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Recent advances and applications of machine learning in solid-
state materials science
Jonathan Schmidt 1, Mário R. G. Marques 1, Silvana Botti2 and Miguel A. L. Marques1

One of the most exciting tools that have entered the material science toolbox in recent years is machine learning. This collection of
statistical methods has already proved to be capable of considerably speeding up both fundamental and applied research. At
present, we are witnessing an explosion of works that develop and apply machine learning to solid-state systems. We provide a
comprehensive overview and analysis of the most recent research in this topic. As a starting point, we introduce machine learning
principles, algorithms, descriptors, and databases in materials science. We continue with the description of different machine
learning approaches for the discovery of stable materials and the prediction of their crystal structure. Then we discuss research in
numerous quantitative structure–property relationships and various approaches for the replacement of first-principle methods by
machine learning. We review how active learning and surrogate-based optimization can be applied to improve the rational design
process and related examples of applications. Two major questions are always the interpretability of and the physical
understanding gained from machine learning models. We consider therefore the different facets of interpretability and their
importance in materials science. Finally, we propose solutions and future research paths for various challenges in computational
materials science.
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INTRODUCTION
In recent years, the availability of large datasets combined with
the improvement in algorithms and the exponential growth in
computing power led to an unparalleled surge of interest in the
topic of machine learning. Nowadays, machine learning algo-
rithms are successfully employed for classification, regression,
clustering, or dimensionality reduction tasks of large sets of
especially high-dimensional input data.1 In fact, machine learning
has proved to have superhuman abilities in numerous fields (such
as playing go,2 self driving cars,3 image classification,4 etc). As a
result, huge parts of our daily life, for example, image and speech
recognition,5,6 web-searches,7 fraud detection,8 email/spam filter-
ing,9 credit scores,10 and many more are powered by machine
learning algorithms.
While data-driven research, and more specifically machine

learning, have already a long history in biology11 or chemistry,12

they only rose to prominence recently in the field of solid-state
materials science.
Traditionally, experiments used to play the key role in finding

and characterizing new materials. Experimental research must be
conducted over a long time period for an extremely limited
number of materials, as it imposes high requirements in terms of
resources and equipment. Owing to these limitations, important
discoveries happened mostly through human intuition or even
serendipity.13 A first computational revolution in materials science
was fueled by the advent of computational methods,14 especially
density functional theory (DFT),15,16 Monte Carlo simulations, and
molecular dynamics, that allowed researchers to explore the
phase and composition space far more efficiently. In fact, the

combination of both experiments and computer simulations has
allowed to cut substantially the time and cost of materials
design.17–20 The constant increase in computing power and the
development of more efficient codes also allowed for computa-
tional high-throughput studies21 of large material groups in order
to screen for the ideal experimental candidates. These large-scale
simulations and calculations together with experimental high-
throughput studies22–25 are producing an enormous amount of
data making possible the use of machine learning methods to
materials science.
As these algorithms start to find their place, they are heralding a

second computational revolution. Because the number of possible
materials is estimated to be as high as a googol (10100),26 this
revolution is doubtlessly required. This paradigm change is further
promoted by projects like the materials genome initiative
(Materials genome initiative) that aim to bridge the gap between
experiment and theory and promote a more data-intensive and
systematic research approach. A multitude of already successful
machine learning applications in materials science can be found,
e.g., the prediction of new stable materials,27–35 the calculation of
numerous material properties,36–51 and the speeding up of first-
principle calculations.52

Machine learning algorithms have already revolutionized other
fields, such as image recognition. However, the development from
the first perceptron53,54 up to modern deep convolutional neural
networks was a long and tortuous process. In order to produce
significant results in materials science, one necessarily has not
only to play to the strength of machine learning techniques but
also apply the lessons already learned in other fields.
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As the introduction of machine learning methods to materials
science is still recent, a lot of published applications are quite basic
in nature and complexity. Often they involve fitting models to
extremely small training sets or even applying machine learning
methods to composition spaces that could possibly be mapped
out in hundreds of CPU hours. It is of course possible to use
machine learning methods as a simple fitting procedure for small
low-dimensional datasets. However, this does not play to their
strength and will not allow us to replicate the success machine
learning methods had in other fields.
Furthermore, and as always when entering a different field of

science, nomenclature has to be applied correctly. One example is
the expression “deep learning”, which is responsible for a majority
of the recent success of machine learning methods (e.g., in image
recognition and natural language processing55). It is of course
tempting to describe one’s work as deep learning. However,
denoting neural networks with one or two fully connected hidden
layer as deep learning56 is confusing for researchers new to the
topic, and it misrepresents the purpose of deep-learning
algorithms. The success of deep learning is rooted in the ability
of deep neural networks to learn descriptors of data with different
levels of abstraction without human intervention.55,57 This is, of
course, not the case in two-layer neural networks.
One of the major criticisms of machine learning algorithms in

science is the lack of novel laws, understanding, and knowledge
arising from their use. This comes from the fact that machine
learning algorithms are often treated as black boxes, as machine-
built models are too complex and alien for humans to understand.
We will discuss the validity of the criticism and different
approaches to this challenge.
Finally, there have already been a number of excellent reviews

of materials informatics and machine learning in materials science
in general,13,58–62 as well as some other covering specifically
machine learning in the chemical sciences,63 in materials design of
thermoelectrics and photovoltaics,64 in the development of
lithium-ion batteries,65 and in atomistic simulations.66 However,
owing to the explosion in the number of works using machine
learning, an enormous amount of research has already been
published since the past reviews and the research landscape has
quickly transformed.
Here we concentrate on the various applications of machine

learning in solid-state materials science (especially the most recent
ones) and discuss and analyze them in detail. As a starting point,
we provide an introduction to machine learning, and in particular
to machine learning principles, algorithms, descriptors, and
databases in materials science. We then review numerous
applications of machine learning in solid-state materials science:
the discovery of new stable materials and the prediction of their
structure, the machine learning calculation of material properties,
the development of machine learning force fields for simulations
in material science, the construction of DFT functionals by
machine learning methods, the optimization of the adaptive
design process by active learning, and the interpretability of, and
the physical understanding gained from, machine learning
models. Finally, we discuss the challenges and limitations machine
learning faces in materials science and suggest a few research
strategies to overcome or circumvent them.

BASIC PRINCIPLES OF MACHINE LEARNING
Machine learning algorithms aim to optimize the performance of a
certain task by using examples and/or past experience.67 Generally
speaking, machine learning can be divided into three main
categories, namely, supervised learning, unsupervised learning,
and reinforcement learning.
Supervised machine learning is based on the same principles as

a standard fitting procedure: it tries to find the unknown function
that connects known inputs to unknown outputs. This desired

result for unknown domains is estimated based on the extrapola-
tion of patterns found in the labeled training data. Unsupervised
learning is concerned with finding patterns in unlabeled data, as,
e.g., in the clustering of samples. Finally, reinforcement learning
treats the problem of finding optimal or sufficiently good actions
for a situation in order to maximize a reward.68 In other words, it
learns from interactions.
Finally, halfway between supervised and unsupervised learning

lies semi-supervised learning. In this case, the algorithm is
provided with both unlabeled as well as labeled data. Techniques
of this category are particularly useful when available data are
incomplete and to learn representations.69

As supervised learning is by far the most widespread form of
machine learning in materials science, we will concentrate on it in
the following discussion. Figure 1 depicts the workflow applied in
supervised learning. One generally chooses a subset of the
relevant population for which values of the target property are
known or creates the data if necessary. This process is
accompanied by the selection of a machine learning algorithm
that will be used to fit the desired target quantity. Most of the
work consists in generating, finding, and cleaning the data to
ensure that it is consistent, accurate, etc. Second, it is necessary to
decide how to map the properties of the system, i.e., the input for
the model, in a way that is suitable for the chosen algorithm. This
implies to translate the raw information into certain features that
will be used as inputs for the algorithm. Once this process is
finished, the model is trained by optimizing its performance,
usually measured through some kind of cost function. Usually this
entails the adjustment of hyperparameters that control the
training process, structure, and properties of the model. The data
are split into various sets. Ideally, a validation dataset separate
from the test and training sets is used for the optimization of the
hyperparameters.

Fig. 1 Supervised learning workflow
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Every machine learning application has to consider the aspects
of overfitting and underfitting. The reason for underfitting usually
lies either in the model, which lacks the ability to express the
complexity of the data, or in the features, which do not adequately
describe the data. This inevitably leads to a high training error. On
the other hand, an overfitted model interprets part of the noise in
the training data as relevant information, therefore failing to
reliably predict new data. Usually, an overfitted model contains
more free parameters than the number required to capture the
complexity of the training data. In order to avoid overfitting, it is
essential to monitor during training not only the training error but
also the error of the validation set. Once the validation error stops
decreasing, a machine learning model can start to overfit. This
problem is also discussed as the bias-variance trade off in machine
learning.70,71 In this context, the bias is an error based on wrong
assumptions in the trained model, while high variance is the error
resulting from too much sensitivity to noise in the training data. As
such, underfitted models possess high bias while overfitted
models have high variance.
Before the model is ready for applications, it has to be evaluated

on previously unseen data, denoted as test set, to estimate its
generalization and extrapolation ability.
Different methods ranging from a simple holdout, over k-fold

cross-validation, leave-one-out cross-validation, Monte Carlo cross-
validation,72 up to leave-one-cluster-out cross-validation73 can be
used for the evaluation. All these methods rely on keeping some
data hidden from the model during the training process. For a
simple holdout, this is just performed once, while for k-fold cross-
validation the dataset is separated into k equally sized sets. The
algorithm is trained with all but one of these k subsets, which is
used for testing. Finally, the process is repeated for every subset.
For leave-one-out cross-validation, each sample is left out of the
training set once and the model is evaluated for that sample. It has
to be noted that research in chemistry has shown that this form of
cross-validation is insufficient to evaluate adequately the pre-
dictive performance of quantitative structure–property relation-
ship and should therefore be avoided.74,75 Monte Carlo cross-
validation is similar to k-fold cross-validation in the sense that the
training and test set are randomly chosen. However, here the size
of the training/test set is chosen independently from the number
of folds. While this can be advantageous, it also means that a
sample is not guaranteed to be in the test/training set. Leave-one-
cluster-out cross-validation73 was specifically developed for
materials science and estimates the ability of the machine
learning model to extrapolate to novel groups of materials that
were not present in the training data. Depending on the target
quantity, this allows for a more realistic evaluation and a better
understanding of the limitations of the machine learning model.
Leave-one-cluster-out cross-validation removes a cluster of
materials and then considers the error for predictions of the
materials belonging to the removed cluster. This is, for example,
consistent with the finding in ref. 76 that models trained on
superconductors with a specific superconducting mechanism do
not have any predictive ability for superconductors with other
mechanisms.
Before discussing various applications of machine learning in

materials science, we will give an overview of the different
descriptors, algorithms, and databases used in materials
informatics.

Databases
Machine learning in materials science is mostly concerned with
supervised learning. The success of such methods depends mainly
on the amount and quality of data that is available, and this turns
out to be one of the major challenges in material informatics.77

This is especially problematic for target properties that can only be
determined experimentally in a costly fashion (such as the critical

temperature of superconductors—see section “Prediction of
material properties—superconductivity”). For this reason, data-
bases such as the materials project,78 the inorganic crystal
structure database,79 and others (Materials genome initiative,
The NOMAD archive, Supercon, National Institute of Materials
Science 2011)80–92 that contain information on numerous proper-
ties of known materials are essential for the success of materials
informatics.
In order for these databases and for materials informatics to

thrive, a FAIR treatment of data93 is absolutely required. A FAIR
treatment encompasses the four principles: findability, accessi-
bility, interoperability, and repurposability.94 In other words,
researchers from different disciplines should be able to find and
access data, as well as the corresponding metadata, in a
commonly accepted format. This allows the application of the
data for new purposes.
Traditionally, negative results are often discarded and left

unpublished. However, as negative data are often just as
important for machine learning algorithms as positive results,28,95

a cultural adjustment toward the publication of unsuccessful
research is necessary. In some disciplines with a longer tradition of
data-based research (like chemistry), such databases already
exist.95 In a similar vein, data that emerges as a side product
but are not essential for a publication are often left unpublished.
This eventually results in a waste of resources as other researchers
are then required to repeat the work. In the end, every single
discarded calculation will be sorely missed in future machine
learning applications.

