Fig. 9.11). The results demonstrated, once again, the importance
of interfacial thermal resistance for proper understanding of heat transfer in these
materials. Even so, the mechanism of heat transfer in the polymer/CNT composites
is not yet fully understood, as more recent experimental studies [71, 72] indicated
that the increase in heat conductivity as function of the CNT volume fraction could
be indeed consistent with the nanotube percolation.

Other recent applications of FEA modeling include those of polymer/platelet
composites [73, 74] and those where mixed fillers are used [75]. One can expect that
in the next several years, FEA simulations of composite properties, including thermal
conductivity, will be dramatically expanded and will include formulations with
multiple fillers, varying degree of anisotropy, and other complexities. Furthermore,
as computers become faster, our ability to use simulations to screen formulations
and design candidate systems will increase dramatically.

Fig. 9.11 a A finite element model of a randomly distributed SWCNT/polymer composite. The
volume fraction of SWCNTs is 22%. bA temperature distribution of a steady-state thermal analysis
of a randomly distributed SWCNT/polymer composite. The volume fraction of SWCNTs is 22%.
c Calculated and experimental thermal conductivity (kc) of SWCNT/epoxy composites as function
of SWCNT volume fraction. d Same as (c) but for polyolefin/SWCNT composites. Here, Rksm is
the interfacial thermal resistance between SWCNT and matrix. Reprinted with permission from
[70]. Copyright (2012) Elsevier
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As alreadymentioned, one critical challenge in ensuring the validity and accuracy
of the continuum-level models (whether constitutive or FEA) is description of the
heat transfer through interfaces. Below, we briefly review recent progress on this
topic.

9.4.2 Interfacial Thermal Resistance Modeling

Interfacial thermal resistance (often called Kapitza resistance following the
pioneering work by Kapitza [25]) can be understood as follows. The matrix (such
as polymer) and the filler (CNT or an inorganic particle) have different spectra of
quantum states for the heat carriers (electrons, holes, and phonons). In most poly-
mers, heat is carried only by phonons, and their density of states is substantially
lower than in highly crystalline CNTs or inorganic fillers. As a result, many phonons
are back-scattered at the interface between the matrix and the filler. The problem
can be exacerbated if the interfacial coupling between the filler and the matrix is
weak [76–78]. This results in a temperature discontinuity, 	T, at the interface; this
discontinuity is proportional to the heat flux, J,

J = 
(	T ). (9.16)

The proportionality constant, 
, is the interfacial thermal conductivity and has
units of W/(m2 K); the inverse of 
 is the interfacial thermal resistance (usually
labeled Rk). It is often convenient to define interfacial thickness, h, as follows,

h = κ



(9.17)

where κ is the bulk thermal conductivity. Typical values of h are on the order of
nanometers [26, 77]; thus, it is often reasonable to disregard the interfacial effects if
the filler size is on the order of microns. In many FEA simulations of conventional
polymer-inorganic composites discussed above, the assumption of “perfect” interface
(	T = 0)was thus justified since the typical finite element sizewasmuch greater than
h. However, if one tried to increase the composite thermal conductivity substantially
higher, by increasing the filler loading and/or reducing the filler size, the interparticle
distanceDint would eventually decrease to the point where it becomes comparable to
h. Further increases in the filler volume fractionwould then lead to no improvement in
the overall TC.As Shenogin et al. [77] emphasize, in these nanocomposites, the fillers
could be separated by 1 nm physically, yet from thermal standpoint, their separation
could be as large as h ~ 10–20 nm. This insight helps us better understand the results
from the FEA and micromechanical models in which the interfacial resistance was
varied parametrically (Figs. 9.5 and 9.11)—once the filler volume fraction increased
to the point where the interparticle distance becomes comparable to the thermal
interfacial thickness, the overall thermal conductivity stops increasing.
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So far, wemainly discussed continuum approaches to thermal conductivity, where
heat transfer through matrix, filler, and interface was described in a phenomeno-
logical manner. In order to predict the interfacial thermal resistance, one needs to
turn to molecular models. We already mentioned the study by Shenogin et al. [77]
who used Molecular Dynamics to study interfacial heat transport between a carbon
nanotube and octane liquid. Alzina et al. [79] used multiscale modeling to study heat
transfer in epoxy/glass composites at very low temperatures. They showed that theory
and experiment agreed fairly well if one assumed the so-called diffuse mismatch
model (DMM), in which all phonons were assumed to diffusely scatter at the inter-
face. Roy et al. [80, 81] demonstrated using Molecular Dynamics the importance
of coupling between the carbon nanotube and the polymer matrix. Shin et al. [82]
developed a multiscale model combining nonequilibrium Molecular Dynamics and
finite element analysis to compute thermal conductivity in SiC/epoxy composites.
Similar approaches have been also applied to various other systems [78, 83–85].

One important conclusion from these and other studies was that the surface func-
tionalization of the filler could be crucial to improving thermal conductivity of
composites. Within both theories of interfacial resistance (acoustic mismatch model
and diffuse mismatch model), the interfacial thermal conductivity is directly propor-
tional to the overlap between vibrational density of states (VDOS) spectra of the
matrix and the filler. Wang et al. [78] computed VDOS of pristine or organically
modified graphene sheet and compared it with those of a model paraffin (Fig. 9.12).

The calculation shows that accurately matching the VDOS of the filler and the
matrix by using the right surface modifier is very important. Even though the overlap
integral S increases substantially upon addition of virtually any organic modifier,
butyl surfactant results in the highest S-value, leading to the most effective reduc-
tion in the interfacial resistance for a given surface coverage (Fig. 9.13). This
analysis shows that even modest surface functionalization could lead to substan-
tial improvement in the interfacial thermal transport. Recent experimental studies
suggest that surface functionalization can indeed lead to some improvement in
thermal conductivity in alumina/nylon-6 composites [86].

Prediction of interfacial thermal properties is still relatively new and rapidly devel-
oping field, and this short reviewdoes not attempt to be comprehensive.As computers
becomemore powerful and atomistic force fields more accurate, we can expect to see
more advances in predicting interfacial thermal resistance for more and more diverse
filler/matrix pairs. Creating such a library will help in developing more accurate
macroscopic FEA models and thus using modeling as part of new material design.

9.4.3 Multiscale Modeling

As we discussed above, an accurate prediction of thermal conductivity in polymer-
inorganic nano- and micro-composites requires the knowledge of structure and
dynamics on several length-scales, from atomistic (to determine the electron and
phonon spectra and the density of states, both in the bulk and at interfaces) to
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Fig. 9.12 Comparison of VDOS between paraffin (blue) and graphene with various surface func-
tionalities (red). The captions (S = 0.006 etc.) describe the calculated VDOS overlap integrals.
Reprinted with permission from [78]. Copyright (2015) American Chemical Society
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Fig. 9.13 Interfacial thermal resistance (relative to that of pristine graphene) as function of surfac-
tant coverage for various functionalizations. Reprintedwith permission from [78]. Copyright (2015)
American Chemical Society

nanoscale (to determine the local interactions between the fillers and the structure
of the polymer in their proximity) to microscale (to determine the filler dispersion
and orientation) to macroscale (to understand the influence of processing condi-
tions). Obviously, no single modeling approach can simulate all of these phenomena;
to address them, we need to utilize multiscale modeling paradigm [87–93]. One
successful example of such multiscale modeling is the recent work by Odegard et al.
[93] in which thermal conductivity of graphene nanoplatelets in cycloaliphatic epoxy
was studied by combinedmolecular dynamics (MD) andmicromechanics (MM);MD
simulations were used to predict the interfacial thermal resistance and MM simu-
lations were then used to compute TC as function of the nanoplatelet dispersion,
orientation, and loading. Overall, this is still a relatively new and rapidly growing
field.

9.5 Summary and Outlook

Thermally conductive materials are and will remain critically important for various
industries, from electronics to energy to automotive. The use of nano- and micro-
composite materials is often required to successfully navigate the balance of prop-
erties (thermal conductivity, electrical conductivity or lack thereof, mechanical
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strength, thermal expansion, viscosity, etc.). The use of modeling is often required
to reduce the number of potential experiments, develop new design criteria for the
selection of matrix and filler materials, and/or understand the failure mechanisms for
existing materials.

Currently, most theoretical and computational research dealing with the predic-
tion and description of thermal conductivity in composites is based on analytical
or numerical micromechanical models. Most often, in these models, the composite
morphology is simplified, and the fillers are assumed to be uniformly dispersed and—
if non-spherical—oriented isotropically.While these approaches often are successful
in describing experimental results in commercial composites, the success is typically
accomplished by the introduction of fitting parameters (for example, interfacial or
Kapitza resistance is often used as one).

In our view, the main challenges for theoretical and computational prediction of
thermal conductivity in composite materials are as follows. First, it is necessary to
develop robust procedures (either EMA or FEA) to calculate thermal conductivities
of composites with multiple fillers having different sizes and different shapes/aspect
ratios. Second, it is necessary to understand the relationship between the processing
conditions and the composite morphology (aggregation, orientation, and dispersion).
Finally, it is necessary to understand the molecular details of heat transport on the
nanoscale, both within the fillers and the matrix and through various interfaces.

Addressing these challenges will likely take a long time and will require a signifi-
cant modification of existing theoretical and computational tools. It is possible, even
likely, that new tools (e.g., machine learning) will also be added to the mix. It is our
hope that this reviewwill help future researchers as they work on the new approaches
to this old but fascinating problem.
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Chapter 10
Predicting the Optical and Electrical
Properties of Polymer Nanocomposites

Michael J. A. Hore

Abstract Nanoparticles are frequently combined with polymers to create poly-
mer nanocomposite materials with enhanced electrical, optical, or transport prop-
erties. In addition to the robust suite of theoretical techniques—including molecular
dynamics, Monte Carlo simulations, and polymer field theory—that exists to pre-
dict structural information of such polymer nanocomposites, there is also a sizeable
selection of techniques available to predict physical properties such as optical scatter-
ing/absorption and electrical/ionic conductivity of thesematerials. Inmany instances,
techniques for predicting structural information may be coupled to those used to
predict physical properties. This chapter presents a survey of common approaches
to modeling both the optical and electrical properties of polymer nanocomposites,
explaining the foundations of each technique, limitations, and highlighting select
examples from the literature using each technique.

10.1 Introduction

Polymer nanocomposites result from the combination of a polymer matrix with one
ormore nanoparticle components. The nanoparticlesmay be bare or polymer-grafted,
and can have shapes ranging from isotropic spheres to complex geometries. A pri-
marymotivating factor in adding nanoparticles to polymermaterials is to enhance the
physical properties of the resulting polymer nanocomposite. These physical proper-
ties include the mechanical properties, optical properties, and electrical properties
among others [1–3]. For example, carbon nanotubes may enhance the electrical
conductivity and/or the mechanical properties of the nanocomposite, whereas noble
metal nanoparticles can impart useful optical properties. Key to understanding the
resulting physical properties of the nanocomposite is having a robust understand-
ing of the nanoparticle distribution, orientation, or other morphological information.
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As discussed elsewhere in this book, there are numerous computational approaches,
including field theoretic calculations and particle-based simulations, to extract such
information.

The focus of this chapter is prediction of nanocomposite properties as a func-
tion of nanoparticle distribution, material morphology, and so on. The first section
of this chapter contains an extensive discussion of calculating optical absorption
and scattering by a polymer nanocomposite that contains metallic nanoparticles,
such as Au nanospheres. Mie theory, the discrete dipole approximation (DDA), and
finite-difference time-domain (FDTD) calculations can all be applied to the study of
polymer nanocomposites. The second section of this chapter discusses determinating
the electrical properties of a nanocomposite using resistor networkmodels. Although
not typically applied to polymer nanocomposite systems, this chapter closes with an
introduction to the Poisson-Nernst-Planck formalism, which can be applied in the
future to understand ion transport in polymer nanocomposites.

10.2 Calculation of Optical Properties

Noble metal nanoparticles have attracted interest from the polymer nanocomposite
community because of the manner in which they interact with light. Nanoparticles
synthesized from elements such as Au or Ag interact with light to preferentially
scatter or absorb certain wavelengths. The combination of scattering and absorption
is referred to as extinction, and the ability to tune the wavelength where the majority
of the extinction occurs is attractive for many applications.