Features
A pivotal ingredient of a machine learning algorithm is the
representation of the data in a suitable form. Features in material
science have to be able to capture all the relevant information,
necessary to distinguish between different atomic or crystal
environments.96 The process itself, denoted as feature extraction
or engineering, might be as simple as determining atomic
numbers, might involve complex transformations such as an
expansion of radial distribution functions (RDFs) in a certain basis,
or might require aggregations based on statistics (e.g., average
over features or the calculation of their maximum value). How
much processing is required depends strongly on the algorithm.
For some methods, such as deep learning, the feature extraction
can be considered as part of the model.97 Naturally, the best
choice for the representation depends on the target quantity and
the variety of the space of occurrences. For completeness, we
have to mention that the cost of feature extraction and of target
quantity evaluation must never be comparable.
Ideally, descriptors should be uncorrelated, as an abundant

number of correlated features can hinder the efficiency and
accuracy of the model. When this happens, further feature
selection is necessary to circumvent the curse of dimensionality,98

simplify models, and improve their interpretability as well as
training efficiency. For example, several elemental properties such
as the period and group in the periodic table, ionization potential,
and covalent radius, can be used as features to model formation
energies or distances to the convex hull of stability. However, it
was shown that, to obtain acceptable accuracies, often only the
period and the group are required.99

Having described the general properties of descriptors, we will
proceed with a listing of the most used features in materials
science. Without a doubt, the most studied type of features in this
field are the ones related to the fitting of potential energy
surfaces. In principle, the nuclear charges and the atomic positions
are sufficient features, as the Hamiltonian of a system is usually
fully determined by these quantities. In practice, however, while
Cartesian coordinates might provide an unambiguous description
of the atomic positions, they do not make a suitable descriptor, as
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the list of coordinates of a structure are ordered arbitrarily and the
number of such coordinates varies with the number of atoms. The
latter is a problem, as most machine learning models require a
fixed number of features as an input. Therefore, to describe solids
and large clusters, the number of interacting neighbors has to be
allowed to vary without changing the dimensionality of the
descriptor. In addition, a lot of applications require that the
features are continuous and differentiable with respect to atomic
positions.
A comprehensive study on features for atomic potential energy

surfaces can be found in the review of Bartó et al.100. Important
points mentioned in their work are: (i) the performance of the
model and its ability to differentiate between different structures
do not depend directly on the descriptors but on the similarity
measurement between them; (ii) the quality of the descriptors is
related to the differentiability with respect to the movement of
the atoms, completeness of the representation, and invariance to
the basis symmetries of physics (rotation, reflection, translation,
and permutation of atoms of the same species). For clarification, a
set of invariant descriptors qi, which uniquely determines an
atomic environment up to symmetries, is defined as complete. An
overcomplete set is then a set that includes more features than
necessary.
Simple representations that show shortcomings as features are

transformations of pairwise distances,101–103 Weyl matrices,104 and
Z-matrices.105 Pairwise distances (and also reciprocal or exponen-
tial transformations of these) only work for a fixed number of
atoms and are not unique under permutation of atoms. The
constrain on the number of atoms is also present for polynomials
of pairwise distances. Histograms of pairwise atomic distances are
non-unique: if no information on the angles between the atoms is
given, of if the ordering of the atoms is unknown, it might be
possible to construct at least two different structures with the
same features. Weyl matrices are defined by the inner product
between neighboring atoms positions, forming an overcomplete
set, while permutations of the atoms change the order of the rows
and columns. Finally, Z-matrices or internal coordinate representa-
tions are not invariant under permutations of atoms.
In 2012, Rupp et al.106 introduced a representation for

molecules based on the Coulomb repulsion between atoms I
and J and a polynomial fit of atomic energies to the nuclear
charge

MIJ ¼
0:5Z2:4

I for I ¼ J
ZIZJ

jRI�RJ j for I ≠ J

(
: (1)

The ordered eigenvalues (ε) of these “Coulomb matrices” are
then used to measure the similarity between two molecules.

dðε; ε0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

εi � ε0i
�� ��2s

: (2)

Here, if the number of atoms is not the same in both systems, ε
is extended by zeros. In this representation, symmetrically
equivalent atoms contribute equally to the feature function, the
diagonalized matrices are invariant with respect to permutations
and rotations, and the distance d is continuous under small
variations of charge or interatomic distances. Unfortunately, this
representation is not complete and does not uniquely describe
every system. The incompleteness derives from the fact that not
all degrees of freedom are taken into account when comparing
two systems. The non-uniqueness can be demonstrated using as
an example acetylene (C2H2).

107 In brief, distortions of this
molecule can lead to several geometries that are described by
the same Coulomb matrix.
Faber et al.108 presented three distinct ways to extend the

Coulomb matrix representation to periodic systems. The first of
these features consists of a matrix where each element represents

the full Coulomb interaction between two atoms and all their
infinite repetitions in the lattice. For example:

Xij ¼ 1
N
ZiZj

X
k;l

φðjRk � Rl jÞ; (3)

where the sum over k (l) is taken over the atom i (j) in the unit cell
and its N closest equivalent atoms. However, as this double sum
has convergence issues, one has to resort to the Ewald trick: Xij is
divided into a constant and two rapidly converging sums, one for
the long-range interaction and another for the short-range
interaction. Another extension by Faber et al. considers electro-
static interactions between the atoms in the unit cell and the
atoms in the N closest unit cells. In addition, the long-range
interaction is replaced by rapidly decaying interaction. In their
final extension, the Coulomb interaction in the usual matrix is
replaced by a potential that is symmetric with respect to the
lattice vectors.
In the same line of work, Schütt et al.109 extended the Coulomb

matrix representation by combining it with the Bravais matrix.
Unfortunately, this representation is plagued by a degeneracy
problem that comes from the arbitrary choice of the coordinate
system in which the Bravais matrix is written. Another representa-
tion proposed by Schütt et al. is the so called partial radial
distribution function, which considers the density of atoms β in a
shell of width dr and radius r centered around atom α (see Fig. 2):

gαβðrÞ ¼ 1
NαVr

XNα

i

XNβ

j

θðdαiβj � rÞθðr þ dr � dαiβj Þ: (4)

Here Nα and Nβ are the number of atom of types α and β, Vr is
the volume of the shell, and dαβ are the pairwise distances
between two atom types.
Another form for representing the local structural environment

was proposed by Behler and Parrinelo.110 Their descriptors111

involve an invariant set of atom-centered radial

Gr
i ðfRigÞ ¼

Xneighbors

j≠i

grðRijÞ; (5)

and angular symmetry functions

Ga
i ðfRigÞ ¼

Xneighbors

j≠i

gaðθijkÞ; (6)

where θijk is the angle between Rj− Ri and Rk− Ri. While the
radial functions Gr

i contain information on the interaction between
pairs of atoms within a certain radius, the angular functions Ga

i
contains additional information on the distribution of the bond
angles θijk. Examples for atom-centered symmetry functions are

Gr
i ¼

Xneighbors

j≠i

fcðRijÞe�ηðRij�RsÞ2 (7)

Fig. 2 Two crystal structure representations. (Left) A unit cell with
the Bravais vectors (blue) and base (pink) represented. (Right)
Depiction of a shell of the discrete partial radial distribution function
gαβ(r) with width dr. (Reprinted with permission from ref. 109.
Copyright 2014 American Physical Society
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and

Ga
i ¼ 21�ζ

Xneighbors

jk
i≠j≠k

ð1þ λ cos θijkÞζe�ηðR2ijþR2ikþR2jkÞ ´ fcðRijÞfcðRikÞfcðRjkÞ:

(8)

Here fc is a cutoff function, leading to the neglect of interactions
between atoms beyond a certain radius Rc. Furthermore, η
controls the width of the Gaussians, Rs is just a parameter that
shifts the Gaussians, λ determines the positions of the extrema of
the cosine, and ζ controls the angular resolution. The sum over
neighbors enforces the permutation invariance of these symmetry
functions. Usually, 20–100 symmetry functions are used per atom,
constructed by varying the parameters above. Beside atom
centered, these functions can also be pair centered.112

A generalization of the atom-centered pairwise descriptor of
Behler was proposed by Seko et al.113 It consists of simple basis
functions constructed from the multinomial expansion of the
product between a cutoff function (fc) and an analytical pairwise
function (fn) (for example, Gaussian, cosine, Bessel, Neumann,
polynomial, or Gaussian-type orbital functions)

bi;jn;p ¼
X
k

fnðRijkÞ � fcðRijkÞ
" #p

; (9)

where p is a positive integer, and Rijk indicates the distance
between atoms j and k of structure i. The descriptor then uses the
sum of these basis functions over all the atoms in the structureP

j
bi;jn;p

 !
.

A similar type of descriptor is the angular Fourier series (AFS),100

which consists of a collection of orthogonal polynomials, like the
Chebyshev polynomials Tl(cos θ)= cos (lθ), and radial functions

AFSnl ¼
X
i;j>i

gnðriÞgnðrjÞcosðlθijÞ: (10)

These radial functions are expansions of cubic or higher-order
polynomials

gnðrÞ ¼
X
α

WnαϕαðrÞ; (11)

where

ϕαðrÞ ¼ ðrc � rÞαþ2=Nα: (12)

A different approach for atomic environment features was
proposed by Bartok et al.100,114 and leads to the power spectrum
and the bispectrum. The approach starts with the generation of an
atomic neighbor density function

ρðrÞ ¼ δðr0Þ þ
X
i

δðr� riÞ; (13)

which is projected onto the surface of a four-dimensional sphere
with radius r0. As an example, Fig. 3 depicts the projection for 1
and 2 dimensions. Then the hyperspherical harmonic functions
Uj
m0m can be used to represent any function ρ defined on the

surface of a four-dimensional sphere115,116

ρ ¼
X1
j¼0

Xj
m;m0¼�j

cjm0mU
j
m0m: (14)

Combining these with the rotation operator and the transfor-
mation of the expansion coefficients under rotation leads to the
formula

Pj ¼
Xj

m0;m¼�j

cj�m0mc
j
m0m (15)

for the SO(4) power spectrum. On the other hand, the bispectrum
is given by

Bj j1 j2 ¼
Xj1

m10 ;m1¼�j1

cj1m10m1

Xj2
m20;m2¼�j2

cj2m20m2
´
Xj

m0;m¼�j

Cj j1 j2
mm1 m2

Cj j1 j2
m0m01 m02c

j�
m0m;

(16)

where Cj j1 j2
mm1 m2 are the Clebsch–Gordon coefficients of SO(4). We

note that the representations above are truncated, based on the
band limit jmax in the expansion.
Finally, one of the most successful atomic environment features

is the following similarity measurement

Kðρ; ρ0Þ ¼ kðρ; ρ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðρ; ρÞkðρ0; ρ0Þp

" #ζ
(17)

also known as the smooth overlap of atomic positions (SOAP)
kernel.100 Here ζ is a positive integer that enhances the sensitivity
of the kernel to changes on the atomic positions and ρ is the
atomic neighbor density function, which is constructed from a
sum of Gaussians, centered on each neighbor:

ρðrÞ ¼
X
i

e�αjr�ri j2 : (18)

In practice, the function ρ is then expanded in terms of the
spherical harmonics. In addition, k(ρ, ρ′) is a rotationally invariant
kernel, defined as the overlap between an atomic environment
and all rotated environments:

kðρ; ρ0Þ ¼
Z

dR̂
Z

dr ρðrÞρ0ðR̂rÞ: (19)

The normalization factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðρ; ρÞkðρ0; ρ0Þp

ensures that the
overlap of an environment with itself is one.
The SOAP kernel can be perceived as a three-dimensional

generalization of the radial atom-centered symmetry functions
and is capable of characterizing the entire atomic environment at
once. It was shown to be equivalent to using the power or
bispectrum descriptor with a dot-product covariance kernel and
Gaussian neighbor densities.100

A problem with the above descriptors is that their number
increases quadratically with the number of chemical species.
Inspired by the Behler symmetry functions and the SOAP method,
Artrith et al.117 devised a conceptually simple descriptor whose
dimension is constant with respect to the number species. This is
achieved by defining the descriptor as the union between two
sets of invariant coordinates, one that maps the atomic positions
(or structure) and another for the composition. Both of these
mappings consist of the expansion coefficients of the RDFs

RDFiðrÞ ¼
X
α

cRDFα ϕαðrÞ for 0 � r � Rc (20)

and angular distribution functions (ADF)

ADFiðθÞ ¼
X
α

cADFα ϕαðθÞ for 0 � r � Rc: (21)

in a complete basis set ϕα (like the Chebyshev 94% average cross-

Fig. 3 Mapping of a flat space in one and two dimensions onto the
surface of a sphere in one higher dimension. (Reprinted with
permission from ref. 100. Copyright 2013 American Physical Society.)
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validation error). The advantage of stability

cRDFα ¼
X
Rj

ϕαðRijÞfcðRijÞwtj (22)

and

cADFα ¼
X
Rj ;Rk

ϕαðθijkÞfcðRijÞfcðRijÞwtjwtk : (23)

Here fc is a cut-off function that limits the range of the
interactions. The weights wtj and wtk take the value of one for the
structure maps, while the weights for the compositional maps
depend on the chemical species, according to the pseudo-spin
convention of the Ising model. By limiting the descriptor to two
and three body interactions, i.e., radial and angular contributions,
this method maintains the simple analytic nature of the
Behler–Parrinelo approach. Furthermore, it allows for an efficient
implementation and differentiation, while systematic refinement is
assured by the expansion in a complete basis set.
Sanville et al.118 used a set of vectors, each of which describes a

five-atom chain found in the system. This information includes
distances between the five atoms, angles, torsion angles, and
functions of the bond screening factors.119

The simplex representation of a molecular structure of Kuz’min
et al.120,121 consists in representing a molecule as a system of
different simplex descriptors, i.e., a system of different tetratromic
fragments. These descriptors become consecutively more detailed
with the increase of the dimension of the molecule representa-
tion. The simplex descriptor at the one-dimensional (1D) level
consists on the number of combinations of four atoms for a given
composition. At the two-dimensional (2D) level, the topology is
also taken into account, while at the 3D level, the descriptor is the
number of simplexes of fixed composition, topology, chirality, and
symmetry. The extension of this methodology to bulk materials
was proposed by Isayev et al.122 and counts bounded and
unbounded simplexes (see Fig. 4). While a bonded simplex
characterizes only a single component of the mixture, unbounded
simplexes can describe up to four components of the unit cell.
Isayef et al.41 also adapted property-labeled material frag-

ments123 to solids. The structure of the material is encoded in a
graph that defines the connectivity within the material based on
its Voronoi tessellation124,125 (see Fig. 5). Only strong bonding
interactions are considered. Two atoms are seen as connected
only when they share a Voronoi face and the interatomic distance
does not exceed the sum of the Cordero covalent bond lengths.126

In the graph, the nodes correspond to the chemical elements,
which are identified through a plethora of elemental properties,
like Mendeleev group, period, thermal conductivity, covalent
radius, etc. The full graph is divided into subgraphs that
correspond to the different fragments. In addition, information

about the crystal structure (e.g., lattice constants) is added to the
descriptor of the material, resulting in a feature vector of 2500
values in total. A characteristic of these graphs is their adjacency
matrix, which consists of a square matrix of order n (number of
atoms) filled with zeros except for the entries aij= 1 that occur
when atom i and j are connected. Finally, for every property
scheme q, the descriptors are calculated as

T ¼
X
i;j

qi � qj
�� ��Mij; (24)

where the set of indices go over all pairs of atoms or over all pairs
of bonded atoms, and Mij are the elements of the product
between the adjacency matrix of the graph and the reciprocal
square distance matrix.
A different descriptor, named orbital-field matrix, was intro-

duced by Pham et al.127 Orbital-field matrices consist in the
weighted product between one-hot vectors opi

� �
, resembling

those from the field of natural language processing. These vectors
are filled with zeros with the exception of the elements that
represent the electronic configuration of the valence of the atom.
As an example, for the sodium atom with electronic configuration
[Ne]3s1, the one-hot vector is filled with zeros except for the first
element, which is 1. The elements of the matrices are calculated
from:

Xp
ij ¼

Xnp
k¼1

opi o
k
j wkðθpk ; rpkÞ; (25)

where the weight wkðθpk ; rpkÞ represents the contribution of atom k
to the coordination number of the center atom p and depends on
the distance between the atoms and the solid angle θpk
determined by the face of the Voronoi polyhedron between the
atoms. To represent crystal structures, the orbital-field matrices are
averaged over the number of atoms Np in the unit cell:

Fij ¼ 1
Np

XNp

p

Xp
ij : (26)

Another way to construct features based on graphs is the crystal
graph convolutional neural network (CGCNN) framework, pro-
posed by Xie et al.40 and shown schematically in Fig. 6. The atomic
properties are represented by the nodes and encoded in the
feature vectors vi. Instead of using continuous values, each
continuous property is divided into ten categories resulting in
one-hot features. This is obviously not necessary for the discrete
properties, which can be encoded as standard one-hot vectors
without further transformations. The edges represent the bonding
interactions and are constructed analogously to the property-
labeled material fragments descriptor. Unlike most graphs, these
crystal graphs allow for several edges between two nodes, due to
periodicity. Therefore, the edges are encoded as one-hot feature
vectors uði;jÞk , which translates into the kth bond between atom i
and j. Crystal graphs do not form an optimal representation for
predicting target properties by themselves; however, they can be
improved by using convolution layers. After each convolution
layer, the feature vectors gradually contain more information on
the surrounding environment due to the concatenation between
atom and bond feature vectors. The best convolution function of
Xie et al. consisted of

vðtþ1Þ
i ¼ vðtÞi þP

j;k
σ zðtÞði;jÞkW

ðtÞ
f þ bðtÞf

� �

�g zðtÞði;jÞkW
ðtÞ
s þ bðtÞs

� �
;

(27)

where W ðtÞ
f , W ðtÞ

s , and bðtÞi represent the convolution weight
matrix, self-weight matrix, and the bias of the tth layer,
respectively. In addition, e indicates element-wise multiplication,
σ denotes the sigmoid function, and zðtÞði;jÞk is the concatenation of

Fig. 4 Depiction of the generation of the simplex representation of
molecular structure descriptors for materials. (Reprinted with
permission from ref. 122. Further permissions should be directed to
the ACS.)
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neighbor vectors:

zðtÞði;jÞk ¼ vðtÞi � vðtÞj � uði;jÞk ; (28)

Here ⊕ denotes concatenation of vectors.
After R convolutions, a pooling layer reduces the spatial

dimensions of the convolution neural network. Using skip layer
connections,128 the pooling function operates not only on the last
feature vector but also on all feature vectors (obtained after each
convolution).
The idea of applying graph neural networks129–131 to describe

crystal structures stems from graph-based models for molecules,
such as those proposed in refs. 131–140. Moreover, all these models
can be reorganized into a single common framework, known as
message passing neural network141 (MPNNs). The latter can be
defined as a model operating on undirected graphs G, with edge
features xv and vertex features evw. In this context, the forward
pass is divided into two phases: the message passing phase and
the readout phase.
During the message passing phase, which lasts for T interaction

steps, the hidden states hv at each node in the graph are updated
based on the messages mtþ1

v :

htþ1
v ¼ St htv ;m

tþ1
v

� �
; (29)

where St(⋅) is the vertex update function. The messages are
modified at each interaction by an update function Mt(⋅), which
depends on all pairs of nodes (and their edges) in the
neighborhood of v in the graph G:

mtþ1
v ¼

X
w2NðvÞ

Mt htv ; h
t
w ; e

t
vw

� �
; (30)

where N(v) denotes the neighbors of v.
The readout phase occurs after T interaction steps. In this phase,

a readout function R(⋅) computes a feature vector for the entire
graph:

ŷ ¼ R hTv 2 G
� 	� �

: (31)

Jørgensen et al.142 extended MPNNs with an edge update
network, which enforces the dependence of the information
exchanged between atoms on the previous edge state and on the
hidden states of the sending and receiving atom:

etþ1
vw ¼ Et htþ1

v ; htþ1
w ; etvw

� �
; (32)

where Et(.) is the edge update function. One example of MPNNs
are causal generative neural networks. The message corresponds
to zðtÞði;jÞk , defined in Eq. (27). Likewise, the hidden node update
function corresponds to the convolution function of Eq. (27). In
this case, we can clearly see that the hidden node update function
depends on the message and on the hidden node state. The
readout phase comes after R convolutions (or T iterations steps)
and the readout function corresponds to the pooling layer
function of the CGCNNs.
Up to now, we discussed very general features to describe both

the crystal structure and chemical composition. However, should
constrains be applied to the material space, the features necessary
to study such systems can be vastly simplified. As mentioned
above, elemental properties alone can be used as features, e.g.,
when a training set is restricted to only one kind of crystal
structure and stoichiometry.33,35,56,99,143 Consequently, the target
property only depends on the chemical elements present in the
composition. Another example can be found in ref. 144, where a
polymer is represented by the number of building blocks (e.g.,
number of C6H4, CH2, etc) or of pairs of blocks.
The crude estimations of properties can be an interesting

supplement to standard features as discussed in ref. 77. As its
name implies, crude estimations of properties consist of the
calculation of a target property (for example, the experimental
band gap) utilizing crude estimators [for example, the DFT band
gap calculated with the Perdew–Burke–Ernzerhof (PBE) approx-
imation145 to the exchange-correlation functional]. In principle,
this approach can achieve successful results, as the machine
learning algorithm no longer needs to predict a target property
but rather an error or a difference between properties calculated
with two well-defined methodologies.

Fig. 5 Representation of the construction of property-labeled material fragments. The atomic neighbors of a crystal structure (a) are found via
Voronoi tessellation (b). The full graph is constructed from the list of connections, labeled with a property (c) and decomposed into smaller
subgraphs (d). (Reprinted with permission from ref. 41 licensed under the CC BY 4.0 [https://creativecommons.org/licenses/by/4.0/])
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Fischer et al.146 took another route and used as features a vector
that completely denotes the possible ground states of an alloy:

X ¼ ðxc1 ; xc2 ; :::; xcn ; xE1 ; xE2 ; :::; xEc Þ; (33)

where xci denotes the all possible crystal structures present in the
alloy at a given composition and xE1 the elemental constituents of
the system. In this way, the vector X= (fcc, fcc, Au, Ag) would
represent the gold–silver system. Furthermore, the probability
density p(X) denotes the probability that X is the set of ground
states in a binary alloy. With these tools, one can find the most
likely crystal structure for a given composition by sorting the
probabilities and predict crystal structures by evaluating the
conditional probability p(X|e), where e denotes unknown
variables.