For nanoparticles composed of Au, Ag, and other noble metal nanoparticles, inci-
dent light creates collective oscillations of electrons along the surface of the nanopar-
ticle (“surface plasmons”). This process is distinct from those that give rise to optical
phenomena in quantum dot materials, such as CdSe. The result of the excitation
of surface plasmons is one or more characteristic absorptions at wavelengths that
depend on the nanoparticle size, shape, dispersion, and other factors. Photons with
wavelengths equal to the surface plasmon resonance (SPR) wavelength experience
strong absorption and scattering by the particles. When particles are present at high
volume fractions (i.e., are close to one another spatially), the relative interparticle
spacing affects the extinction of the nanocomposite. Generally, this “plasmonic cou-
pling” results in a red-shifting of the SPR for spherical nanoparticles. For anisotropic
nanoparticles, the polarization of the incident light, relative to the orientation of the
nanoparticle, becomes an important determining factor, as does the spacing and rel-
ative orientation of the particles with respect to their neighbors. In all instances, the
refractive indices of both the nanoparticle and surrounding matrix must be taken into
account if an accurate prediction of the SPR wavelength is desired. The prediction
of optical absorption or scattering by nanoparticles may be validated experimen-
tally by UV-visible spectrophotometry (UV-vis), dark field optical microscopy, and
Fourier-transform infrared spectroscopy to name a few. For the interested reader,
Maier provides an extensive review of the fundamentals of plasmonics [4].
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10.2.1 Mie Theory Applied to Polymer Nanocomposites

Mie theory is the result of solvingMaxwell’s equations analytically. In 1908, Gustav
Mie published the result of solving Maxwell’s equation to describe the scattering of
light by colloidal (spherical) metal particles, which provided a mechanism behind
the colors of colloidal gold solutions. The extinction and scattering cross sections,
Cext and Csca, respectively, are typically expressed in terms of their efficiencies. Mie
theory gives the following expressions for the extinction and scattering efficiencies:

Qext = Cext

πr2
= 2

x2

∞∑

n=0

(2n + 1)Re(an + bn) (10.1)

Qsca = Csca

πr2
= 2

x2

∞∑

n=0

(2n + 1)(|an| + |bn|) (10.2)

where the scattering amplitudes an and bn are defined in terms of Riccati-Bessel func-
tions. The mathematical expressions for these amplitudes are complicated, and the
interested reader can find their expressions in thework of Bohren andHuffman [5]. In
practice, for particles of size r, the summations in (10.1) and (10.2) can be truncated
at a value nmax = x + 4x1/3 + 2, with x = kr = 2πr/λ. The absorption character-
istics can be analyzed in terms of the absorption cross section Cabs = Cext − Csca.
In addition, analysis with Mie theory can be extended to more complex particle
architectures, such as spherical core-shell particles and others. However, analyti-
cal solutions for non-spherical shapes have proven elusive to date. Nevertheless,
examples of approximate Mie-type theories for other geometries can be found in the
literature [6, 7].

The application of Mie theory to predict the optical properties of nanocomposites
is relatively straightforward, and consists primarily of calculating the extinction and
scattering cross sections at wavelengths of interest. Fortunately, spherical nanoparti-
cles are a common component of polymer nanocomposites, meaning that Mie theory
is applicable to a number of nanocomposite systems [8, 9]. However, a limitation
of this approach is that the calculations largely ignore the internal structure of the
nanocomposite by assuming dispersed nanoparticles, and instead rely on character-
istics of the components, such as the size of the nanoparticles and their refractive
indices. In light of this, an important aspect of applyingMie theory is correctly repre-
senting the refractive indices of the material. As one example, this can be illustrated
in recent work by Bockstaller et al. on dispersion of poly(styrene-r-acrylonitrile)
(PSAN)-grafted SiO2 nanoparticles in a poly(methyl methacrylate) (PMMA) matrix
[10]. At a wavelength of λ = 532 nm, the refractive indices of SiO2, PSAN, and
PMMA are 1.458, 1.573, and 1.489, respectively. Because of this, the authors were
able to index match the PSAN-grafted SiO2 to the PMMA matrix—a condition that
maximizes transmittance. The dielectric constant of the nanoparticles, which con-
sist of a core and a shell, can be approximated using the Maxwell-Garnett effective
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medium model [11]:

εeff = εshell

[
1 + 3fx

(1 − fx)

]
(10.3)

where f is the volume fraction of the core (relative to the volume of the entire
nanoparticle), and

x = (εcore − εshell)

(2εcore + εshell)
(10.4)

The dielectric constant (ε) is related to the refractive index (n) as ε = n2. In prac-
tice, this approximation would be tabulated as a function of wavelength, and the
extinction and scattering cross sections calculated. Using this approach, the authors
found excellent quantitative agreement between Csca measured experimentally, and
that calculated using Mie theory, as shown in Fig. 10.1. A similar approach was
taken by Incel et al. in predicting the scattering and extinction of spherical CeO2

nanoparticles coated with SiO2 when incorporated into a polystyrene film [12]. The
supporting information of [12] provides computer code demonstrating the calculation
of extinction and scattering according to (10.1) and (10.2).

Of the techniques discussed in this chapter for predicting the optical properties
of nanocomposites, Mie theory is perhaps the most limiting in that it is restricted
to spherically-symmetry scatterers, and cannot describe more complicated situa-
tions such as self-assembled structures, for example. In addition, while it has been
shown to accurately describe the scattering and extinction cross sections, it is unable
to produce detailed features such as the local electric field or the scattering cross
section due to plasmonic coupling. To accurately tie the internal structure of a poly-
mer nanocomposite to the resulting macroscopic optical behavior, more detailed
approaches are needed.

Fig. 10.1 Scattering cross section Csca of polystyrene (PS)-grafted SiO2 nanoparticles in toluene
as a function of the weight fraction of PS, φPS . Open points were calculated using Mie theory,
and filled points are experimental measurements. Squares, circles, and triangles correspond to
nanoparticles with diameters of 16, 120, and 500nm, respectively. Reproduced with permission
from [8], Copyright c©2014 American Chemical Society
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10.2.2 The Discrete Dipole Approximation (DDA)

While exact analytical solutions of Maxwell’s equations are only possible in cer-
tain limiting cases (e.g., spherical nanoparticles), certain approximations have been
extremely successful in modeling a variety of systems. The Discrete Dipole Approx-
imation (DDA) can be attributed to work produced by Purcell and Pennypacker in
1973 [13]. Originally developed to describe the scattering and absorption of light by
interstellar dust, it models a continuous particle as a collection of discrete dipole par-
ticles. The electromagnetic response of the dipoles is calculated for an incident elec-
tromagnetic field Einc. Most often, software packages such as DDSCAT and ADDA
are used to calculate the response. Recently, with the advent of general-purpose com-
puting on graphical processing units (GPUs), codes have been developed that take
advantage of the highly parallel nature of GPU architectures to increase the speed of
DDA calculations. DDA-GPU is one such program, although other examples exist.

10.2.2.1 Theoretical Background

Traditionally, within DDA the nanoparticle (“target”) is composed of N dipoles
arranged on a cubic lattice. In the original DDA formulation, the polarizibility of
each dipole i was calculated from the Clausius-Mossotti relationship,

αi = 3d3

4π

(
εi − 1

εi + 2

)
(10.5)

where εi is the dielectric function of dipole i, and d is the lattice constant of the cubic
array. Draine and Flatau noted that this expression is only exact for kd = 0, where
k = ω/c, with ω representing the angular frequency of the light and c the speed
of light in a vacuum. If the wavelength of the light is much larger than the lattice
constant of the dipoles, then the polarizibilty can be approximated as

αDG
i ≈ αi

1 + (
αi/d3

) [
(b1 + n2b2 + n2b3S)(kd2) − (2/3)ikd3

] (10.6)

In (10.6), i = √−1, S is a real number that describes the polarization of the inci-
dent radiation, and n is the refractive index. The coefficients b1 = −1.891531,
b2 = 0.1648469, and b3 = −1.7700004. Draine and Flatau note that this correction
is most accurate for |n|kd < 1. For this reason, DDA calculations typically require
a large number of dipoles to ensure that d is sufficiently small and the polarizibility
is correctly determined.

Because DDA can be used to define nanoparticles of arbitrary geometries, it is
convenient to characterize a target by an effective radius aeff. In fact, some software
packages such as DDSCAT require this value as a parameter to the calculation. The
effective radius of a target is calculated by setting the actual volume of a target equal
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to the volume of an equivalent sphere, resulting in an expression

aeff =
(
3V

4π

) 1
3

=
(
3N

4π

) 1
3

d (10.7)

where N is the number of dipoles that the target contains, V is the physical volume
of the target, and d is the spacing of the dipoles. For a spherical nanoparticle with
radius rs, this expression simplifies greatly, and the effective radius can be written,

aeff = rs = d

(
3N

4π

) 1
3

(10.8)

While it is not surprising that the effective radius of a sphere would be equal to
its physical radius, (10.8) is useful as it provides guidance regarding the number of
dipoles (N ) that are necessary to accurately model the extinction from that particle.
Similarly, for the special case of a nanorod, this expression reduces to

aeff =
(
3

4

) 1
3

(r2r L) (10.9)

Show in Fig. 10.2a is a nanorod target with a physical diameter 15nm and length
40nm, and which contains 6152 discrete dipoles. From (10.7)–(10.9), the lattice
spacing of the target can be calculated as d = 1.05 nm. For targets composed of
Au, this lattice spacing implies |n|kd ≈ 0.02 – 0.04, which is well below the con-
dition required by Draine and Flatau. To mimic structures that may occur within a

Fig. 10.2 DDA target structures. a A DDA target consisting of a single nanorod with N = 6157
dipoles (shown as spheres) representing a particle with a physical size of 15 × 40 nm. For this target,
aeff = 25.6 nm (10.7). b Two side-by-side oriented nanorods separated by a distance h, constructed
from the target in (a). c Two end-to-end oriented nanorods, separated by a distance h
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nanocomposite, such as aggregated or oriented nanoparticles, targets can be created
using the nanorod target as a template, as demonstrated in Fig. 10.2b, c.

To calculate the scattering and absorption cross sections, the incident electric field
at each lattice point and the polarization of each discrete dipole must be determined.
Each dipole experiences an electric field

Einc = E0 exp
(
ik · rj − iωt

)
(10.10)

which represents the incoming, external electromagnetic radiation with frequency
ω. Each discrete dipole interacts with this incoming electromagnetic field, and in
turn, with all dipoles contained within the target. Therefore, the net electric field for
dipole j is the difference of the two contributions, i.e.,

Ej = Einc −
∑

k �=j

AjkPk (10.11)

where Pk = αkEk is the polarization of dipole k, and

Ajk = exp(ikrjk)

rjk
×

[
k2(r̂jk r̂jk − I3) + ikrjk − 1

r2jk
(3r̂jk r̂jk − I3)

]
(10.12)

In (10.12), I3 is the 3 × 3 identity matrix, rjk = |rj − rk |, and r̂jk = (rj − rk)/rjk .
The diagonal terms Ajj = α−1

j , reducing (10.11) to

∑

k

AjkPk = Einc (10.13)

This linear system is then solved using standard linear algebra methods to obtain the
polarization for each dipole j, i.e., Pj.

The absorption and scattering cross sections, Cabs and Csca, respectively, are
obtained from the incident electromagnetic field and the individual dipole polar-
izations. The extinction cross section is the sum of the scattering and absorption
terms, Cext = Csca + Cabs. For a target composed of NDDA dipoles, the absorption
and scattering cross sections read:

Cabs = 4πk

|E0|2
NDDA∑

j=1

{
Im

[
Pj ·

(
α−1
j

)∗
P∗
j

]
− 2

3
k3|Pj|2

}
(10.14)

Csca = 4πk

|E0|2
NDDA∑

j=1

Im
(
E∗
j · Pj

)
− Cabs (10.15)
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where E∗
j , P

∗
j , and α∗

j denote the complex conjugates of those quantities. The scat-
tering and absorption efficiencies, Qsca and Qabs, are obtained by normalizing the
respective cross sections by πa2eff.

Because it captures the effects of both scattering and absorption, Qext = Qsca +
Qabs is a convenient quantity to calculate to characterize the optical response of
nanocomposites that contain nanoparticles with a plasmonic response. However, for
anisotropic nanoparticles, such as gold nanorods, the extinction coefficient is polar-
ization dependent. In particular, surface plasmons are excited only by p-polarized
light (i.e., the electric field is parallel to the plane of incidence). For this reason,
to correctly model the optical response of a rod-like object, Qext needs only to be
calculated for two orientations of the rods: parallel and perpendicular with respect to
the polarization of the incident light. For more anisotropic objects, a larger number
of orientations of the object will need to be considered, while for a sphere, only one
orientation is necessary to correctly model the optical response. Surface plasmon
resonances (SPRs) are indicated by large enhancements in the scattering/absorption
cross sections at particular wavelengths.