Having presented so many types of descriptors, the question
that now remains concerns the selection of the best features for
the problem at hand. In section “Basic principles of machine
learning—Algorithms”, we discuss some automatic feature selec-
tion algorithms, e.g., least absolute shrinkage and selection
operator (LASSO), sure independence screening and sparsifying
operator (SISSO), principal component analysis (PCA), or even
decision trees. Yet these methods mainly work for linear models,
and selecting a feature for, e.g., a neural network force field from
the various features we described is not possible with any of these
methods. A possible solution to this problem is to perform
through benchmarks. Unfortunately, while there are many studies
presenting their own distinct way to build features and applying
them to some problem in materials science, fewer studies96,100,147

actually present quantitative comparisons between descriptors.
Moreover, some of the above features require a considerable
amount of time and effort to be implemented efficiently and are
not readily and easily available.
In view of the present situation, we believe that the materials

science community would benefit greatly from a library contain-
ing efficient implementations of the above-mentioned descriptors
and an assembly of benchmark datasets to compare the features
in a standardized manner. Recent work by Himanen et al.148

addresses part of the first problem by providing efficient
implementations of common features. The library is, however,
lacking the implementation of the derivatives. SchNetPack by
Schütt et al.149 also provides an environment for training deep
neural network for energy surfaces and various material proper-
ties. Further useful tools and libraries can be found in refs. 150–152

Algorithms
In this section, we briefly introduce and discuss the most prevalent
algorithms used in materials science. We start with linear- and
kernel-based regression and classification methods. We then
introduce variable selection and extraction algorithms that are
also largely based on linear methods. Concerning completely non-
linear models, we discuss decision tree-based methods like
random forests (RFs) and extremely randomized trees and neural
networks. We start with simple fully connected feed-forward
networks and convolutional networks and continue with more
complex applications in the form of variational autoencoders
(VAEs) and generative adversarial networks (GANs).

(a)

(b)

R Conv

+ ...

L1 hidden Pooling L2 hidden

Output

Fig. 6 Illustration of the crystal graph convolutional neural network. a Construction of the graph. b Structure of the convolutional neural
network. (Reprinted with permission from ref. 40. Copyright 2018 American Physical Society.)

Fig. 7 Classification border of a support vector machine with the
support vectors shown as arrows
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In ridge regression, a multi-dimensional least-squares linear-fit
problem, including a L2-regularization term, is solved:

min
x

jAx � bj22 þ λjxj22: (34)

The extra regularization term is included to favor specific
solutions with smaller coefficients.
As complex regression problems can usually not be solved by a

simple linear model, the so-called kernel trick is often applied to
ridge regression.153 Instead of using the original descriptor x, the
data are first transformed into a higher-dimensional feature space
ϕ(x). In this space, the kernel k(x, y) is equal to the inner product 〈ϕ
(x), ϕ(y)〉. In practice, only the kernel needs to be evaluated,
avoiding an inefficient or even impossible explicit calculation of
the features in the new space. Common kernels are, e.g.,154, the
radial basis function kernel

kGðx; yÞ ¼ e�
jx�yj2
2σ2 ; (35)

or the polynomial kernel of degree d

kPðx; yÞ ¼ ðxTy þ cÞd: (36)

Solving the minimization problem given by Eq. (34) in the new
feature space results in a non-linear regression in the original
feature space. This is usually referred to as kernel ridge regression
(KRR). KRR is generally simple to use, as for a successful application
of KRR only very few hyperparameters have to be adjusted.
Consequently, KRR is often used in materials science.
Support vector machines155 (SVMs) search for the hyperplanes

that divide a dataset into classes such that the margin around the
hyperplane is maximized (see Fig. 7). The hyperplane is completely
defined by the data points that lie the closest to the plane, i.e., the
support vectors from which the algorithm derives its name.
Analogously to ridge regression, the kernel trick can be used to

arrive at non-linear SVMs.153 SVM regressors also create a linear
model (non-linear in the kernel case) but use the so-called ε-
insensitive loss function:

Loss ¼ 0 if ε> y � f ðxÞj j
y � f ðxÞj j � ε otherwise



(37)

where f(x) is the linear model and ε a hyperparameter. In this way,
errors smaller than the threshold defined by ε are neglected.
When comparing SVMs and KRR, no big performance differ-

ences are to be expected. Usually SVMs arrive at a sparser
representation, which can be of advantage; however, their
performance relies on a good setting of the hyperparameters. In
most cases, SVMs will provide faster predictions and consume less
memory, while KRR will take less time to fit for medium datasets.
Nevertheless, owing to the generally low computational cost of
both algorithms, these differences are seldom important for
relatively small datasets. Unfortunately, neither method is feasible
for large datasets as the size of the kernel matrix scales
quadratically with the number of data points.
Gaussian process regression (GPR) relies on the assumption that

the training data were generated by a Gaussian process and
therefore consists of samples from a multivariate Gaussian
distribution. The only other assumption that enter the regression
are the forms of the covariance function k(x, x′) and the mean
(which is often assumed to be zero). Based on the covariance
matrix, whose elements represent the covariance between two
features, the mean and the variance for every possible feature
value can be predicted. The ability to estimate the variance is the
main advantage of GPR, as the uncertainty of the prediction can
be an essential ingredient of a materials design process (see
section “Adaptive design process and active learning”). GPR also
uses a kernel to define the covariance function. In contrast to KRR
or SVMs where the hyperparameters of the kernel have be
optimized with an external validation set, the hyperparameters in

GPR can be optimized with gradient descent if the calculation of
the covariance matrix and its inverse are computationally feasible.
Although modern and fast implementations of Gaussian processes
in materials science exist (e.g., COMBO156), their inherent scaling is
quite limiting with respect to the data size and the descriptor
dimension as a naive training requires an inversion of the
covariance matrix of order OðN3Þ and even the prediction scales
with OðN2Þ with respect to the size of the dataset.157 Based on the
principles of GPR, one can also produce a classifier. First, GPR is
used to qualitatively evaluate the classification probability. Then a
sigmoid function is applied to the latent function resulting in
values in the interval [0, 1].
In the previous description of SVMs, KRR, and GPR, we assumed

that a good feature choice is already known. However, as this
choice can be quite challenging, methods for feature selection can
be essential.
The LASSO158,159 attempts to improve regression performance

through the creation of sparse models through variable selection.
It is mostly used in combination with least-squares linear
regression, in which case it results in the following minimization
problem159:

min
β;β0

X
i

ðyi � β0 � βxiÞ2subject to
X
i

jβij<t; (38)

where yi are the outcomes, xi the features, and β the coefficients of
the linear model that have to be determined. In contrast to ridge
regression, where the L2-norm of the regularization term is used,
LASSO aims at translating most coefficients to zero. In order to
actually find the model with the minimal number of non-zero
components, one would have to use the so called L0-norm of the
coefficient vector, instead of the L1-norm used in LASSO. (The L0-
norm of a vector is equal to its number of non-zero elements).
However, this problem is non-convex and NP-hard and therefore
infeasible from a computational perspective. Furthermore, it is
proven160 that the L1-norm is a good approximation in many
cases. The ability of LASSO to produce very sparse solutions makes
it attractive for cases where a simple, maybe even simulatable
model (see section “Discussion and conclusions—Interpretabil-
ity”), is needed. The minimization problem from Eq. (38), under the
constraint of the L0-norm and the theory around it, is also known
as compressed sensing.161

Ghiringhelli et al. described an extended methodology for
feature selection in materials science based on LASSO and
compressed sensing.162 Starting with a number of primary
features, the number of descriptors is exponentially increased by
applying various algebraic/functional operators (such as the
absolute value of differences, exponentiation, etc.) and construct-
ing different combinations of the primary features. Necessarily,
physical notions like the units of the primary features constrain
the number of combinations. LASSO is then used to reduce the
number of features to a point where a brute force combination
approach to find the lowest error is possible. This approach is
chosen in order to circumvent the problems pure LASSO faces
when treating strongly correlated variables and to allow for non-
linear models.
As LASSO is unfortunately still computationally infeasible for

very high-dimensional feature spaces (>109), Ouyang et al.
developed the SISSO163 that combines sure independence
screening,164 other sparsifying operators, and the feature space
generation from ref. 162. Sure independence screening selects a
subspace of features based on their correlation with the target
variable and allows for extremely high-dimensional starting
spaces. The selected subspace is than further reduced by applying
the sparsifying operator (e.g., LASSO). Predicting the relative
stability of octet binary materials as either rock-salt or zincblende
was used as a benchmark. In this case, SISSO compared favorably
with LASSO, orthogonal matching pursuit,165,166 genetic program-
ming,167 and the previous algorithm from ref. 162 Bootstrapped-
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projected gradient descent168 is another variable selection
method developed for materials science. The first step of
bootstrapped-projected gradient descent consists in clustering
the features in order to combat the problems other algorithms like
LASSO face when encountering strongly correlated features. The
features in every cluster are combined in a representative feature
for every cluster. In the following, the sparse linear fit problem is
approximated with projected gradient descent169 for different
levels of sparsity. This process is also repeated for various
bootstrap samples in order to further reduce the noise. Finally,
the intersection of the selected feature sets across the bootstrap
samples is chosen as the final solution.
PCA170,171 extracts the orthogonal directions with the greatest

variance from a dataset, which can be used for feature selection
and extraction. This is achieved by diagonalizing the covariance
matrix. Sorting the eigenvectors by their eigenvalues (i.e., by their
variance) results in the first principal component, second principal
component, and so on. The broad idea behind this scheme is that,
in contrast to the original features, the principal components will
be uncorrelated. Furthermore, one expects that a small number of
principal components will explain most of the variance and
therefore provide an accurate representation of the dataset.
Naturally, the direct application of PCA should be considered
feature extraction, instead of feature selection, as new descriptors
in the form of the principal components are constructed. On the
other hand, feature selection based on PCA can follow various
strategies. For example, one can select the variables with the
highest projection coefficient from, respectively, the first n
principal components when selecting n features. A more in-
depth discussion of such strategies can be found in ref. 171.
The previous algorithms can be considered as linear models or

linear models in a kernel space. An important family of non-linear
machine learning algorithms is composed by decision trees. In
general terms, decision trees are graphs in tree form,172 where
each node represents a logic condition aiming at dividing the
input data into classes (see Fig. 8) or at assigning a value in the
case of regressors. The optimal splitting conditions are determined
by some metric, e.g., by minimizing the entropy after the split or
by maximizing an information gain.173

In order to avoid the tendency of simple decision trees to
overfit, ensembles such as RFs174 or extremely randomized
trees175 are used in practice. Instead of training a single decision
tree, multiple decision trees with a slightly randomized training
process are built independently from each other. This randomiza-
tion can include, for example, using only a random subset of the
whole training set to construct the tree, using a random subset of
the features, or a random splitting point when considering an

optimal split. The final regression or classification result is usually
obtained as an average over the ensemble. In this way, additional
noise is introduced into the fitting process and overfitting is
avoided.
In general, decision tree ensemble methods are fast and simple

to train as they are less reliant on good hyperparameter settings
than most other methods. Furthermore, they are also feasible for
large datasets. A further advantage is their ability to evaluate the
relevance of features through a variable importance measure,
allowing a selection of the most relevant features and some basic
understanding of the model. Broadly speaking, these are based on
the difference in performance of the decision tree ensemble by
including and excluding the feature. This can be measured, e.g.,
through the impurity reduction of splits using the specific
feature.176