The behavior of the extinction cross sectionwith respect towavelength is primarily
dependent on the incident electromagnetic field, the interactions between individual
dipoles, and the relative refractive indices of the particles and matrix material. For
this reason, DDA is an effective method not only for calculating the optical response
of isolated nanoparticles within a polymer matrix, but also the optical response of
self-assembled nanoparticles within nanocomposites. For instance, nanoparticles in
close proximity to one another will exhibit surface plasmon coupling, which may
result in a red or blueshift of the position of the surface plasmon resonance relative to
the position in isolated particles. However, because the total number of dipoles scales
with the number of nanoparticles in the DDA target, assemblies consisting of large
numbers of nanoparticles are computationally expensive and inmany instances, com-
putationally intractable. In these cases, other techniques such as FDTD, described
later in this chapter, may be more applicable.

10.2.2.2 Correction of the Dielectric Function

The previous discussion of the theoretical background of DDA did not explicitly
consider the effect of material type on the extinction characteristics of nanoparticles.
The effect of material type (e.g., gold or silver) on the optical properties determined
by a DDA calculation can be seen in (10.5) and (10.6). The values of the material
dielectric function directly modify the polarizibilities of the discrete dipoles. From
the free electron model, the dielectric function of a material can be expressed as:

ε(ω) = 1 − ω2
p

ω2
(10.16)

where ωp is the plasma frequency of the material. This expression neglects several
important contributions. First, it does not consider the effect of collisions of the
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electrons with the positively charged, stationary atomic cores. To include this effect,
a relaxation time τ for the free electron gas is introduced into the model, leading to
a corrected dielectric function:

εb(ω) = 1 − ω2
p

ω(ω + i/τ)
(10.17)

where the subscript b designates that this is the dielectric function of the bulkmaterial.
However, in the case that DDA is used to calculate the optical properties of

polymer nanocomposites, it may be necessary to correct for the presence of the
nanoparticle surface, fromwhich electronsmay collide. The result of such corrections
is an additional surface relaxation term τa ≈ aeff/vF , where vF is the Fermi velocity.
Physically, τa represents the timescale of collisions of electrons with the nanoparticle
surface. The resulting dielectric function is

εs(ω) = 1 − ω2
p

ω(ω + i/τ + i/τa)
(10.18)

where the subscript s designates that the dielectric function was corrected for surface
damping.

Typically, only bulk dielectric data is available in the scientific literature. Hence, to
obtain a dielectric function suitable for calculating the extinction spectra of nanopar-
ticles, the bulk dielectric data must be corrected as:

εs(ω) = εb(ω) +
[

ω2
p

ω(ω + i/τ)
− ω2

p

ω(ω + i/τ + i/τa)

]
(10.19)

In practice, the dielectric function must be corrected each time the value of aeff
changes for a given DDA system. For gold nanoparticles, �ωp = 8.55 eV, �/τ =
0.108 eV, and vF = 1.41 × 106 m/s.

10.2.2.3 Examples from the Literature

DDA has been used in several studies aiming to predict and interpret the optical
response of polymer nanocomposites and similar materials. It is particularly useful
in that targets can be constructed from the outputs of other modeling techniques,
such as Monte Carlo or molecular dynamics simulations, and then examined with an
appropriate DDA code. In addition, DDAhas been applied to numerous experimental
studies by constructing targets that are based on electron micrographs, for example.
Here, we highlight a few such studies to illustrate the application of DDA to predict
the optical properties of polymer nanocomposites.

DDA has seen a lot of applications in the characterization of surface plasmons
in Au nanoparticles. Work from El-Sayed and coworkers demonstrated a “plas-
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mon ruler” effect in which the wavelength of the surface plasmon shifted expo-
nentially with the distance between pairs Au nanodiscs [14]. The relative shift scaled
as 	λ/λ0 ∼ exp(−x/Dτ), where D is the nanodisc diameter, x is their separation
distance, and τ is a unitless decay constant. Experiments found the decay constant
τ = 0.18 ± 0.02 whereas DDA found τ = 0.23 ± 0.03, implying that plasmon cou-
pling took place within distances equal to about 20% of the nanodisc size. For
anisotropic nanoparticles, such as gold nanorods, the details of plasmonic coupling
depend on both the separation of the nanorods as well as their relative orientations
[15].

While the studies highlighted above considered nanoparticles in a vacuum or
deposited on a surface in air, it is trivial to extend the application of DDA to polymer
nanocomposites by taking into account the refractive index of the nanocomposite.
Autophobic dewetting is a well-known phenomenon that can result in the aggrega-
tion of polymer-grafted nanoparticles within a chemically-identical polymer matrix
[16, 17]. As a general guideline, nanospheres have been observed to aggregate when
the degree of polymerization of the brush N is around three times smaller than that
of the matrix P, i.e., P > 3N . For nanorods, it has been observed that aggregation
occurs for P > 2N . A significant number of computational studies have found more
detailed expressions for these transitions that depend on grafting density and other
factors [1, 18]. A result of aggregation due to autophobic dewetting is that nanopar-
ticles which exhibit surface plasmon resonances come into close contact with one
another, and the surface plasmons in each nanoparticle begin to couple to those in
others. Monte Carlo has been used to predict the equilibrium structures that appear
due to this process. For instance, in the case of spherical nanoparticles, Monte Carlo
has predicted that sheets, clusters, and other assemblies of nanoparticles are predom-
inant, depending on various factors. For the case of nanorods, the particles generally
form side-by-side aligned structures upon aggregation in polymer thin films, with an
interparticle separation that can be modulated by varying the molecular weight of
the grafted polymers. DDA is useful in these instances since the absorption and scat-
tering of light can be calculated for representative structures that are either observed
experimentally, or predicted fromMonte Carlo simulations, for example. Hore et al.
used a combination of Monte Carlo simulations, DDA calculations, and experiments
to investigate the coupling between autophobic dewetting and the optical properties
of polystyrene (PS)-functionalized Au nanorods within PS thin films. As seen in the
optical spectra in Fig. 10.3, the theoretical results quantitatively capturemany aspects
of the experimental measurements, showing an increasing blue shift in absorption
as nanorods become increasingly aggregated. However, because of the simplicity of
the DDA calculations, the effects of polydispersity in the sample—both in terms of
nanoparticle size and aggregate structure—are not effectively captured.
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Fig. 10.3 (Left) UV-Vis absorption data for Au nanorod/polystyrene nanocomposites as a function
of matrix degree of polymerization (P). As P increases, nanorods increasingly aggregate, leading to
a blueshift in the absorption wavelength due to plasmonic coupling between nanoparticles. (Right)
DDA calculations of the extinction efficiency of isolated rods, pairs of rods, and tetramers of rods
to mimic increasing aggregation with molecular weight. The trends are in reasonable quantitative
agreement with experiments. Reproduced with permission from [17], Copyright c©2014 American
Chemical Society

10.2.3 Finite-Difference Time-Domain (FDTD) Method

The finite-difference time-domain method was introduced in the mid-1960s by Yee
[19] FDTD can be applied to obtain time-dependent solutions of the electric and
magnetic fields for arbitrary systems.Amajor characteristic of FDTD is that the fields
are staggered spatially and temporally. FDTD is best suited to modeling systems that
do not exhibit strong resonances—a situation that would require a large number of
iterations to fully describe the evolution of the fields. To illustrate the fundamentals of
the FDTD approach, we briefly review it here, but for a full description, the interested
reader should consult more complete texts, such as those by Sullivan, Schneider, and
others [20, 21]. In addition, several commercial and open source software packages
exist that implement FDTD, including Lumerical, Angora, MEEP, and many others.

10.2.3.1 Theoretical Background

As its name suggests, FDTD is a finite difference technique that is solved numerically
on a grid. Because of this, it is can be trivially parallelized for multi-core CPUs
and GPUs using MPI/OpenMP, or CUDA/OpenCL, respectively. Implementation
of FDTD requires the use of a Yee cell, which represents the manner in which the
electric (E) and magnetic fields (B) are related to one another spatially. In the case
of polymer nanocomposites, FDTD may be used to calculate the local electric and
magnetic fields for analyzing materials for surface-enhanced Raman spectroscopy
(SERS) applications, the reflectance/transmittance of a nanocomposite, or features
relating to plasmonics such as the extinction cross section.

The Yee cell describes a particular manner in which to co-locate the E and B
fields onto a cubic lattice. For each cubic cell, which is labeled by three indices lmn,
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Fig. 10.4 Schematic of the Yee cell describing the positions of the electric and magnetic fields in
an FDTD calculation. The electric and magnetic fields are staggered in space

the components of E are placed at the midpoint of each edge of the cube, while the
components of B are placed in the centers of each face of the cube. This is shown
schematically in Fig. 10.4. The Yee cell staggers E and B in space, and guarantees
that each point of E is surrounded by components of B, and vice versa. The Yee cell
satisfies the two divergence conditions in the macroscopic definition of Maxwell’s
equations:

∇ · H = 0 (10.20)

∇ · E = ρ

ε0
(10.21)

To completely describe the system of interest, knowledge of the conductivities and
dielectric responses of each of the material components is necessary. The remaining
Maxwell equations (i.e., the “curl equations”) yield the time evolution of the E and
H fields:

∂E
∂t

= 1

ε0
∇ × H (10.22)

∂H
∂t

= − 1

μ0
∇ × E (10.23)

Note that (10.22) neglects the presence of any current density J that may appear in
the system, and thatμ0H = B.μ0 is the vacuum permeability. In addition, to perform
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the calculation for a real material, the dielectric constants ε of the material must also
be accounted for in (10.22).

As a brief example of the implementation of FDTD using the concept of a Yee
cell, consider applying FDTD in one dimension, for simplicity. In one dimension,
(10.22) and (10.23) reduce to:

∂Ex

∂t
= − 1

ε0

∂Hy

∂z
(10.24)

∂Hy

∂t
= − 1

μ0

∂Ex

∂z
(10.25)

To solve (10.24) and (10.25) numerically, both the spatial and temporal derivatives
are replaced by finite differences, resulting in:

Eτ+1/2
x (n) − Eτ−1/2

x (n)

	t
= − 1

ε0

H τ
y

(
n + 1

2

) − H τ
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(
n − 1

2
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	x
(10.26)

H τ+1
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) − H τ
y

(
n + 1

2

)

	t
= − 1

μ0

Eτ+1/2
x (n + 1) − Eτ+1/2

x (n)

	x
(10.27)

where n is an index on the Yee cell in the z-direction (cf., Fig. 10.4), τ is the current
time step, 	t is the size of a time step, and 	x is the lattice spacing. These equations
can be cast in another form which provides update equations for the E and H fields:

Eτ+1/2
x (n) = Eτ−1/2

x (n) − 	t

ε0	x

[
H τ

y

(
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2

)
− H τ
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(
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(10.28)

H τ+1
y

(
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2

)
= H τ
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(
n + 1

2

)
− 	t

μ0	x

[
Eτ+1/2
x (n + 1) − Eτ+1/2

x (n)
]

(10.29)

To perform the FDTD calculation, (10.28) and (10.29) are iterated in time τ for
each lattice site n to trace the evolution of the fields within the system. Note that
the staggered configuration of the Yee cell results in a staggering of the solutions in
both time in space. For instance, the electric field E at site n is determined at time
(τ + 1/2) using the previous value of E at (τ − 1/2) along with the magnetic field
H at staggered lattice sites (n + 1/2) and (n − 1/2). The new value of H at time
(τ + 1) is then determined from its value at time τ and the values of the electric
field at time (τ + 1/2). The calculation proceeds in this staggered fashion until the
desired temporal evolution of the fields is captured in the calculation. For this reason,
strongly resonating systems will typically require a large number of iterations of
(10.28) and (10.29) to fully capture the temporal evolution of the system, which may
be prohibitively expensive from a computational standpoint. The extension from one
dimension to three dimensions follows a similar procedure as shown above.
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Although the process outlined above is relatively straightforward, in practice there
are several additional considerations that must be taken into account to accurately
model a polymer nanocomposite. First, the choices of 	x and 	t must be chosen
to ensure that the calculation is stable and accurate captures the propagation of any
electromagnetic waves. In particular, to account for the finite speed of light, 	t is
chosen to be 	t = 	x/

√
nc, where c is the speed of light in a vacuum and n is

the dimensionality of the system. In addition to these values, the boundaries of the
calculation must be treated to, for example, absorb outgoing radiation. A commonly
used boundary is the perfectly matched layer (PML), which absorbs radiation at the
boundary to prevent unphysical reflections back into the systemof interest. To analyze
scattering of incident radiation by objects, it is common to use the total field/scattered
field (TF/SF) source to separate outgoing electromagnetic radiation froman incoming
plane wave. The scattering and absorption cross sections are calculated from the
absorbed power (Pabs) of the total field and the power of the scattered field (Psca) as

Csca = Psca

P0
(10.30)

Cabs = Pabs

P0
(10.31)

where P0 is the power of the incident plane wave [22]. The total extinction cross
section is the sum of the two contributions, Cext = Csca + Cabs. In practice, to ana-
lyze the scattering of electromagnetic radiation by a polymer nanocomposite, one
would interrogate the material by subjecting it to pulses of different wavelengths
and polarizations, and recording the average scattering and absorption at each wave-
length.