Extremely randomized trees are usually superior to RFs in higher
variance cases as the randomization decreases the variance of the
total model175 and demonstrate at least equal performances in
other cases. This proved true for several applications in materials
science where both methods were compared.99,177,178 However, as
RFs are more widely known, they are still prevalent in materials
science.
Boosting methods179 generally combine a number of weak

predictors to create a strong model. In contrast to, e.g., RFs where
multiple strong learners are trained independently and combined
through simple averaging to reduce the variance of the ensemble
model, the weak learners in boosting are not trained indepen-
dently and are combined to decrease the bias in comparison to a
single weak learner. Commonly used methods, especially in
combination with decision tree methods, are gradient boost-
ing180,181 and adaptive boosting.182,183 In materials science, they
were applied to the prediction of bulk moduli184,185 and the
prediction of distances to the convex hull, respectively.99,186

Ranging from feed-forward neural networks over self-
organizing maps187 up to Boltzmann machines188 and recurrent
neural networks,189 there is a wide variety of neural network
structures. However, until now only feed-forward networks have
found applications in materials science (even if some Boltzmann
machines are used in other areas of theoretical physics190). As
such, in the following we will leave out “feed-forward” when
referring to feed-forward neural networks. In brief, a neural
network starts with an input layer, continues with a certain
number of hidden layers, and ends with an output layer. The
neurons of the nth layer, denoted as the vector xn, are connected
to the previous layer through the activation function ϕ(x) and the
weight matrix An�1

ij :

xni ¼ ϕ
X
j

xn�1
j An�1

ij

 !
: (39)

The weight matrices are the parameters that have to be fitted
during the learning process. Usually, they are trained with
gradient descent style methods with respect to some loss
function (usually L2 loss with L1 regularization), through a method
known as back-propagation.
Inspired by biological neurons, sigmoidal functions were

classically used as activation functions. However, as the gradient
of the weight-matrix elements is calculated with the chain rule,
deeper neural networks with sigmoidal activation functions
quickly lead to a vanishing gradient,191 hampering the training
process. Modern activation functions such as rectified linear
units192,193

ϕðxÞ ¼ x if x > 0

0 otherwise



(40)

Fig. 8 Schema of a classification tree deciding whether a material
is stable
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or exponential linear units194

ϕðxÞ ¼ x if x > 0

αðex � 1Þ otherwise



(41)

alleviate this problem and allow for the development of deeper
neural networks.
The real success story of neural networks only started once

convolutional neural networks were introduced to image recogni-
tion.55,195 Instead of solely relying on fully connected layers, two
additional layer variants known as convolutional and pooling
layers were introduced (see Fig. 9).
Convolutional layers consist of a set of trainable filters, which

usually have a receptive field that considers a small segment of
the total input. The filters are applied as discrete convolutions
across the whole input, allowing the extraction of local features,
where each filter will learn to activate when recognizing a
different feature. Multiple filters in one layer add an additional
dimension to the data. As the same weights/filters are used across
the whole input data, the number of hidden neurons is drastically
reduced in comparison to fully connected layers, thus allowing for
far deeper networks. Pooling layers further reduce the dimension-
ality of the representation by combining subregions into a single
output. Most common is the max pooling layer that selects the
maximum from each region. Furthermore, pooling also allows the
network to ignore small translations or distortions. The concept of
convolutional networks can also be extended to graph represen-
tations in material science,139 in what can be considered
MPNNs141. In general, neural networks with five or more layers
are considered deep neural networks,55 although no precise
definition of this term in relation to the network topology exists.
The advantage of deep neural networks is not only their ability to
learn representations with different abstraction levels but also to
reuse them.97 Ideally, the invariance and differentiation ability of
the representation should increase with increasing depth of
the model.
Obviously, this saves resources that would otherwise be spent

on feature engineering. However, some of these resources have
now to be allocated to the development of the topology of the
neural network. If we consider hard-coded layers (like pooling
layers), one can once again understand them as feature extraction
through human intervention. While some methods for the
automatic development of neural network structures exist (e.g.,
the neuroevolution of augmenting topologies196), in practice the
topologies of neural networks are still developed through trial and
error. The extreme speedup in training time through graphics
processing unit implementations and new methods that improve
the training of deep neural networks, like dropout197 and batch
normalization,198 also played a big role in the success story of
neural networks. As these methods are included in open source
libraries, like tensorflow199 or pytorch,200 they can easily be
applied in materials science.

Neural networks can also be used in a purely generative
manner, for example, in the form of autoencoders201,202 or
GANs.203 Generative models learn to reproduce realistic samples
from the distribution of data they are trained on. Naturally, one of
the end goals of machine learning in materials science is the
development of generative models, which can take into account
material properties and therefore encompass most of the material
design process.
Autoencoders are built with the purpose of learning a new

efficient representation of the input data without supervision.
Typically, the autoencoder is divided into two parts (see Fig. 10).
The first half of the neural network is the encoder, which ends
with a layer that is typically far smaller than the input layer in
order to force the autoencoder to reduce the dimensionality of
the data. The second half of the network, the decoder, attempts to
regain the original input from the new encoded representation.
VAEs are based on a specific training algorithm, namely,

stochastic gradient variational Bayes,204 that assumes that the
VAE learns an approximation of the distribution of the input.
Naturally, VAEs can also be used as generative models by
generating data in the form of the output of the encoder and
subsequently decoding it.
GANs consist of two competing neural networks that are trained

together (see Fig. 11): a generative model that attempts to
produce samples from a distribution and a discriminative model
that predicts the probability that an input belongs to the original
distribution or was produced by the generative model. GANs have
found great success in image processing205,206 and have recently
been introduced to other fields, such as astronomy,207 particle
physics,208 genetics,209 and also very recently to materials
science.29,210,211

More information about these algorithms can be found in the
references provided or in refs. 1,212–216. We would like to note that
the choice of the machine learning algorithm is completely
problem dependent. It can be useful to establish a baseline for the
quality of the model by using simple approaches (such as
extremely randomized trees) before spending time optimizing
hyperparameters of more complex models.

Fig. 9 Topology of a convolutional neural network starting with convolutional layers with multiple filters followed by pooling and two fully
connected layers

Fig. 10 Structure of an autoencoder
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MATERIAL DISCOVERY
Nearly 30 years ago, the at the time editor of Nature, John Maddox
wrote “One of the continuing scandals of physical science is that it
remains in general impossible to predict the structure of even the
simplest crystalline solids from a knowledge of their chemical
composition.”217 While this is far from true nowadays, predicting
the crystal structure based solely on the composition remains one
of the most important (if not even the key) challenge in materials
science, as any rational materials design has to be grounded in the
knowledge of the crystal structure.
Unfortunately, the first-principle prediction of crystal or

molecular structures is exceptionally difficult, because the
combinatorial space is composed of all possible arrangements of
the atoms in three-dimensional space and with an extremely
complicated energy surface.18 In recent years, advanced structure
selection and generation algorithms such as random sampling,218–
221 simulated annealing,222–224 metadynamics,225 minima hop-
ping,226 and evolutionary algorithms,19,227–233 as well as the
progress in energy evaluation methods, expanded the scope of
application of “classical” crystal structure prediction methods to a
wider range of molecules and solid forms.234 Nevertheless, these
methods are still highly computationally expensive, as they
require a substantial amount of energy and force evaluations.
However, the search for new or better high-performance materials
is not possible without searching through an enormous composi-
tion and structure space. As there are tremendous amounts of
data involved, machine learning algorithms are some of the most
promising candidates to take on this challenge.
Machine learning methods can tackle this problem from

different directions. A first approach is to speed up the energy
evaluation by replacing a first-principle method with machine
learning models that are orders of magnitude faster (see section
“Machine learning force fields”). However, the most prominent
approach in inorganic solid-state physics is the so-called
component prediction.61 Instead of scanning the structure space
for one composition, one chooses a prototype structure and scans
the composition space for the stable materials. In this context,
thermodynamic stability is the essential concept. By this we mean
compounds that do not decompose (even in infinite time) into
different phases or compounds. Clearly, metastable compounds
like diamond are also synthesizable and advances in chemistry
have made them more accessible.235,236 Nevertheless, thermo-
dynamically stable compounds are in general easier to produce
and work with. The usual criterion for thermodynamic stability is
based on the energetic distance to the convex hull, but in some
cases the machine learning model will directly calculate the
probability of a compound existing in a specific phase.

Component prediction
Clearly the formation energy of a new compound is not sufficient
to predict its stability. Ideally, one would always want to use the
distance to the convex hull of thermodynamic stability. In contrast
to the formation energy, the distance to the convex hull considers

the difference in free energy of all possible decomposition
channels. De facto, this is not the case because our knowledge
of the convex hull is of course incomplete. Fortunately, as our
knowledge of the convex hull continuously improves with the
discovery of new stable materials, this problem becomes less
important over time. Lastly, most first-principle energy calcula-
tions are done at zero temperature and zero pressure, neglecting
kinetic effects on the stability.
Faber et al.35 applied KRR to calculate formation energies of two

million elpasolites (with stoichiometry ABC2D6) crystals consisting
of main group elements up to bismuth. Errors of around 0.1 eV/
atom were reported for a training set of 104 compositions. Using
energies and data from the materials project,78 phase diagrams
were constructed and 90 new stoichiometries were predicted to
lie on the convex hull.
Schmidt et al.99 first constructed a dataset of DFT calculations

for approximately 250,000 cubic perovskites (with stoichiometry
ABC3) using all elements up to bismuth and neglecting rare gases
and lanthanides. After testing different machine learning meth-
ods, extremely randomized trees175 in combination with adaptive
boosting183 proved the most successful with an mean average
error of 0.12 eV/atom. Curiously, the error in the prediction
depends strongly on the chemical composition (see Fig. 12).
Furthermore, an active learning approach based on pure
exploitation was suggested (see section “Adaptive design process
and active learning”).
In ref. 186, the composition space for two ternary prototypes

with stoichiometry AB2C2 (tI10-CeAl2Ga2 and the tP10-FeMo2B2
prototype structures) were explored for stable compounds using
the approach developed in ref. 99. In total, 1893 new compounds
were found on the convex hull while saving around 75% of
computation time and reporting false negative rates of only 0%
for the tP10 and 9% for the tI10 compound.
Ward et al.34 used standard RFs to predict formation energies

based on features derived from Voronoi tessellations and atomic
properties. Starting with a training set of around 30,000 materials,
the descriptors showed better performance than Coulomb
matrices108 and partial RDFs109 (see section “Basic principles of
machine learning—Features” for the different descriptors). Sur-
prisingly, the structural information from the Voronoi tessellation
did not improve the results for the training set of 30,000 materials.
This is based on the fact that very few materials with the same
composition, but different structure, are present in the dataset.
Changing the training set to an impressive 400,000 materials from
the open quantum materials database80 proved this point, as the
error for the composition-only model was then 37% higher than
for the model including the structural information.
A recent study by Kim et al.237 used the same method for the

discovery of quaternary Heusler compounds and identified 53
new stable structures. The model was trained for different datasets
(complete open quantum materials database,80 only the quatern-
ary Heusler compounds, etc.). For the prediction of Heusler
compounds, it was found that the accuracy of the model also
benefited from the inclusion of other prototypes in the training
set. It has to be noted that studies with such large datasets are not
feasible with kernel-based methods (e.g. KRR, SVMs) due to their
unfavorable computational scaling.
Li et al.33 applied different regression and classification methods

to a dataset of approximately 2150 A1−xA′xB1−yB′yO3 perovskites,
materials that can be used as cathodes in high-temperature solid
oxide fuel cell.238 Elemental properties were used as features for
all methods. Extremely randomized trees proved to be the best
classifiers (accuracy 0.93, F1-score 0.88) while KRR and extremely
randomized trees had the best performance for regression, with
mean average errors of <17meV/atom. The errors in this work are
difficult to compare to others as the elemental composition space
was very limited.