10.2.3.2 Examples from the Literature

As with DDA, FDTD calculations have been used throughout the scientific literature
to predict the optical properties of polymer nanocomposites. As one example that
combines multiple theoretical techniques to understand a polymer nanocomposite,
Wanget al. usedFDTDtopredict the plasmonic properties ofAunanorod/polystyrene
composites as a function of nanorod separation and nanorod size [23]. The authors
of this work combined experiments with self-consistent field theory (SCFT) calcula-
tions to demonstrate that the particles were more likely to aggregate as the polymer
matrix molecular weight increased and/or the nanorod length increased. By analyz-
ing the interparticle spacing from scanning electron microscopy (SEM) images, the
authors found that nanoparticles exhibited a very uniform spacing of ca. 35nm upon
aggregation. Using this value for the interparticle separation, FDTD calculations
were able to quantitatively reproduce the extinction characteristics of the nanocom-
posites by considering the scattering and absorption of incident radiation by a pair
of Au nanorods. In this case, though, FDTD did not provide any particular advan-
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tage over DDA calculations, and the results of the two techniques were quite similar
[17, 23].

In more complex situations, FDTD provides significant advantages over DDA in
that it can accurately reproducemany aspects of the electromagnetic field. In a related
example, Glor et al. used a combination of ellipsometry and FDTD calculations to
probe the out-of-plane alignment and reorientation dynamics of Au nanorods that
were embedded in a PMMA thin film [24]. FDTD calculations allowed the authors to
determine the polarizability of a Au nanorod from the electric near-field distribution,
and compare to ellipsometry measurements to determine the average angle between
the nanorod orientation and that of the film/substrate. Another study by Wu et al.
investigated the optical properties of cylinder-forming polystyrene-b-poly(4-vinyl
pyridine) (PS-b-P4VP)filmswithAuorAgnanoparticleswithin the cylindrical P4VP
phase, with the objective of using the material as a meta-lens [25]. The distribution
of nanoparticles within the cylindrical phases caused negative refraction of incident
light, and FDTD calculations demonstrated the material could focus the light and
split the beam.

10.3 Calculation of Electrical Properties

Beyond predicting the interaction of a nanocomposite with light, predicting the elec-
trical properties, such as conductivity/resistance, of a polymer nanocomposite has
garnered considerable attention. The desire to mass produce flexible electronics,
for instance, has motivated the design and development of transparent conductor
technologies.

Calculation of electrical conductivity in polymer nanocomposites is many times
related to the concept of percolationof nanoparticles throughout amaterial. In the case
of anisotropic nanoparticles such as carbon nanotubes, nanowires, or nanorods the
percolation threshold may be low—especially as the aspect ratio ν = L/D increases.
At and after percolation, conductive nanoparticles form one or more continuous,
conductive paths through the material—leading to enhanced electrical conductivity.

10.3.1 Resistor Network Models

10.3.1.1 Theoretical Background

A common approach to modeling the electrical conductivity of a polymer nanocom-
posite is to co-locate structural information onto a simple cubic (3D) or square (2D)
mesh of spacing 	r, and apply finite-difference techniques to determine the cur-
rent through the material [26]. This “resistor network model” approach assumes
that at each grid point r within the system, the material is either conducting or non-
conducting, and described by a conductivity σ(r) at each point. In this case, structural
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Fig. 10.5 Example of a 2Dmesh,withmesh size	r, containing a percolating network of nanowires
of length L = 3	r in 2D (shown in black). The regions of the mesh containing nanowires have elec-
trical conductivities σNP , while the surrounding polymer matrix (white regions) have conductivities
σP . A potential difference of V0 is applied across the material

information used to construct the arrangement of σ(r)may come fromMonte Carlo,
coarse-grained particle dynamics models, or other techniques. This representation is
illustrated in Fig. 10.5.

Given the spatial distribution of σ , the current J(r) can be calculated at each point
through the system according to

J(r) = σ(r)∇V (r) (10.32)

subject to the condition that at each point ∇ · J(r) = 0. This condition is equivalent
to Kirchhoff’s Law, stating that at each grid point i surrounded by points j,

∑

j

Gij(Vi − Vj) = 0 (10.33)

where the conductance

Gij = 	r

2

[
σ(ri) + σ(rj)

]
(10.34)

The resulting physical system, and its interpretation in terms of a resistor network,
can be seen in Fig. 10.6.

Once the spatial dependenceofσ(r) is known, the current is calculatedby applying
the appropriate boundary conditions. A common approach is to set the voltage at a
constant value of V = V0 on one end of the system and V = 0 on the opposite end.
After application of the boundary conditions, (10.34) can be evaluated at each grid
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Fig. 10.6 Illustration of the translation of a carbon nanotube nanocomposite into a resistor network.
Reproduced with permission from [27], Copyright c©2008 Elsevier

point to produce the conductance throughout the system, followed by the evaluation
of (10.33) to obtain the voltage Vi at each point. A convenient, equivalent form of
(10.33) is given by

Vi =
∑

j GijVj∑
j Gij

(10.35)

which implies a system of linear equations that can be solved with standard linear
algebra techniques and software libraries. Finally, the current through the material
can be calculated by evaluating

I =
∑

j

Gij(Vi − Vj) (10.36)

for all points i at the boundary of the system [28].

10.3.1.2 Examples from the Literature

Resistor networkmodels have been successful in describing the electrical behavior of
several classes of polymer nanocomposites, including Ag nanowire nanocomposites,
carbon nanotube (CNT) nanocomposites, graphene nanocomposites, and others. Hu
et al. used a resistor network to model piezoresistance in CNT/epoxy nanocompos-
ites, demonstrating that near the percolation threshold, CNT nanocomposites were
more sensitive than more traditional strain gauges [27]. Dalmas et al. showed that
this approach is also valid for curved, conductive fibrous networks, while others
have shown its applicability to understand the effects of shear flow on electrical
conductivity [29, 30].

Work from Winey et al. has used this model to quantify the conductivity of Ag
nanowire composites, connecting both simulations and experimental measurements
[31–33]. In a study byWhite et al., nanowiremorphologieswere generated randomly,
and the conductivity through the nanocomposite was evaluated using a resistor net-
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Fig. 10.7 (Left) Simulated morphologies of nanowires within a polymer nanocomposite as a func-
tion of their orientational order parameter S. (Right) Simulated nanocomposite conductivities from
a resistor network model for nanowires as a function of S. The numbers to the right of each curve
indicate the volume fraction of nanowires in each system. Reproduced with permission from [31],
Copyright c©2009 American Physical Society

work model. As shown in Fig. 10.7, as the volume fraction of nanowires increased,
their orientational order S increased, resulting in an increase in electrical conduc-
tivity. Amjadi and coworkers also employed a resistor network model to predict the
performance of Ag nanowire/elastomer composites when used as strain sensors [34].
More recent work from Kwon et al. combined coarse-grained molecular dynamics
simulations with a resistor network model to investigate the effect of nanoparticle
shape and flexibility on the conductivity of polymer nanocomposites [35].

10.3.2 The Poisson-Nernst-Planck (PNP) Formalism

Although its use in the polymer nanocomposite field is not as widespread as in others,
the Poisson-Nernst-Planck (PNP) formalism has shown promise as a reliable method
to model ionic transport phenomena in a number of systems, such as with polymer
membranes or solid-state nanochannels. In addition, it has been widely employed to
interpret experimental investigations of polymer translocation. Looking to the future,
this technique may be a viable approach for predicting and understanding macro-
scopic ionic currents from structural simulations of ionomer melts, for example. In
taking such an approach, it is key to assume that the timescales of ionic motions
are much faster than those of the surrounding polymers and nanoparticles. In other
words, one must assume the polymers and nanoparticles are essentially stationary. In
the solution state, as is the case when modeling polymer translocation, this assump-
tion is typically true. However, in the melt state, this assumption may or may not
apply, and so future researchers must take this into account.
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10.3.2.1 Theoretical Background

At its core, PNP is amean-field theory that couples the Poisson equation for the spatial
distribution of electrostatic potential (φ) to the Nernst-Planck equation for predicting
ion transport in response to that potential. Characteristic to the PNP approach is self-
consistently solving the Poisson and Nernst-Planck equations on a grid until the
desired level of error is achieved.

In a typical implementation, the electrostatic potential is first determined by solv-
ing the Poisson or linearized Poisson-Boltzman equation subject to the system’s
boundary conditions. For the case using the Poisson equation as an initial guess,

∇ · ε(r)∇φ = − ρ

ε0
(10.37)

where ε(r) captures the spatial dependence of the dielectric constant throughout
the system, and ρ is the charge density in the system. Note that ρ may contain
both mobile charge density due to ions in the system, and fixed charges due to
charged interfaces, etc. In aqueous systems, a commonly made approximation is
that ε(r) = 80 for regions containing solvent, and ε(r) = 2 for insulating regions
such as those composed of silicon nitrides, polymers, proteins, and the like. Lenart
and coworkers recently used PNP theory to model ion transport through dendritic
nanoparticles, and characterized the permeability of the nanoparticles by a hardness
parameter hNP . Under this approximation, the dielectric constant of regions contain-
ing the nanoparticles was calculated as ε(r) = hNP × 2 + (1 − hNP) × 80, where
the hardness parameter 0 ≤ hNP ≤ 1 [36]. At the boundaries of the system, a typical
strategy is to apply a combination of periodic and/or Dirichlet boundary conditions
to fix the value of the electrostatic potential φ.

Starting from a uniform value of φ = 0, the Poisson equation can be solved to
arbitrary precision through a successive over-relaxation (SOR) algorithm,where each
new iteration of the potential at grid point i, φn+1

i , can be expressed in terms of the
current value of the potential φn

i as:

φn+1
i = φ̃i + (1 − λ)φn

i (10.38)

where the value

φ̃i =
⎛

⎝
∑

j

φn
j

2εiεj
εi + εj

⎞

⎠
/ ⎛

⎝
∑

j

2εiεj
εi + εj

⎞

⎠ (10.39)

with elements j being all adjacent points in the mesh [37]. Typically this process is
iterated until the relative difference between φn+1 and φn is less than 10−8.

The initial value of the electrostatic potential is then used to solve the Nernst-
Planck equation,

∇ ·
[
Di∇ci(r) + DiZi

kBT
ci(r)∇φ(r)

]
= 0 (10.40)
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whereDi and ci are the diffusion coefficients and concentrations, respectively, of ion
type i, and Zi is the charge carried by that ion. Tomore easily solve the Nernst-Planck
equation, it can be converted into a form that resembles a Laplace-like equation
through a Slotboom transformation: [38]

ψi(r) = Ci exp

(
−Ziφ(r)

kBT

)
(10.41)

leading to the equation
∇ · εeff ,i∇ψi(r) = 0 (10.42)

The new dielectric-like function εeff ,i contains the diffusion coefficients

εeff ,i(r) = Di exp

(
−Ziφ(r)

kBT

)
(10.43)

The Nernst-Planck equation is solved to desired accuracy using the same approach
outlined above for the Poisson equation. Typically, it is solved iteratively using an
SOR approach until the error is on the order of 10−7, after which the Poisson equation
is solved using the newly determined concentration profiles. This self-consistent
solution is repeated until the error in both equations is satisfactory. After obtaining a
solution for φ(r) and ci(r), the ionic currents and ion fluxes can be calculated from
the Nernst-Planck solution, i.e.,

ji(r) = −Di

[
∇ci(r) + ci(r)Zi

kBT
∇φ(r)

]
(10.44)

10.3.2.2 Examples from the Literature

Examples applying the PNP formalism to understand polymer nanocomposites are
rare in the literature—if they exist at all. However, several relevant studies do exist
showing the applicability of this technique to understanding such materials. Meng
et al. used PNP calculations to predict Li+ conductivity in confined environments,
such as in thin films of solid electrolyte [39]. Chan and coworkers also used PNP
calculations to investigate the formation of ionic layers between graphene sheets,
with the goal of understanding the flow of Li ions in the system [40].