Fig. 11 Structure of a generative adversarial network
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Another work treating the problem of oxide–perovskite stability
is ref. 56. Using neural networks based only on the elemental
electronegativity and ionic radii, Ye et al. achieved a mean average
error of 30 meV/atom for the prediction of the formation energy of
unmixed perovskites. Unfortunately, their dataset contained only
240 compounds for training, cross-validation, and testing. Ye
et al.56 also achieved comparable errors for mixed perovskites, i.e.
perovskites with two different elements on either the A- or B-site.
Mean average errors of 9 and 26meV/atom were then obtained,
respectively, for unmixed and mixed garnets with the composition
C3A2D3O12. By reducing the mixing to the C-site and including
additional structural descriptors, Ye et al. were able to once again
decrease the latter error to merely 12 meV/atom. If one compares
this study to, e.g., refs. 1,35, the errors seem extremely small. This is
easily explained once we notice that ref. 56 only considers a total
compound space of around 600 compounds in comparison to
around 250,000 compounds in ref. 1. In other words, the
complexity of the problem differs by more than two orders of
magnitude.
The CGCNNs (see section “Basic principles of machine learning

—Features”) developed by Xie et al.,40 the MatErials Graph
Networks132 by Chen et al., and the MPNNs by Jørgensen
et al.142 also allow for the prediction of formation energies and
therefore can be used to speed up component prediction.
Up to this point, all component prediction methods presented

here relied on first-principle calculations for training data. Owing
to the prohibitive computational cost of finite temperature
calculations, nearly all of this data correspond to zero temperature
and pressure and therefore neglects kinetic effects on the stability.
Furthermore, metastable compounds, such as diamond, which are
stable for all practical purposes and essential for applications, risk
to be overlooked. The following methods bypass this problem
through the use of experimental training data.
The first structure prediction model that relies on experimental

information can be traced back to the 1920s. One example that
was still relevant until the past decade is the tolerance factor of
Goldschmidt,239 a criterion for the stability of perovskites. Only
recently, modern methods like SISSO,163 gradient tree boosting,180

and RFs174 improved upon these old models and allowed a rise in
precision from 74% to >90%143,240,241 for the stability prediction of
perovskites. Balachandran et al.241 also predicted whether the
material would exist as a cubic or non-cubic perovskite, reaching a
94% average cross-validation error. The advantage of stability
prediction based on experimental data is a higher precision and
reliability, as the theoretical distance to the convex hull is a good
but far from perfect indicator for stability. Taking the example of
perovskites, one has to increase the distance to the convex hull up
to 150meV/atom just to find even 95% of the perovskites present
in the inorganic crystal structure database79 (see Fig. 13).

Another system with a relatively high number of experimentally
known structures are the AB2C Heusler compounds. Oliynyk
et al.242 used RFs and experimental data for all compounds with
AB2C stoichiometry from Pearson’s crystal data243 and the alloy
phase diagram database88 to build a model to predict the
probability to form a full-Heusler compound with a certain
composition. Using basic elemental properties as features, Olynyk
et al. were able to successfully predict and experimentally confirm
the stability of several novel full-Heusler phases.
Legrain et al. extended the principle of this work to half-Heusler

ABC compounds. While comparing the results of three ab initio
high-throughput studies37,244,245 to the machine learning model,
they found that the predictions of the high-throughput studies
were neither consistent with each other nor with the machine
learning model. The inconsistency between the first-principle
studies is due to different publication dates that led to different
knowledge about the convex hulls and to slightly differing
methodologies. The machine learning model performs well with
9% false negatives and 1% false positives (in this case, positive
means stable as half-Heusler structure). In addition, the machine
learning model was able to correctly label several structures for
which the ab initio prediction failed. This demonstrates the
possible advantages of experimental training data, when it is
available.
Zheng et al.36 applied convolutional neural networks and

transfer learning246 to the prediction of stable full-Heusler
compounds AB2C. Transfer learning considers training a model
for one problem and then using parts of the model, or the
knowledge gained during the first training process, for a second

Fig. 13 Histogram of the distance to the convex hull for perovskites
included in the inorganic crystal structure database.79 Calculations
were performed within density functional theory with the
Perdew–Burke–Ernzerhof approximation. The bin size is 25meV/
atom. (Reprinted with permission from ref. 99. Copyright 2017
American Chemical Society.)

Fig. 12 Mean average error (in meV/atom) for adaptive boosting used with extremely random trees averaged over all perovskites containing
the element. The numbers in parentheses are the actual averaged error for each element. (Reprinted with permission from ref. 99. Copyright
2017 American Chemical Society.)
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training thereby reducing the data required. An image of the
periodic table representation was used in order to take advantage
of the great success of convolutional neural networks for image
recognition. The network was first trained to predict the formation
energy of around 65,000 full-Heusler compounds from the open
quantum materials database,80 resulting in a mean absolute error
of 7 meV/atom (for a training set of 60,000 data points) and
14meV/atom (for a training set of 5000 compositions). The
weights of the neural network were then used as starting point for
the training of a second convolutional neural network that
classified the compositions as stable or unstable according to
training data from the inorganic crystal structure database.79

Unfortunately, no data concerning the accuracy of the second
network was published.
Hautier et al.247 combined the use of experimental and

theoretical data by building a probabilistic model for the
prediction of novel compositions and their most likely crystal
structures. These predictions were then validated with ab initio
computations. The machine learning part had the task to provide
the probability density of different structures coexisting in a
system based on the theory developed in ref. 146. Using this
approach, Hautier et al. searched through 2211 ABO compositions
where no ternary oxide existed in the inorganic crystal structure
database79 and where the probability of forming a compound was
larger than a threshold. This resulted in 1261 compositions and
5546 crystal structures, whose energy was calculated using DFT.
To assess the stability, the energies of all decomposition channels
that existed in the database were also calculated, resulting in 355
new compounds on the convex hull.
It is clear that component prediction via machine learning can

greatly reduce the cost of high-throughput studies through a
preselection of materials by at least a factor of ten.1 Naturally, the
limitations of stability prediction according to the distance to the
convex hull have to be taken into consideration when working on
the basis of DFT data. While studies based on experimental data
can have some advantage in accuracy, this advantage is limited to
crystal structures that are already thoroughly studied, e.g.,
perovskites, and consequently a high number of experimentally
stable structures is already known. For a majority of crystal
structures, the number of known experimentally stable systems is
extremely small and consequently ab initio data-based studies will
definitely prevail over experimental data-based studies. Once
again, a major problem is the lack of any benchmark datasets,
preventing a quantitative comparison between most approaches.
This is even true for work on the same structural prototype.
Considering, for example, perovskites, we notice that three groups
predicted distances to the convex hull.33,56,99 However, as the

underlying composition spaces and datasets are completely
different it is hardly possible to compare them.

Structure prediction
In contrast to the previous section, where the desired output of
the models was a value quantifying the probability of composi-
tions to condense in one specific structure, models in this chapter
are concerned with differentiating multiple crystal structures.
Usually this is a far more complex problem, as the theoretical
complexity of the structural space dwarfs the complexity of the
composition space. Nevertheless, it is possible to tackle this
problem with machine learning methods.
Early attempts, which predate machine learning, include, e.g.,

Pettifor structural maps that use elementary properties to separate
different binary or ternary structures from each other in a 2D plot,
allowing the prediction of new stable structures.248–251 In some
sense, Pettifor maps are already closely related to recent work,
such as ref. 163, where a structural map for binary structures based
on chemical properties was developed with SISSO. Some of the
first applications of modern machine learning crystal structure
prediction can be found in ref. 146. There, Fischer et al. developed
an approach based on the cumulant expansion method, described
in ref. 252, to predict the probability of an elemental composition
forming a specific binary crystal structure. Their method estimates
the correlation of the stability of two structures with respect to
their composition. The model was trained with data from ref. 90

and evaluated with leave-one-out cross-validation. It was able to
predict the correct structure in 90% of the cases during the first
five guesses, in comparison to 62% when picking the structures
according to their frequency in the dataset. It has to be mentioned
here once again that leave-one-out cross validation is not a good
method to evaluate the extrapolation ability of such models.74,75

Olynyk et al.32 applied cluster resolution feature selection253 to
the classification of binary crystal structures. These features were
then used as input for partial least-squares discriminant analysis
(PLS-DA) and SVMs. In order to reduce the complexity of the
problem, only the seven most common binary prototype
structures were considered. A dataset of 706 compounds was
divided into three sets, 235 for feature selection, 235 for
optimization of the PLS-DA and SVMs, and 236 for validation.
The SVMs performed better with an average false positive rate of
5.8%, a false negative rate of 7.3%, and an accuracy of 93.2%,
compared to the PLS-DA with 3.5%, 34.0%, and an accuracy of
77.1%. It has to be noted that these values differ significantly
depending on the crystal system that one tries to predict (see Fig.
14). This approach was adapted by Olynyk et al.254 to equiatomic
ternary compounds. SVMs were used on a dataset of ~1500

Fig. 14 Predicted probability for ZnS-type (left) and CsCl-type structures (right) for the support vector machine model with 31 features.
(Reprinted with permission from ref. 32. Further permissions should be directed to the ACS.)
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ternary compounds from Pearson’s crystal data. Reducing the
number of features via cluster resolution, from an initial 1000
features to 110, resulted in a sensitivity of 97.3%, accuracy of
96.9%, and specificity of 93.9%.
As crystal structure prediction is only the first step in the rational

design process, combining stability determination with property
design is necessary. Balachandran et al.31 studied a set of 60,000
potential xBiMe′yMe″1− yO3–(1− x)PbTiO3 perovskites with several
machine learning methods. First, SVMs were used to classify them
into perovskites and non-perovskites, followed by a prediction of
the Curie temperature of those classified as perovskites. Once a
candidate was experimentally synthesized, it was added to the
training set and the process was repeated. Of the ten synthesized
compounds, six perovskites were found, whose highest Curie
temperature was reported to be 898 K.
Graser et al.30 applied RFs for crystal structure classification of

24,215 compounds from Pearson’s crystal data243 database.
Naturally, a lot of prototypes only have very few representatives
(<10) in the database. In order to circumvent this problem,
prototypes with fewer instances than a certain cutoff number
were put into a group denoted as “other.” As the “other” class
comprised between 92.51% and 64.1% of the dataset, depending
on the choice of cutoff number, this greatly reduced the
complexity of the dataset. Graser et al. then researched the
change in predictive ability of the model with respect to the cutoff
number. As expected, the recall improved with increasing cutoff
number. The confusion table (see Fig. 15) demonstrates that,
through the use of large datasets, even a simple method can
achieve impressive results for an extremely challenging task like
crystal structure prediction.
Park et al.255 tackled the problem of crystal structure prediction

from a slightly different perspective. All the others methods
discussed up to now used the chemical composition, or data
derived from the chemical composition, and structure as
descriptors. In contrast, Park et al. used powder X-ray diffraction
patterns to determine the crystal system, extinction group, and
space group of inorganic compounds. Because the three-

dimensional electron density is contracted into a 1D diffraction
pattern, the symmetry of the crystal is often not fully determined
from the diffraction pattern alone, especially for low-symmetry
structures. While software for indexing and determining the space
group exists, it requires substantial expertise and human input to
obtain the correct results. Previous machine learning attempts in
this field mostly considered the task of feature engineering (e.g.,
PCA256–259 or manual featurization260,261) or considered smaller
datasets and shallower neural networks. In contrast, in ref. 255

deep convolutional neural networks were developed, using X-ray
patterns as input and giving as output the space group, extinction
group, or crystal system. For the training data, structural data from
the inorganic crystal structure database79 was used to calculate
randomly perturbed spectra, which simulated real spectra. During
testing on a dataset that amounted to around 20% of the training
set, the network reached accuracies of 81.14, 83.83, and 94.99%
for space group, extinction group, and crystal system classifica-
tions, respectively. Furthermore, the model was able to correctly
identify the structural system of two novel compounds262,263

whose prototype structure did not appear in the database (and
therefore neither in the training set). Albeit the model was not
performing better than human experts using a software like
TREOR,264 it has the potential to be a useful tool to non-experts
and in order to speed up the identification process of X-ray
diffraction spectra in general. The success of the model is not
surprising, as the use of convolutional neural networks in image
classification265–267 is well established in computer science.
A similar approach for crystal structure classification was

followed in ref. 268. Zilleti et al. used convolutional neural networks
to classify crystal structures by a simulated 2D diffraction
fingerprint. The approach was limited to the classification of
crystal structures, because the 2D diffraction pattern is not
unambiguous for all space groups, and consequently the neural
network is not able to distinguish between rhombohedral and
hexagonal structures, for example. They also used attentive
response maps,269–273 trying to achieve some interpretability

Fig. 15 Confusion matrix for cutoff size of 100 (a perfect confusion matrix is diagonal). (Reprinted with permission from ref. 30. Copyright 2018
American Chemical Society.)
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and visualization of the model. This will be further discussed in
section “Discussion and conclusions—Interpretability”.
Further interesting work concerning micro-structure and

material characterization, using machine learning-based image
processing, can be found in refs. 274–279.