10.4 Summary and Outlook

Looking to the future, polymer nanocomposites are likely to continue to enable new
technologies and materials due to a large palette of particle types/functionalities,
polymer materials, and self-assembly strategies. At this juncture, a mature suite
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of computational tools exists for predicting structural information in polymer
nanocomposites—including molecular dynamics (MD), Monte Carlo (MC), dissi-
pative particle dynamics (DPD), polymer field theory, and many others—that have
been experimentally-validated under a number of conditions. In many instances,
these techniques are suitable for coupling to others, like those described in this
chapter, for calculating optical, electrical, and ionic transport characteristics in poly-
mer nanocomposites. In fact, several examples exist in the literature that do exactly
this, and it is likely that this approach will continue to be successful going forward.

In addition, the advancement of computer hardware, most notably the graphical
processing unit (GPU), has significantly increased the speed with which these calcu-
lations can be performed.Many of the techniques discussed in this chapter are, at their
core, finite-element techniques that can be trivially parallelized on GPU hardware.
This in itself may enable more efficient computing of both nanocomposite structure
and optical/electrical properties when those techniques are coupled to one another,
and is sure to significantly advance our understanding of polymer nanocomposites
and their physical properties.
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Chapter 11
Data-Driven Multiscale Science for Tire
Compounding: Methods and Future
Directions

Hongyi Xu , Richard J. Sheridan , L. Catherine Brinson , Wei Chen ,
Bing Jiang, George Papakonstantopoulos, Patrycja Polinska ,
and Craig Burkhart

Abstract Modern tire compound design is confronted with the simultaneous opti-
mization of multiple performance properties, most of which have tradeoffs between
the properties. In order to uncover new design principles to overcome these historical
tradeoffs, multiscale compound experiment, physics, and simulation are being devel-
oped and integrated into next-generation design platforms across the tire industry.
This chapter describes the efforts in our laboratories to quantify compound structures
and properties at multiple scales—from nanometers to microns—and their applica-
tion in compound simulations. This integrationof experiment and simulationhas been
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found to be critical to highlighting the levers in data-driven multiscale compound
design. We also provide a glimpse into the next set of capabilities, particularly from
data science, which will impact future compound design.

11.1 Introduction

In the face of global climate change, governments, research institutes and the auto-
mobile industry are pursuing strategies to reduce CO2 emissions from passenger
and light-commercial vehicles. This effort requires complementary measures for car
components which have a high impact on fuel consumption. Tires, which are the
only vehicle component in direct contact with the ground, are responsible for 5–10%
of the fuel consumption of a vehicle, mainly due to rolling resistance.

TheEuropeanCommission (EC) plans to reduce the total vehicle energy consump-
tion by 30% by 2030 [1] compared to 2021 by targeting several actions, including
tire labeling. The tire labeling regulation, shown in Fig. 11.1, comprises three perfor-
mance areas: fuel efficiency, wet grip, and noise. Lowering a tire’s rolling resistance
index will reduce fuel consumption, but on the other hand may have a negative influ-
ence on wet grip or other performance measures such as noise emissions. Optimizing
these three areas simultaneously will require breaking through current tradeoffs into
new material design frontiers.

Fig. 11.1 Tire labeling showing specifications for fuel efficiency, wet grip and noise. Reproduced
from [1]
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While tire performance requires a complex interplay of design, compound science
and manufacturing capability, the focus of this Chapter resides in compound science.
From a materials standpoint, rubber compounds are complex materials, with chem-
ical and structural features operating on multiple time and size scales. Compared to
other materials-based industries, one of the differentiating aspects of tire technology
is the time-tested sulfur vulcanization processwhich occurs during themanufacturing
phase.This chemical process transforms thematerial properties fromaflowing rubber
formulation into a three-dimensional viscoelastic solid. In this step various additives
(e.g., sulfur and accelerators) are dry-mixed and heated to affect crosslinking into
an elastomeric network. The filler component achieves a reinforcement effect due to
both physical interactions and additional chemical linkswith the elastomeric network
[2–5], providing a large degree of strengthening of the rubber compound. Carbon
blacks and amorphous silicas are the most widely used reinforcing nanofillers in the
rubber industry. Without reinforcing fillers, tires would need to be replaced consid-
erably more often, resulting in an increased burden on end-of-life-tire management,
an increase in tire manufacturing energy requirements, as well as an increase in
greenhouse gas emissions per vehicle unit-distance driven [6].

The mechanical properties of rubber compounds are dominated by a complex
combination of multiscale chemistry and structure. The main structural entities
include the vulcanized elastomer network (on the order of nanometers per crosslink),
the filler-filler network (tens to hundreds of nanometers) and the filler-rubber inter-
phase (tens of nanometers). The combination of the latter two structures creates the
mechanical percolation network in a rubber compound. The most difficult structure
to quantify is the filler-rubber interphase, which is formed by the mutual influences
of the filler and rubber chemistries. This region of rubber surrounds the filler particles
and has a mechanical response which may be strongly altered by its physical and/or
chemical proximity to the filler surface. This structure has been investigated for over
50 years, sometimes being described in the compounding literature as “occluded
rubber” [7]. Despite decades of indirect evidence and speculation, there exists limited
direct mechanical evidence or visualization of such interphase properties. Experi-
mental studies have recently indicated this interphase can extend from a few nanome-
ters (nm) to over 50 nm [8, 9]. Understanding how these structures and scales interact
with one another is critical to expanding current compound design frontiers.

11.1.1 Early Laboratory Compound Design Concepts

The historical practice of compounding was, and still is, a somewhat empirical
occupation. Nevertheless, this empirical grounding led to realizing the connection
between laboratory dynamic mechanical properties and performance. In one of the
seminal tread compoundingdesign papers of themid-1980s,Nordsiek [10], promoted
the concept of viscoelastic properties as critical to tread (and tire) performance.

Figure 11.2 demonstrates the design principles: a viscoelastic spectrum, in this
case the normalized energy loss, tan δ, is swept as a function of temperature. The
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Fig. 11.2 Integral rubber concept. Tread performance is determined by temperature/frequency
windows in tan δ spectra. Reproduced with permission from [10]. Copyright (1985) Huthig GmbH

breakthrough concept involved the realization of different temperature windows
could be mapped onto various tread performance properties. In principle, one could
tune each performance behavior—rolling resistance, wet traction, cold weather trac-
tion, by optimizing the tan δ spectrum in each window. Variants of this design
principle are still used today.

Despite the obvious utility of this design idea, twomajor problems require resolu-
tion: (1) Next-neighbor performance regions, such as rolling resistance and wet trac-
tion, are difficult to decouple without chemical and structural intuition; (2) Given the
very large recipe design space, it is not clear how compound recipe ingredients have
to be selected and formulated to optimize each property. These problems have been
traditionally solved by expert compounders, who by their experience and training
map formulations onto properties. In reality, reducing this design knowledge to a
quantitative physicochemical basis requires many domain knowledge sets: rubber
chemistry and structure; filler chemistry, its structure and surface area; coupling
agent chemistries for fillers with functional surfaces; the resultant filler-rubber inter-
actions; sulfur vulcanization chemistry and its crosslinking networks; and finally,
a computational platform which integrates such chemical and physical structures
and properties into predictions. These domains must be mustered into a cohesive
knowledge ecosystem in order to reveal deeper compound design principles.

A promising direction for merging these design needs is offered by the develop-
ment of multiscale science, which incorporates high fidelity experiment, modeling
and simulation as core knowledge resources in a data science framework. This field
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has emerged as one of the focal research areas in tire technology. Multiscale methods
integrate, guide and optimize internal structure, and therefore provide design levers to
understand and control material performance at multiple scales. Such qualities make
this design approach highly attractive for next-generation rubber compounds. Driven
by some of the advances outlined in this Chapter, recent developments of nanoscale
experimental characterization methods as well as computational infrastructure are
opening the way for the detailed elucidation of the fundamental compound structures
and properties responsible for primary tire performance.

11.1.2 Chapter Scope

In Sect. 11.2, we present an overview of the data-driven experimental, mathemat-
ical, and computational tools which have been developed in our laboratories to
understand nanoparticle-filled rubber composites. The linear viscoelastic proper-
ties of carbon-black-filled styrene-butadiene rubber composites are measured using
dynamic mechanical analyses, and the resulting viscoelastic spectra are compared
to simple models which ignore nanoscale structure such as particle distribution and
interphase. Techniques to reconstruct compound filler microstructure are described,
based on N-point correlation functions and particle descriptors. A computational
analysis of the generation of representative volume elements (RVE) is presented,
and an optimal statistical reconstruction is demonstrated. The interphase structure
is then inferred based on the reconstruction of the viscoelastic measurement by
optimization.

Finally, in Sect. 11.3, we give a glimpse into near-term future directions. Going
forward, the integration of experimental, physics-based simulation and machine
learning design methods are seen as critical for future compound design practices.
Data science is central in the integration of multidisciplinary tire compounding envi-
ronment. We see the development of these capabilities as critical to modern adaptive
design approaches.

11.2 Methods Framework

We present a framework for the computational design of viscoelastic nanoparticle
composites in order to achieve optimal material properties which cannot readily be
found by traditional trial-and-error approaches. This framework integrates knowl-
edge from experimental tests into well-defined numerical microstructure models to
predict the properties of the nanocomposite. Specifically, a microstructure model is
established to capture the complex microstructure characteristics of the composites,
the properties of each phase in the microstructure is obtained from experimental
tests, and simulations for overall response prediction demonstrate agreement with
validation tests.



286 H. Xu et al.

Dynamic mechanical analysis (DMA) is an established macro-scale technique to
interrogate the linear viscoelastic response of materials through a gentle application
of oscillatory strainwhilemonitoring the force transmitted through a specimen in real
time [11]. Using the principle of time–temperature superposition (TTS), the small-
deformation mechanical response in terms of the complex modulus E* or the loss
tangent tan δ can be evaluated over many decades of frequency. Here, we use the tan
δ peak as a characteristic marker of the glass transition, whether in the temperature
or frequency domain. This provides a geometry- and material-agnostic point in the
viscoelastic spectrum that can be tracked with high precision and accuracy.

Here we focus on a carbon-black-filled styrene-butadiene rubber (CB-SBR)
composite [8]. Experimental DMA data from this system at various composite
loadings is displayed in Fig. 11.3a, b, plotted in the temperature domain and
frequency domain, respectively. The viscoelastic spectrum is a strong function of
particle loading, and the tan δ peak is a particularly sensitive measure of changes
in viscoelastic behavior. Note that a shift of the tan δ in temperature space moves
opposite to the corresponding shift of tan δ in the frequency space. The change
of tan δ with filler has been observed in a variety of systems by many independent
groups—some of that change is due to the inherent elasticity of the filler itself, but the
complete response ismore complex [12–21]. Interactions between the nanofillers and

Fig. 11.3 Dynamic mechanical analysis (DMA) is a common experimental technique for deter-
mining viscoelastic properties of polymer-based materials. Experimental set-up (a). The tan δ

spectra represented in the temperature (b) and frequency domains (c); each curve represents one
sample and is not averaged. Corresponding glass transition temperature (Tg) shifts are plotted to
show a shift towards higher temperatures at∼9 vol% followed by a shift towards lower temperatures
(d) [8]. Adapted with permission from [8, 23]. Copyright (2012, 2016) Elsevier BV
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the surrounding polymer chains alter the mobility of these polymer chains, resulting
in a regime of “interphase” polymer, in which the material properties differ from
the bulk matrix. Due to the high surface-to-volume ratio of nanofillers, the effects of
this special region play an important role in the overall properties of nanocompos-
ites, especially viscoelastic responses. Experimental observations have shown that
the storage/loss modulus curve may be broadened or shifted in the time/temperature
domain [22]. Since the properties of fillers are not time dependent, much of the
improvement in the composite properties is ascribed to the interphase region. We
will follow the study of Wood et al. [23] as an example and demonstration of the
method to model tan δ shifts as a mechanical phenomenon due to the presence of
filler and interphase.

11.2.1 Simple Representations of Filled Soft Composites

11.2.1.1 1D Scalar Models

The extent to which this CB-SBR compound can be modeled with very simple
approaches should first be established. Wood [23] showed that a one-dimensional
model of the system comprised of a perfectly elasticmaterial (representing the carbon
filler) in series with a Prony series material (representing the polymer matrix) is
sufficient to recapitulate a tan δ shift to lower temperatures at high volume fractions
(consistent with the shift to higher frequencies illustrated in Fig. 11.4). This shift
in the tan δ peak occurs in the model when the particle modulus is substantially
higher than the matrix modulus and represents the natural influence of the elastic
particle on the relaxation behavior of the composite compared to the neat polymer.

Fig. 11.4 A one-dimensional model is constructed that models an elastomeric composite with
increasing volume fraction using an elastic spring in series with a 27 unit Prony series (a). When
the particles are introduced (>0 vol%), the tan δ peaks shifts immediately to higher frequencies and
reduces in magnitude. The magnitude of this shift and the drop in the maximum of tan δ is tied to the
stiffness of the particle phase, 5GPa (b) and 50GPa (c). The shiftingwith increasing particle volume
fraction is consistently towards increasing ‘relaxation frequency’ and thus decreasing relaxation
time. Adapted with permission from [23]. Copyright (2016) Elsevier BV
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No interphase is considered or necessary to obtain this shift in relaxation spectra
toward shorter relaxation times. See Fig. 11.4.

11.2.1.2 3D Uniform Models

Although a one-dimensional model recovers important aspects of the experimental
data and illustrates the essential effect of the elastic filler alone, several aspects
must still be modeled, including the sensitivity of the tan δ peak position to volume
fraction, microstructure and the behavior of the overall viscoelastic spectrum beyond
the peak position. To increase the realism of the system, Wood created a three-
dimensional finite element (FE) model that was otherwise comparable to the 1D
model. A representative volume element (RVE) was generated by dispersing particle
elements in a cube of matrix elements in a uniform, random spatial distribution.
For several RVEs constructed this way with varying filler fractions, the viscoelastic
spectrumwas calculated. The location of the tan δ peak in temperature space for these
models also decreases, but with a less strong dependence on filler volume fraction
than the one-dimensional models, and more in-line with the experimental result. See
Fig. 11.5.

In these models of elastic filler in a viscoelastic matrix, the temperature depen-
dence of the tan δ peakmonotonically decreased with increasing filler content, which
fails to recover the initial increase at lower filler levels illustrated in Fig. 11.3 and
other experimental data. In order to bridge this gap, additional realism was injected
into themodels by using a representative, reconstructedmicrostructure to account for
particle distribution, following Deng et al. [8], and adding contributions from inter-
phase [24, 25] polymer in the vicinity of the filler particles with altered relaxation
times.

Fig. 11.5 A three-dimensional finite element model was constructed to represent a realistic tan δ

behavior as particles concentration increases. The results—storage/loss modulus in (a) and tan δ

in (b)—show a progressive shifting mechanism that both reduces tan δ magnitude and shifts the
peak to higher frequencies (c). The tan δ shift to higher frequencies corresponds to a shift to lower
temperatures (d, e). Adapted with permission from [23]. Copyright (2016) Elsevier BV
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11.2.2 Filler Microstructure Statistical Characterization
and Stochastic Reconstruction

The information of microstructure obtained in experimental observation is usually
in the form of 2D image that cannot be used directly in material analysis and design
due to the necessity of using 3D digital microstructure in material property analysis
in order to obtain high accuracy in simulation results. The techniques of microstruc-
ture characterization are able to abstract quantitative descriptors from the image.
Such descriptors are considered as the potential design variables due to their capa-
bility of capturing the key statistical features of the microstructure. Taken the pre-
specified descriptors as inputs, the reconstruction techniques generatemultiple statis-
tically equivalent randommicrostructure samples, which are passed into the material
property analysis to obtain the microstructure-property relation.

There have beenmany other modeling frameworks for nanocomposites, operating
at various length scales and with various assumptions [26–37]. However, none of
these attempts to model the spatial distribution of particles, have shown a strong
effect on the final properties of a composite [22, 38–40]. The understanding of these
microstructure-property relationships appears to be necessary for composite material
design.

To create an accurate representation of microstructure, a method is needed to
generate FE geometries from experimental data taken from the samples of interest.
Among nanoscale imaging techniques that provide sufficient spatial resolution, scan-
ning and transmission electron microscopy (SEM and TEM, respectively) also have
contrast in the CB-SBR system suitable for classifying pixels as either filler or
matrix using simple binarization algorithms. It is possible to create FE geometries
the directly from the binarized sample images, however a more rigorous and robust
strategy is to “learn” the underlying particle distribution properties and generate new
statistically representative samples for simulation, rather than testing a large number
of specimens directly to gather statistics. Finally, with the geometry generated, it is
possible to fit an interphase (size, shape, properties) to match DMA results from real
composites. There are several published works using this strategy [41, 42] but we
will follow Deng et al. [8] as an example here to introduce the framework, outlined
in Fig. 11.6.

11.2.2.1 Microstructure Characterization and Reconstruction Based
on Correlation Functions

The most widely used microstructure reconstruction techniques rely on the 2-point
correlation function, which is defined as (in a two-phase random media):

Si2(x1, x2) ≡ 〈I (i)(x1)I
(i)(x2)〉 (11.1)



290 H. Xu et al.

Fig. 11.6 The basic framework of data-drivenmodelingmethods (“target” refers to the correlations
of the digitized medium, “actual” are the correlations of reconstructed material). Adapted with
permission from [8]. Copyright (2012) Elsevier BV

where I is an indicator function:

I (i)(x) =
{
1, x ∈ phase 1
0, x ∈ phase 0

(11.2)

The physical meaning of the two-point correlation function is the probability of
finding two points with a given distance r in the same phase of the random media.
Therefore, two-point correlation is a function of distance r, and it can be denoted
as Si2(r). r can be any value from 0 to infinity, so the 2-point correlation function is
usually truncated to a finite length by the microstructure image window size.

Based upon the definition, a two-point correlation function should follow several
boundary conditions [43]:

• If r = 0, Si2(r) equals to the volume fraction of composite;
• If r → ∞, Si2(r) approaches to the square of volume fraction;
• The derivative of Si2(r) at r = 0 is equal to the surface area per unit volume.

Even though high accuracy can be obtained using 2-point correlation functions
in microstructure characterization and reconstruction, the following challenges need
further research efforts:
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• The computational cost of microstructure reconstruction using 2-point correla-
tion function is usually very high due to the large number of optimization itera-
tions which adjust the image pixel by pixel in order to match the target 2-point
correlation function. The high cost makes it impractical to apply this method on
high-resolution image with a large window size, or reconstruction in dimension
spaces higher than 2D.

• The vague physical meaning of the 2-point correlation function makes it hard
to be used as design variables for microstructure. It is also difficult to relate
the 2-point correlation function to the physics-based processing-microstructure
model, the output of which is usually in the form of microstructure descriptors
such as volume fraction, cluster number, radius, etc. Besides, a large amount
of material analysis/design works have been done based on 2-point correlation
function [43–45] or microstructure descriptors [46, 47]. A unified microstructure
characterization and reconstruction technique is needed to relate these works with
each other such that researchers can utilize existing data more efficiently.

Similarly, we can define other types of correlation functions (Fig. 11.7) [48–
50]. The cluster correlation Ci

2 is defined as the probability that finding two points
with a distance r within one cluster of the filler phase. The surface correlation is
defined as the probability that finding two points with a distance r located on the
boundary of the filler phase. Surface correlations capture the morphology of inter-
phase. The lineal path correlation is the probability that an entire line of length r lies
in the filler phase. Different correlation function emphasizes on different aspects of
microstructure features.

In thiswork, the digitalmicrostructure image is representedby a0–1binarymatrix.
“1” represents filler, and “0” represents matrix. The purpose of characterization is to
quantify the distribution status of “1” pixels in the space. There are two methods of
evaluating correlation functions:

Fig. 11.7 Definition of different types of correlation functions
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(1) The method using pixel-pixel distance histogram. This method follows the defi-
nition that 2-point correlation function is the normalized probability of finding
two “1” pixels of distance r. Firstly, we calculate the distances between any two
“1” pixels in the image. Based on the “1” pixel-pixel distance list, we obtain
a frequency vector (histogram) of the pixel-pixel distance counts (how many
pixel-pixel distances of 1, 2, 3 … are observed from phase “1” in the image),
which is noted as:

H
(
r = n|I (i)(x) = 1, I ( j)(x) = 1

)
, i, j = 1, 2, 3, . . . , n = 0, 1, 2, . . .

(11.3)

where n is the distance between two pixels. The non-integer distances (e.g., the
distance between two pixels on the diagonal direction is

√
2n) are rounded into

the closest integer. i, j represents different “1” pixels.
(2) We calculate the distances between any two pixels in the image (no matter “1”

and “0”). Based on the pixel-pixel distance list, we obtain a frequency vector
(histogram) of the pixel-pixel distance counts (how many pixel-pixel distances
of 1, 2, 3 are observed from the entire image), which is noted as:

H
(
r = n|I (i)(x) = 1 or 0, I ( j)(x) = 1 or 0

)
, i, j = 1, 2, 3, . . . , n = 0, 1, 2, . . .

(11.4)

where n is the distance between two pixels. The non-integer distances (e.g.,
the distance between two pixels on the diagonal direction is

√
2n) are rounded

into the closest integer. i, j represents different pixels (regardless of its value).
H

(
r = n|I (i)(x) = 1, I ( j)(x) = 1

)
represents the number of pixel-pixel distance

r = n we can observe in “1” phase; H
(
r = n|I (i)(x) = 1 or 0, I ( j)(x) = 1 or 0

)
represents the highest possible number of pixel-pixel distance r = n we can observe
in the entire image regardless of the value of pixels. Therefore, we can calculate the
2-point correlation function as:

Si2(r = n) = H
(
r = n|I (i)(x) = 1, I ( j)(x) = 1

)
H

(
r = n|I (i)(x) = 1 or 0, I ( j)(x) = 1 or 0

) ,

i, j = 1, 2, 3, . . . , n = 0, 1, 2, . . . (11.5)

Microstructure reconstruction is an inverse problem. It can be naturally formulated
as an optimization problem as shown in (11.6), where the discrepancies between the
target statistical descriptors and that of a reconstructed image are minimized. For
example, if the two-point correlation and two-point cluster correlation are used, the
resulting optimization formulation can be written as:

E =
∑
r

[(
Si2(r) − S

∧i

2(r)
)2 +

(
Ci
2(r) − C

∧i

2(r)
)2

]
(11.6)
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where S
∧i

2 andC
∧i

2 are the resultant correlations of the reconstructed digitized medium
at each of the discrete distance values r used in computationally determining the
correlation functions. Si2 and C i

2 are thus the target correlations to be realized. E
is a fictitious “energy”, in this case a multicomponent cost function, and is defined
as a sum of squared differences between target correlations and those calculated
from a generated microstructure. Therefore, the smaller the fictitious energy E , the
closer the reconstructed microstructure is to the target. An illustrative example of
the general microstructure reconstruction process is shown in Fig. 11.8. Traditional
gradient-based optimization algorithms are unable to seek the global optimal solution
due to the high nonlinearity and complexity of the resulting problem. Stochastic
optimization methods such as simulated annealing [48, 50] and genetic algorithms
[51] have been introduced to solve the resulting optimization problem. Here the
simulated annealing algorithm is employed to reconstruct the microstructure of the
two-phase material. The general formulation is reviewed as follows:

(1) Generating an initial binary microstructure. Based on the correlation functions,
an initial microstructure with a given volume fraction of black pixels (secondary
phase) can be randomly generated with uniform distribution. The black pixels
will be randomly scattered within the image matrix while preserving the given
volume fraction.

(2) Generating new binary microstructures. A sequence of trial realizations of
microstructures is generated by randomly moving the black pixels within the
image matrix.

Fig. 11.8 Demonstration of the microstructure reconstruction process. Adapted with permission
from [52]. Copyright (2013) Elsevier BV
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(3) Accepting or rejecting the new generated microstructures. A realization of
microstructure will be accepted with the probability:

p(�E) =
{
1, �E ≤ 0
exp

(−�E
kT

)
, �E > 0

(11.7)

where �E = E ′ − E is the energy difference between the new and old realiza-
tions of microstructure, and T is a fictitious temperature in simulated annealing
algorithm known as the cooling schedule.