If we consider structure prediction through machine learning,
we also have to consider global structure prediction methods,
where the whole energy surface has to be explored efficiently.
This can also be considered as a surrogate-based optimization
problem (see section “Adaptive design process and active
learning”), where the expensive experiment is the local geometry
optimization through DFT. Yamashita et al.280 started with a large
set of initial structures from which a random subset was locally
optimized and used to train a Bayesian regressor to predict the
energy. Using Thompson sampling,281 structures from the initial
set were sampled randomly according to their probability of
minimizing the energy. The approach was tested on NaCl and
Y2Co17 and reduced the average number of trials until finding the
optimal structure by, respectively, 31% and 39% when compared
to random structure selection.
Lastly, we discuss two works that introduced modern neural

network architectures to crystal structure prediction and genera-
tion. Both methods have also been used recently for micro-
structures by Li et al.210,282

Ryan et al.28 applied VAEs (see section “Basic principles of
machine learning—Algorithms”) to crystal structure prediction.
The 42-layer VAEs develop a more efficient representation for the
input (see section “Basic principles of machine learning—

Features”). For training and testing, a dataset of around 50,000
crystal structures from the inorganic crystal structure database79

and the crystallography open database89 were used. The encoding
of the original descriptors was used as input for a five-layer
sigmoid classifier that predicts the most likely elements to form
the topology represented by the atomic fingerprints. A third
auxiliary neural network, in this case a five-layer softmax classifier,
combined the non-normalized atomic fingerprints and the output
of the sigmoid classifier that improves the prediction. To predict
directly the crystal structure from this approach, one requires
training data of negatives or, in other words, knowledge of crystal
structures that do not exist. Unfortunately, no such database is
available in physics. In order to circumvent this problem, Ryan
et al. calculated the likelihood of the existence of a structure as the
product of the probabilities of elements existing at the single
atomic sites. Application to test data demonstrated a clear
superiority of this approach in comparison with random choices.
Nouira et al.29 introduced a GAN-based strategy (see section

“Basic principles of machine learning—Algorithms”) to crystal
structure generation in the form of CrystalGAN. Specifically, they
created a novel GAN structure to generate stable ternary
structures on the basis of binary hydrides. Remarkably, the
method generates structures of higher complexity and is able to
include constraints based on domain knowledge. However, as no
data about the stability of the generated structures were
published, the evaluation of the usefulness of this approach is
still pending. A second application of GANs in materials science,
and in particular in chemistry, can be found in ref. 211.

PREDICTION OF MATERIAL PROPERTIES
Machine learning methods have proven to be successful in the
prediction of a large number of material properties. An overview
of different properties that were predicted can be found in Table
1. In the following, we discuss in depth a few properties, studied in
various works, which provide good examples for current
challenges in computational materials science, and possible
strategies to overcome them.

Band gaps
Design of functional materials for applications like light-emitting
diodes (LEDs), photovoltaics, scintillators, or transistors, always
requires detailed knowledge of the band gap. Consequently, a lot
of effort was invested in theoretical methods for high-throughput
calculations of this electronic property. It is well known that
standard exchange correlation functionals, like the PBE,145

systematically underestimate band gaps in comparison to
experimental results. More modern functionals like the modified
Becke–Johnson by Tran and Blaha332 or the strongly constrained
and appropriately normed meta-GGA333 by Jianwei et al. improve
upon these results. However, the state-of-the-art higher-fidelity
methods still remain the many-body GW approximation or hybrid
functionals. Unfortunately, these usually come with a prohibitively
high computational cost. Machine learning is one possibility to
overcome this obstacle by either directly predicting band gaps
based on experimental or theoretical training data or by using the
results of low-fidelity methods to predict experimental or high-
fidelity theoretical results.
Zhuo et al.289 tried to circumvent the problems of the different

theoretical methods by directly predicting experimental band
gaps. Their approach started with a classification of the materials
as either metal or non-metal using SVM classifiers and then
progressed by predicting the band gap with SVM regressors. The
performance of the resulting models in predicting experimental
band gaps lies somewhere between basic functionals (like the
PBE) and hybrid functionals. The error turns out to be comparable
to, e.g., ref. 40,41. However, Zhuo et al. improved upon those earlier

Table 1. Summary of material properties predicted with machine
learning methods and corresponding references

Property References

Curie temperature 31,283–287

Vibrational free energy and entropy 288

Band gap 40,41,132,159,283,289–300

Dielectric breakdown strength 38,44,45

Lattice parameter 300

Debye temperature and heat capacity 41–43

Glass transition temperature 301,302

Thermal expansion coefficient 41

Thermal boundary resistance 303

Thermal conductivity 37,46–51,304,305

Local magnetic moments 127,306

Melting temperature 39,48,307

Magnetocaloric effects 283

Grain boundaries 308

Grain boundary energy 309–312

Grain boundary mobility 312

Interface energy 300

Seebeck coefficient 46,313,314

Thermoelectric figure of merit 315

Bulk and shear moduli 40–42,132,184,185,316

Electrical resistivity 46

Density of states 109,317,318

Fermi energy and Poisson ratio 40

Dopant solution energy 319

Metal–insulator classification 65

Topological invariants 320–326

Superconducting critical temperature 73,76,122,327–329

Li-ion conductivity and battery state-of-charge 65,330,331
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machine learning results, as the error is with respect to the
experimental results instead of DFT calculations. While there have
been earlier attempts at using experimental band gap training
data (e.g., ref. 290), the dataset used by Zhou et al. includes >6000
band gaps, dwarfing all previous datasets.
Lee et al.291 approached the problem from a different

perspective by using low-fidelity DFT gaps (modified
Becke–Johnson and PBE), as well as basic crystalline and elemental
properties as features for optimized link state routing, LASSO, and
nonlinear SVR. They predicted gaps calculated with G0W0 starting
from the ground-state obtained with the
Heyd–Scuseria–Ernzerhof hybrid functional.334 SVR using both
the modified Becke–Johnson and the PBE gaps, as well as the
other features, yielded the best results, with a root mean square
error of 0.24 eV.
Pilania et al.292 applied a co-kriging statistical learning frame-

work to learn high-fidelity band gaps. Their approach differed
from previous ones, as low-fidelity band gaps were not explicitly
used as features and were therefore not necessarily needed as
input for all compounds.
Another interesting attempt at the prediction of high-fidelity

band gaps can be found in ref. 293. Rajan et al. used KRR, SVR, GPR,
and decision tree boosting methods to predict the G0W0 band
gaps of MXenes. They started by generating and selecting features
with LASSO159 and then optimizing the feature space for each
method. Counterintuitively, the PBE band gap was not included in
the optimized feature space of any method. However, other
researchers suggest to include this information283,294 and stress
the importance of so called crude estimations of property77 (see
section “Basic principles of machine learning—Features”).
Weston et al.295 investigated the band gaps of kesterite

compounds and developed a logistic regression classifier for the
prediction of the direct–indirect property of these band gaps. A
total of 184 semiconducting materials were used for training, and
the best model demonstrated an accuracy, recall, precision, and f1
score of around 90%.

Bulk and shear moduli
Two other popular properties in solid-state machine learning are
the bulk and shear moduli, which determine the stress–strain
relations in the linear range. They are also correlated with other
properties like the bonding strength, thermal conductiv-
ity,184,335,336 charge carrier mobility,337 and of course the hardness
of the material.338,339 As such, they are often used as a proxy in the
search for superhard340 (hardness >40 GPa) materials. In general,
these properties are available as a result of DFT calculations;
however, they are too computationally expensive for really large
high-throughput studies. Two less computationally expensive
alternatives exist, specifically force-field methods341 and theore-
tical models for the direct calculation of bulk and shear moduli.
However, force fields lack accuracy, and most theoretical models
only span a highly restricted chemical and structural space.342–345

This opens up the question whether machine learning algorithms
can show better generalizability.
de Jong et al.184 developed a new machine learning technique,

called gradient boosting machine local polynomial regression,
that extends the principles of gradient boosting frameworks180 to
the case of multivariate local polynomial regression.346 They used
this technique to predict the Voigt–Reuss–Hill averages347 of the
bulk and shear moduli on the basis of elemental properties. In this
case, they used the volume per atom, row number, cohesive
energy, and the electronegativity as features. The use of the
cohesive energy as a feature is slightly problematic as it also
requires DFT calculations. The training set consisted of around
2000 materials and a root mean square error of 0.075 log(GPa) and
0.138 log(GPa) were reached for the logarithm of the bulk and
shear moduli. The logarithm was used to decrease the emphasis

on large values. It has to be noted that the training set was biased
toward metallic compounds and rather simple materials.
The previously discussed CGCNNs by Xie et al.40 also allows for

the prediction of bulk and shear moduli. Test set errors of
0.105 log(GPa) and 0.127 log(GPa) for these properties were
reported for the dataset of ref. 184. The network was also tested
on 1585 materials that were recently added to the materials
project database.78 Once again the network demonstrated good
generalizability for the new dataset with different crystal groups.
Doubling the size of the training data, the MEGNet model of Chen
et al.132 obtained around 10% lower errors for bulk and shear
moduli.
A similar study for siliceous zeolites was performed in ref. 185,

where gradient boosting regressors were used to predict once
again the logarithm of the bulk and shear moduli. They obtained
an error of 0.102 ± 0.034 log(GPa) for the bulk and 0.0847 ± 0.022
log(GPa) for the shear moduli. Even if the training set only
contained 121 zeolites, this method seems to compare favorably
to the 5 conventional force field methods348–352 reported in
ref. 353. In contrast to ref. 184, Evans et al. used structural and local
descriptors as the challenge was to differentiate between the
different siliceous zeolites and not between materials of different
elemental composition.
Furmanchuk et al.42 used RFs to predict the bulk modulus. A

wide variety of 1428 compounds from the thermoelectric design
lab database,91 containing from unitary up to quinary combina-
tions of 62 elements, was used for training. The notable fact about
this study is that thermal effects, which are usually neglected in
DFT calculations, were included through Birch and Murnaghan
fits.354,355 As features, properties of the element itself and
experimentally measured properties of elemental substances were
used. Another set of 356 theoretically calculated materials and 69
experimentally measured ones was kept for testing. A root mean
square error of 18.75 GPa was reported for the first set, while no
error was reported for the experimental set.
Isayef et al.41 developed an extension of property-labeled

material fragments to be used for solids. As this leads to a very
general feature vector, one can apply it to the prediction of a
variety of properties.41 Using gradient boosting decision trees and
a training set of around 3000 materials, they achieved errors of
14.25 and 18.43 GPa for the bulk and shear moduli, respectively. It
has to be noted that this training set only considered unary to
ternary compounds and neglected quaternary compounds. In
contrast, these were also considered in, e.g., refs. 184,185,316.
Another interesting machine learning study of the bulk and

shear moduli of solids is ref. 316. Mansouri et al. combined
elemental and structural properties as descriptors and used SVRs
to screen a chemical space of around 120,000 materials for
superhard incompressible materials. This was actually followed by
the synthesis and characterization of two novel superhard
materials. Once again, the cohesive energy was identified as one
of the crucial features for both moduli.