(4) Iterative process termination. The iterative optimization process terminates
once the temperature T is equal to zero or the energy E is lower than a pre-
determined value, say 1 × 10−5. Otherwise, go to Step 2. The optimization-
based stochastic reconstruction process is computationally expensive when it is
applied to reconstruct high-resolution 3D microstructures. When other efficient
MCR approaches (e.g., physical descriptor-based approach, random field-based
approach, machine learning-based approach, etc. [53]) is employed, characteri-
zation of the reconstructed microstructures using multiple correlation functions
is often needed for the purpose of validation.

11.2.2.2 2D Viscoelastic Reconstruction

In our realization of a data-driven framework (Fig. 11.8) [8], the reconstruction is
based on correlation functions, specifically two-point radial correlation and two-
point cluster radial correlation in two dimensions. After binarizing an image of the
microstructure, the result is used to generate the correlation functions. These func-
tions then served as a target for an optimization problem, where an image was sought
that produced correlation functions that were the most similar to the target. Local
optima were found by generating uniformly random binary images and subjecting
them to a simulated annealing algorithm [52]. The annealed reconstructions were
then used as inputs to an FE simulation.

To simulate composite response, the binary images are directly translated
into a two-dimensional plane-strain simulation and examples of the reconstructed
microstructures for the chosen system are shown in Fig. 11.10c, where the particles
are the black pixels. Note that subsequent work [41] has extended this approach to
three-dimensional models. In order to include the effect of an interphase of altered
properties, based on the strong interaction between carbon black and the rubber
matrix, it was assumed that the local interphase properties around each particle
could be represented by a simple, constant shift in relaxation time (see Fig. 11.9).
This simple assumption can account for the reduced mobility of the polymer in the
vicinity of the particles but at the same time reduces the number of parameters needed
to optimize against the real composite viscoelastic spectrum to two: the width of the
interphase domain and magnitude of the shift factor.

Figure 11.10 shows the result of the composite predictions as the simulated inter-
phase thickness was varied while the viscoelastic shift was maintained at one decade
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Fig. 11.9 Relation of material properties between interphase and bulk matrix by a simple shift in
frequency/time space representing increase of relaxation times in the interphase domain relative to
the matrix polymer. Adapted with permission from [8]. Copyright (2012) Elsevier BV

and filler fraction was held at 20%. The filled rubber literature reports a range of esti-
mates for the interphase length, from 2 to 30 nm [2, 9, 54]. The tan δ shift at larger
thicknesses (representing 50 and 75 nm interphase) is quite extreme compared to the
experimental data, indicating that a single-layer (25 nm) thickness of interphase is the
most appropriate. The role of the assumed shift factor for the interphase properties
relative to the matrix (Ds) was also examined, as is illustrated in Fig. 11.11. Here,
relaxation shifts from 0.5 to 2.0 decades are shown with the thickness held at one
layer (25 nm). These shifts are in the range of possibility established experimentally
for thermoplastics [55–57] and rubbers [58]. Based on these simulations, interphase
polymer with a shift of 1.5 decades slower than that of the matrix material is the
most appropriate to fit the experimental data. Overall, these results are reasonable,
and similar results are also obtained with different approaches, such as the inverse
modeling method [59].

11.2.2.3 Microstructure Characterization and Reconstruction Based
on Physical Descriptors

A physical descriptor-based characterization and reconstruction approach [41, 60] is
also proposed to enable statisticalmapping of processing parameters to the physically
meaningful statistical microstructure descriptors. Particle fillers of the nanocompos-
ites are described using three categories of microstructure features: composition,
dispersion and geometry. These three categories provide a complete representation
of the microstructure.
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Fig. 11.10 a, b Comparison of predicted tan δ curves with experimental data: here the interphase
properties are fixed while the interphase thickness is varied. c Visualization of the definition and
effect of thickness for this simulation. Thickness t is in units of geometry mesh pixels, one pixel
corresponds to approximately 25 nm. Adapted with permission from [8]. Copyright (2012) Elsevier
BV

At the lowest fidelity level, composition indicates the percentage of each material
constituent (e.g., volume fraction of nanoparticles). Composition is the lowest order
of microstructure information as it only captures the homogenized response of an
entire material system. One level down, dispersion represents the spatial distribution
patterns of each phase. Local feature-induced material properties are reflected by
the dispersion status of different phases in the material. For example, the nearest
distance between carbon nanoparticles in polymer composites determines both the
damping property and electrical conductivity. At the lowest level, geometry provides
a more detailed description of the shape information of each phase (e.g., fillers in
polymer composites). Geometry descriptors also have a strong impact on certain
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Fig. 11.11 Comparison of predicted tan δ curves against experimental data: here the interphase
thickness is fixed while the interphase properties, decades of shift (Ds), varied. Increasing Ds
indicates increasingly longer relaxation times for the interphase. Reproduced with permission from
[8]. Copyright (2012) Elsevier BV

material properties [61]. For example, the pore size of porous material determines
the yield point and critical load in microbuckling. It should be noted that due to
the heterogeneity, descriptors used at each level are statistical, including mean and
higher order moments such as variance, skewness etc.

The microstructure characterization process is illustrated by the flowchart in
Fig. 11.12. The following information are obtained from image processing for
characterization:

(1) A binary image that identifies different phases (black-polymer matrix, white-
fillers);

Fig. 11.12 2D microstructure characterization flowchart. Adapted with permission from [60].
Copyright (2014), Elsevier BV
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(2) A matrix-shielded image that retains the grayscale information of the filler
phase. The matrix phase is marked by “0”. This image is used to identify the
coordinates of the particle centers;

(3) An isolated particle image that only highlights the filler particles isolated from
the particle clusters. This image is used for characterizing particle sizes and
geometries.

The composition descriptor, VF of the nanoparticle filler, is known beforehand
from the material processing information. Dispersion descriptors such as neighbor
distances or Morisita’s index [62] can be evaluated from the coordinate list of filler’
centers. Here we choose the cumulative distribution function (CDF) of the nearest
distance (nd) amongfiller’ centers. Based on the binary image and the isolated particle
image, two geometry descriptors are evaluated: each particle’s area Ae and the aspect
ratio ρ. The geometry of filler is approximated with ellipse of major radius R and
minor radius r. Aspect ratio ρ is defined as:

ρ = R2D

r
(11.8)

Particle area Ae (mean Ae) can be related to the equivalent radius of the particle
rc, and the total number of particles N :

rc_2D = √
R2D × r =

√
Ae

π
(11.9)

Ae = L2 × VF

N2D
(11.10)

where L is the side length of the microstructure image. Symbols with a bar overhead
are deterministic variables; symbols without an overhead bar are random variables,
which are described by distribution functions instead of a single value. Orientation
(θx , θy , θz) of the filler is assumed to be uniformly distributed with respect to the 3D
Cartesian coordinate system. Statistics of all the geometry descriptors are represented
by their probability distribution functions (PDF).

Figure 11.13 shows the process of 3Ddescriptor-basedmulti-phasemicrostructure
reconstruction to match the pre-specified descriptors. There are four major steps:

(1) Pre-specification of target composition, dispersion, and geometry descriptors;
(2) Dispersion reconstruction: the location of each particle’s center is determined

by matching dispersion descriptors using the Simulated Annealing (SA) algo-
rithm. This strategy is similar to the pixel-moving optimization approach that
is used in the correlation function-based reconstruction. Starting from a set
of randomly dispersed particle centers, the algorithm moves particle centers’
locations randomly. After each random move, the dispersion descriptors (CDF
of nd) is re-evaluated and compared with the target values. Both the “good”
moves that lead to a better matching in target dispersion descriptors, and the
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Fig. 11.13 Flowchart of multi-phase descriptor-based reconstruction. Adapted with permission
from [60]. Copyright (2014) Elsevier BV

“bad” moves that lead to a worse matching, could be accepted, with probabili-
ties determined by the Simulated Annealing (SA) schedule. This step generates
an image where only the locations of filler’ centers are indicated, referred to as
“center distribution map”.

(3) Geometry reconstruction: at the locations of particle centers, the algorithm
reconstructs each particle based on the geometry descriptors. Values of each
particle’s geometrical descriptors are generated by sampling the statistical distri-
bution functions obtained in characterization. The reconstructed geometry is
placed onto a randomly selected particle center in the center distribution map.

(4) Composition adjustment: this is the final step of reconstruction when the digital
image is fine tuned to match the composition descriptors (volume fraction of
the filler phase). The volume fraction of the reconstructed image is adjusted by
adding/subtracting pixels on phase boundaries.

The quality of the 3D reconstruction (Fig. 11.14) is assessed quantitatively by
comparing the correlation functions of the 2D cross-sections from the 3D reconstruc-
tion with the original 2D image. The target 2D image and several 2D cut samples
from the 3D reconstruction are shown in Fig. 11.7b. Figure 11.7a also compares the
mean 2-point correlation functions of the 2D cut samples with the 2-point correlation
function of 2D target image. Figure 11.7b compares the surface correlation functions.
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Fig. 11.14 Comparison of the correlation function of the target 2D microstructure and the mean
correlation function of the 2D cuts from 3D reconstruction. a Comparison of 2-point correlation
functions; b Comparison of surface correlation functions. Adapted with permission from [60].
Copyright (2014), Elsevier BV

11.2.3 Nanocomposite Properties and Statistical Study
of the Representative Volume Element

In real applications, it is often computationally expensive to use a single, strictly qual-
ified RVE size with high precision. Especially when dealing with three-dimensional
FE simulations, the number of elements as well as the computation time increases
cubically as the length of a side increases [58]. Statistical methods such as taking
the average properties of multiple realizations make it possible to achieve higher
precision at a smaller RVE size [these RVEs are sometimes referred to as statis-
tical volume elements (SVEs)] [63–65]. Therefore, it is especially appealing to find
optimal conditions avoiding one large RVE and instead using a smaller RVE with
multiple realizations that reduces the computational cost but still satisfies the desired
precision.

Here we introduce a microstructure-based modeling framework [8] for
viscoelastic polymer nanocomposites applied to 3D microstructures characterized
and reconstructed by a descriptor-based method. The determination of the smallest
RVE size and the minimum number of realizations for a given volume size is demon-
strated on a three-phase RVE containing 10% particles by volume. The influences of
volume fraction (VF), composition (interphase layer) and dispersion of the particles
on the RVE study results are also discussed in this section.

11.2.3.1 Comparison of Two Mesh Strategies: Voxel Mesh Versus
Conformal Mesh

The selection of meshing strategy has a strong impact on material property predic-
tions. In simulating composites, a trade-off often must be made between ease of
creation of the mesh, accuracy of the structural representation, and computational
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efficiency of the models. Here we consider two mesh strategies, voxel mesh and
conformal mesh, to understand their impacts on the prediction of material proper-
ties. The advantages of a voxelated mesh is that it is very easy to generate and apply
to microstructures, while the drawback is that to obtain a good quality representation
of a complex microstructure, very small voxels may be required which can result
in large computational cost. The potential advantages of a conformal mesh is the
ability to track complex microstructures more closely with the cost of more difficult
meshing strategies and complications of appropriate mesh gradients which again
may lead to larger computational costs. To explore these two options, a very simple
model structure is established as a comparative study with only two cubic inclusions,
surrounded by interphase and matrix material.

For the voxel mesh, the simulated properties using different mesh sizes are
compared in Fig. 11.15. It is found that the impact of mesh size on the simulation
result is negligible, so we can use coarser mesh to reduce the computational costs
without reducing the prediction accuracy. On the other hand, a large discrepancy can
be observed in the low frequency domain when the conformal mesh is used in simu-
lations (Fig. 11.16). We also observe many distorted elements in the conformal mesh

Fig. 11.15 Voxel mesh: simulation results using voxel meshes of different mesh sizes but the same
VF. Adapted with permission from [58]. Copyright (2018) Elsevier BV

Fig. 11.16 Conformal mesh: simulation results with different mesh sizes but the sameVF. Adapted
with permission from [58]. Copyright (2018) Elsevier BV
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or even mesh errors when applying the conformal mesh on more complex structures
(results not shown here). Therefore, voxelated mesh is recommended in this study.

11.2.3.2 Relationship Between RVE Volume Size and the Variations
in Simulated Material Properties

If unlimited computational resources were available, we can simply predict mate-
rial properties with a large RVE model of a high resolution. However, in realistic
cases, this strategy of unlimited computational resources and time is rarely the best
solution. In order to achieve a balance between prediction accuracy and computa-
tional efficiency, microstructure models of different sizes are tested to understand
the influence of RVE/SVE volume size on the predicted material properties [58]. At
the outset, a sufficiently large microstructure RVE model is established to provide a
reference property and computational cost. For each smaller volume size cut from
this large benchmark model, a convergence study is conducted to guarantee a suffi-
cient number of samples at that size. A trade-off between a single very large RVE
and multiple smaller representative SVEs will be achieved with respect to computa-
tional cost and simulation accuracy. In order to quantitatively measure the mean and
variance from the simulations, we selected the frequency point where tan δ reaches
its peak and compared the mean and standard deviation of the peak value for each
of the volume sizes in Fig. 11.17. The standard deviation between the simulations
decreases as the RVE volume increases. However, even though we pre-selected a
seemly large number of realizations in the FE simulations, the effective tan δ peak
still shows a bias in the mean for very small volumes. This bias becomes negligible
after the volume size reaches 103 voxels.

Also considering the computational costs presented in Fig. 11.17, we suggest 103

voxels as the optimal RVE size as a balance of computation time and the processing
time corresponding to the number of realizations. One simulation with a volume of
603 voxels costs 2680 min, while 76 simulations with a volume of 103 voxels only

Fig. 11.17 Statistical study of the relation between RVE volume size and the predicted properties.
Adapted with permission from [58]. Copyright (2018), Elsevier BV
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cost 56 min while introducing less than 2% error. The use of sufficient realizations
of V = 103 voxels instead of the full RVE represents a reduction in computational
time of two orders of magnitude while still achieving the desired precision [58].
The ability to reduce computation time by several orders of magnitude will allow us
to rapidly fill design of experiments (DOEs) for data mining and to consider more
complex microstructures where large RVEs would be prohibitive in future studies.

11.2.3.3 Computational Analysis of Nanocomposites with FE Modeling

Finally, we establish realistic FEmodels based on the stochastically reconstructed 3D
digital microstructures. Influences on the filled elastomers’ properties mainly come
from three aspects: the filler, the polymer matrix, and the interphase. The fillers
are considered as elastic with Young’s modulus of 73 (GPa), Poisson’s ratio 0.19,
and density 2.2 g/cm3. The matrix is assigned linear viscoelastic material properties
whose frequency response is given by the property curves in Fig. 11.8 obtained from
physical experiments.

Here, as earlier (Fig. 11.9), the property of the interphase is assumed to be related
to the property of the matrix by shifting and broadening in the frequency domain
[11, 66]. The assumption for the shifting and broadening behaviors are based on our
observation of the comparison between the master curves of the filled and unfilled
systems in experiments [8]. In Fig. 11.18, the storage and loss modulus of the matrix
(solid curves) are obtained from experiments and the interphase modulus (dashed
curves) are then obtained by shifting those of the matrix to a lower frequency and
applying a broadening factor.

We use ABAQUS to solve the RVEs given the material properties for each
phase stated above. The dynamic moduli are calculated in the frequency-domain

Fig. 11.18 Three-phase FE model and master curves including (left) storage modulus, (right) loss
modulus. In these plots, the experimental data of the real matrix material is labeled “Matrix” and
the “Interphase” curve is generated by artificially shifting the matrix curve to lower frequency and
applying a broadening factor. Reproduced with permission from [58]. Copyright (2018) Elsevier
BV
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Fig. 11.19 Finite elementmodels (60×60×60)with representativemicrostructures and interphase
gradients match experimental results at high filler concentrations, even when tan δ appears to shift
to higher frequencies, or lower temperatures [8]. We observe that the peak position, at this high
filler loading, is nearly the same with or without interphase, therefore controlled by the presence of
the stiff phase. Adapted with permission from [23]. Copyright (2016) Elsevier BV

viscoelastic module for small strain oscillations. In Fig. 11.19, we demonstrate the
necessity of considering the interphase. TwoRVEmodels, one with interphase (inter-
phase VF = 49.6%) and one without interphase, are established for nanocomposites
with a filler VF of 28.5%. The predicted material properties are validated with the
experimental test results by DMA. Significant prediction error in the low frequency
domain is observed in the model without interphase, while the model with interphase
successfully captures the tan δ values in the full frequency domain.

Wood [23] used a two-layer strategy to generate the interphase gradient required
to observe positive tan δ peak temperature shift [56]. Following the reconstruction
strategy of Deng et al. and Xu et al. [8, 67], a reconstruction using SEM images
of a CB-SBR was produced and transformed into a three-dimensional FE mesh.
In Fig. 11.19, the effect of the optimal interphase gradient is contrasted with the
same mesh without any interphase effect. The interphase mainly increases the loss
of the material at lower frequencies, while the tan δ peak position and magnitude are
dominated by the pure particle effect.

11.2.4 Summary

We have presented and demonstrated a framework of capabilities for the compu-
tational assessment of viscoelastic nanoparticle composites. We have done so to
establish the important structural features needed to both replicate and extend our
understanding of complex rubber compounds. From the use of dynamic mechanical
analyses (DMA) and scanning electron microscopy (SEM), we provide structure–
property relationships down to the nanometer scale. This combination ofmacro-scale
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experimentation, and nanoscale characterization, is necessary to linkmesoscale-level
structure to observed viscoelastic behavior.

This endeavor has also shown the importance of three structural entities to
compound viscoelastic behavior: filler morphology, the far-field rubber matrix, and
the filler-rubber interphase. Although it is considered a purely elastic material, and
mechanically the simplest, the filler morphology itself is one of the most complex
features of a rubber compound. Standard dry-mixing of a compound formulation
are known widely to affect the overall filler morphology [68] and the subsequent
mechanical properties. We have delineated a number of micrograph image analysis
and reconstruction methods for filler morphology which are useful in the building of
realistic compound models.

The second structural entity which is relevant for this style of mesoscale modeling
and simulation is the far-field rubber matrix. It is perhaps the simplest morphological
entity at the mesoscale, compared to the filler and interphase morphologies. In this
light, unfilled rubber samples are constructed and analyzed solely by DMAmethods.
The construction ofmaster curves, via generalizedMaxwellmodels (i.e., Prony series
constructions) are the main item contributed to the overall mesoscale continuum
models.

Of the structural elements, the filler-rubber interphase, is the most difficult to
ascertain. Its viscoelastic properties and geometrical extent in this work are deter-
mined by a set of methods of increasing complexity. The simplest methods allow
for a shifting of the far-field rubber master curves to account for the general filler-
rubber interaction effects, aswell as an iterative estimation of the interphase size. This
mechanical model has been demonstrated in the literature [56, 69–71] as a gradient in
glass transition temperature, T g, as a function of distance from the filler surface. This
simplest interphase model, that of a single mechanical behavior, can only estimate
the effective viscoelastic and geometric behavior. More complex interphase models,
in which these mechanical gradients are captured by incorporating both master curve
shifting and spectral broadening, have been shown to be quantitative. From a design
perspective, the utilization of shifting and spectral broadening bring into play the
ability to perform ‘what-if’ scenarios on this elusive structural element.

The ability to perform these ‘what-if’ scenarios with good accuracy is also depen-
dent upon the size extent of the mesoscale models in play. The size scale, also known
as the representative volumeelement (RVE) size, is somewhat dependent on the corre-
lation lengths of the underlying filler morphologies. The number of finite-elements
in the continuum model also define the accuracy of the simulation. There exists
a tradeoff between number of elements and computational convergence. We have
also shown the requirements for obtaining very good accuracy from the number of
elements perspective, using sub-sized cells which we call statistical volume elements
(SVEs). The reader may find the use of SVEs to be an attractive computational
alternative to full-size, high-resolution RVEs.

Combining filler morphological reconstruction with interphase analysis and cell
size allows a more complete design tool set for unraveling the impact of design
intricacies of rubber compounds. This process allows one to vary the design scenario
at hand. One can use these capabilities to obtain quantitative correspondence with
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known compound viscoelastic behavior. However, one can also use the same analyses
in a discovery context, by varying the developed design space in such a way which
allows amore extensive evaluation compared to experiment. Finally, there also exists
the ability to examine features which are outside the realm of current experimental
facility, which enable one to potentially search for limiting viscoelastic behaviors
and/or demonstrating the value of a previously unconsidered design space.

11.3 Future Directions

In this final section, we illustrate the trends which are escalating in data-driven
multiscale sciences, especially as they concern tire compounding. So far, we have
emphasized mesoscale-level models which are physics-based. We see two additional
major trends in compound design: (1) the increasing research intomaterial and chem-
informatics [72]; and, hand-in-hand (2) the explosion in the use of machine learning
tools for chemical and material problems. These areas are complementary to the
more traditional physics-based tools, and are part of an overall adaptive materials
design ecosystem [73] for compounding.

11.3.1 Material Informatics and Cheminformatics

Data-centric informatics, which we consider to be a form of feature engineering,
is being leveraged in compound materials science by the advent or accumulation
of large-scale databases from external [74] and internal R&D sources, respectively.
There are many elements which can be considered for this style of data environment,
shown in Fig. 11.20.

The underlying principle of these environments is the centrality of design, lever-
aging the knowledge sets from physics-based simulations, data science, mate-
rial characterization and chemistry, and theory. These wide-ranging environments
require a level of data integration which historically has not been a priority. The
implementation of ‘data lakes’ will be a key unifying element of such systems.

On another front, we also see the use of chemically relevant feature engineering,
also known as cheminformatics, being leveraged for data-centric compound design
solutions [74]. In Fig. 11.21, the incorporation of rubber structure and other structural
elements are used in compound design. One of the major reasons for defining chem-
ical features is the ability to enable large-scale data compression from typical corpo-
rate formulation databases. In machine learning applications without such feature
engineering, it is not unusual to have input vectors in the many hundreds to describe
compound formulations. Most industrially relevant compounds are comprised of
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Fig. 11.20 Elements of a materials informatics environment for compound design. Such environ-
mentsmergeknowledge frommany technical disciplines, tying the elements into a design framework
at the core

Fig. 11.21 General schemes for standard laboratory-based compound design versus cheminfor-
matics enabled design. Note that the relevant chemical features (cheminformatics) are described and
input into the machine learning process. This process requires existing data and is complementary
to standard practices. Adapted from [72]. Copyright (2019) The Tire Society



308 H. Xu et al.

approximately 10–15 ingredients, which means these input vectors, for each formu-
lation, are very sparse. The resultant cheminformatics machine learning models
also have the advantage of being potentially more generalizable than the sparse,
large-scale formulation vector approach.

11.3.2 Machine Learning

Image classification and reconstruction are a major application of convolutional
deep learning networks. One of the many adaptations possible is the use of transfer
learning for compound morphological reconstruction. In Fig. 11.22, the workflow
for this approach is shown.

The main advantage of the transfer learning approach is that of data economy. In
typical trainings of convolutional neural networks, millions of images are needed.
Most industrial concerns, including tire manufacturers, do not have millions of
images in internal image databases. The knowledge accumulated in the deep learning
network model is leveraged by training the network with new compoundmorpholog-
ical structures from much smaller image databases. These models can then be used

Fig. 11.22 Rubber compound microstructural reconstruction workflow. This method utilizes large
image databases for the original VGG-19 deep learning networks. This large-scale deep learning
network was transferred to the new application, in this case, rubber compound reconstruction.
Reproduced with permission from [75]. Copyright (2018) Springer Nature Ltd
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for image reconstruction and model building for simulations or for other machine
learning-based structure–property relationships [75].

11.3.3 Summary

Moving outside of the strictly physics-based approach of this chapter, we have
illustrated emerging trends in tire compound design which are complementary to
our data-driven multiscale approach. Many materials design areas, outside of tire
compounding, have leveraged extensive external and internal corporate databases,
computational materials science at many levels, analytical characterization tech-
niques andmachine learningmethodologies.Weview thesemethods and data sources
as complementary and of significant utility in general tire compound design.

The next 5–10 years should see the further integration of these environments
into mainstream tire compound design, with each company utilizing these resources
depending on their cultures and resources. The combination and integration into a
cohesive compound design environment will greatly accelerate the development of
new, optimal and robust compounds for tire technology. We look forward to seeing
thematerials and tire designworlds seamlessly integrated into fully functional virtual
design ecosystems.
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