Topological states
The discovery of topological insulators has sparked an extreme
interest into the field of topological states in condensed
matter.356–358 It is therefore not surprising that in the past 2 years
machine learning ansätze were introduced to the topic. In general,
learning topological phases is a highly non-trivial task as
topological invariants are inherently non-local. In the field of
topological states, neural networks are by far the most relevant
machine learning method used.320–326 In refs. 321,323,324, this
technique was used to predict the topological invariants of,
respectively, 1D topological insulators of the A 3 class, the 2D XY-
model, and 1D topological insulators of the A 3 class, as well as 2D
insulators of the A class. In the later two works, analysis of the
neural network confirmed that it learned both the winding
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number formula321 and a formula for the Berry curvature in the
case of the A class insulators323 (see section “Discussion and
conclusions—Interpretability” for a more extensive discussion).
Another interesting application that takes advantage of the
extreme success of neural networks for image classification is
quantum loop topography.320 In this method, an image repre-
senting the Hamiltonian or wave function is constructed and
entered into a neural network that decides on the topological
phase of the system with great accuracy. Although the input is the
result of Monte Carlo simulations, it is rather efficient, as it only
requires single steps and not Monte Carlo averages.
While the previous examples are still mostly concerned with

theoretical models, more recent work is already concerned with
designing topological photonic devices directly through machine
learning methods.325 Pilozzi et al. designed photonic devices
described by the Aubry–André–Harper model359,360 with neural
networks (see Fig. 16). The desired property are edge states with
specific frequencies ωt, which are determined by a set of structure
parameters. In order to solve the problem, direct and inverse
models are combined. The process starts with the inverse neural
network, determining the structure parameters required for an
edge state with frequency ωind

t . In order to simplify the problem,
some categorical features are not included in the neural network,
but actually one neural network is trained for each categorical
value. The obtained structure parameters from the inverse neural
network are used as input for the direct neural network that
produces a new frequency ωdir

t . If the discrepancy between the
two frequencies is smaller than a certain threshold ωind

t � ωdir
t < δ,

the structure parameters from the indirect neural network are
accepted. This self-consistent approach is used to filter out the
unphysical structures from the results of the inverse neural
network.

Superconductivity
Even 30 years after its discovery,361 unconventional superconduc-
tivity remains one of the unsolved challenges of theoretical
condensed matter physics. As machine learning methods do not
require a complete theoretical understanding of the problem,
determining the critical temperature Tc is an obvious challenge for
these methods. In the case of critical temperatures, data
accumulation is problematic, as there are few computational
methods to calculate critical temperatures,362–364 and these are
limited to conventional superconductors. Moreover, they are far
less widely available than, e.g., methods to calculate the band gap
or bulk moduli. On the one hand, this is a drawback as it severely
limits the acquisition of data, but on the other hand machine
learning methods could prove even more important as no general
working theoretical model exists.
There was some early work, akin to machine learning, on

clustering superconductors based on quantum structure dia-
grams365,366 and some more recent work concerning the filtering

of materials for cuprate superconductors based on their electronic
structure.367 A discussion of similar design approaches can be
found in ref. 368. In refs. 327,328, the superconducting critical
temperature is fitted to the lattice parameters with an SVM.
Unfortunately, both studies clearly suffer from the difficulty of
accumulating data. The former is concerned with iron-based
superconductors and has a training set of 30 materials while the
latter only treats doped MgB2 with a training set of 40 materials.
Even though these examples do not take advantage of the fortes
of machine learning methods, they still reach an error 1.17 K and
1.10 K, admittedly for a very limited domain. The actual search for
superconductors in a larger domain is far more challenging,
because the Kohn–Luttinger theorem369 suggests that fermionic
systems with a Coulomb interaction are in general superconduct-
ing for T→ 0. This presents a difficulty, as leaving compounds with
no reported critical temperature out of the dataset, or assuming
that critical temperature is zero, would either lead to a
misrepresentation or underrepresentation of data.76 However, as
we are often interested in high-temperature superconductors
from a technological perspective, we can circumvent the problem
by classifying potential superconductors as low or high TC, instead
of using a regressor to predict the critical temperature.
Isayev et al.122 used RFs to divide superconductors into groups,

one group with TC below and one group with TC >20 K and RFs
and partial least squared regression to build a continuous model
of the transition temperature. The training set size was never-
theless still very limited (464 classification, 295 regression).
A study by Stanev et al.76 considered a larger training set of

around 14,000 materials from the SuperCon database.82 Super-
conductors were first classified into groups with Tc below and
above 10 K, resulting in an accuracy and F1 score of about 92%.
The features were created using Magpie370 and consisted of
elemental properties and combinations of them. Interestingly
enough, when reducing the number of descriptors to only the
three used in refs. 365,366, specifically the average number of
valence electrons, the metallic electronegativity differences, and
orbital radii differences, the accuracy of the classifier only
decreased by around 3%. This suggests that little progress was
made in terms of such features in the meantime.
The regression model for log(TC) was built for materials with

transition temperatures >10 K to avoid the previously discussed
problems and reached an R2 score of around 0.88. By dividing the
training set into different groups of superconductors, Stanev et al.
could demonstrate that the model recovered physical knowledge,
such as the isotope effect or other empirical relations.371

Furthermore, it was clear that the model was not able to
extrapolate from one group of superconductors to another, e.g.,
from conventional to cuprate superconductors. This is, of course,
expected owing to the different superconducting mechanisms
involved in the two families. This extrapolation problem of
materials science machine learning models and methods to
estimate it are also discussed in ref. 73. Finally, Stanev et al. applied
the classifier and regressor to the materials in the inorganic crystal
structure database79 and scanned it for new high-TC super-
conductors. As a byproduct, a feature of the band structure that is
known to increase the TC was recovered even though no
electronic structure data were used in the model.
Ling et al.329 also used RFs in research concerning the design

process of materials including superconductors, but as their
research is mainly concerned with the optimization of the design
process, we will discuss it later in the section “Adaptive design
process and active learning”. Another interesting study372 of
superconductors applied k-means clustering, PCA, and Bayesian
linear unmixing to scanning tunneling microscopy data in order to
extract meaningful data regarding electronic interactions in the
spin-density wave regime. Note that these are expected to play a
key role in the existence of unconventional superconductivity.

Fig. 16 Strategy to solve the inverse design problem for photonic
devices,325 where χ0 is the structure parameter suggested by the
inverse network and ξ, m±

ij , and s± are extra inputs for both
networks. (Reprinted with permission from ref. 325 licensed under
the CC BY 4.0 cc license.)
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ADAPTIVE DESIGN PROCESS AND ACTIVE LEARNING
The previous chapters were concerned with the prediction of the
stability, atomic structure, and physical properties. Necessarily, all
of these methods have the end goal of minimizing the time until a
new optimal material with tailored properties is found. This can
either imply the minimization or maximization of a single property
or the search for a material on the Pareto front in the case of
multiple objectives. In order to reach this goal, we aim at reducing
the number of “experiments” that have to be carried out, as these
are the most time consuming and expensive segment of the
discovery process. In our case, experiment may denote compu-
tationally expensive calculations, like the ones necessary to obtain
the phonon and electron transport properties required for the
design of thermoelectrics. A more general discussion of such
optimization problems can be found in the literature under the
name of surrogate-based optimization373,374 and active learning.
The adaptive design process consists of two interwoven tasks:

(i) A surrogate model has to be developed; (ii) Based on the
prediction of the surrogate model, optimal infill points have to be
chosen in order to retrain the surrogate model and finally find the
optimum.
The challenge in this process is to balance the end goal of

finding the best material (exploitation) with the need to explore
the space of materials in order to improve the model.375 The most
naive strategy is naturally pure exploitation, in which case the
design algorithm always chooses the material with the highest
prediction of the target value (lowest in the case of minimization).
From other fields, e.g., drug design376,377 and quantitative
structure–activity relationship in chemistry,378,379 it is already
known that such an unsophisticated approach is far from optimal.
More sophisticated policies, such as maximum likelihood of
improvement or maximum expected improvement, try to strike
a balance between these strategies. However, choosing the
optimal experiment according to one’s strategy requires machine
learning models that not only return predictions but also the
uncertainty of a prediction.
Starting from this requirement, the most obvious algorithm

choice are Bayesian prediction models like Gaussian processes380

as they also provide the variance of the predicted function.
Gaussian processes have been applied to a wide variety of
structure optimization and design problems in materials science. A
few examples are optimizing thermal conductance in nanostruc-
tures,47 predicting interface309 and crystal280 structures, optimiz-
ing materials for thermoelectric381,382 and optoelectric382 devices,
or optimizing GaN LEDs.383 Furthermore, these studies already
resulted in successfully synthesized materials.384,385 We already
discussed in the section “Basic principles of machine learning—
Algorithms” that the inherent scaling of Gaussian processes both
with respect to training set size as well as feature dimension is
quite bad.157 At the moment, a lot of adaptive design studies still
treat extremely small datasets (see, e.g., ref. 384 with a training set
size of 22), in which case this is irrelevant. However, a large
number of the previously discussed models for stability or
property prediction use high-dimensional descriptors and are
therefore also unsuitable for Bayesian methods.329,386

One alternative to Bayesian predictors are standard machine
learning algorithms, like SVRs or decision tree methods, in
combination with bootstrapping methods to estimate the
uncertainty. In ref. 375, Balachandran et al. compared different
surrogate models and strategies on a set of M2AX compounds for
the optimization of elastic properties. From a pure prediction
perspective, SVRs with radial basis function slightly outperformed
Gaussian processes for training set sizes >120 materials. Different
design strategies were then used in combination with the SVR. It
turned out that efficient global optimization,387 as well as
knowledge gradient,388 showed the best results. Xue et al.384

obtained similar results concerning the choice of algorithms for

the composition optimization of NiTi-based shape memory alloys.
Starting with a set of 22 materials, Xue et al. successfully
synthesized 14 materials (from a total of 36 synthesized in total
during 9 feedback loops), which were superior to the original
dataset.
Balachandran et al.389 also applied SVRs in combination with

efficient global optimization to the maximization of the band gap
of A10(BO4)6X2 apatites. In this case, the performance for two
feature sets, one containing the Shannon ionic radii and the other
one the Pauling electronegativity differences was compared.
Interestingly, the design based on the ionic radii performed better,
finding the optimal material after 22 materials (13 materials in the
initial training set, 9 chosen by the design algorithm) in
comparison to 30 for the electronegativities, while having a far
larger error in the machine learning model (0.54 eV compared to
0.19 eV for the electronegativities). The result is most likely due to
the fact that, of the three atomic species considered for the B-site
(P, V, As), P provides clearly higher band gaps than the other
elements and has a different ionic radius while the electronega-
tivity of P and As are nearly the same.389 Using this information,
the algorithm eliminated all compositions without P on the B-site.
This example demonstrates that sometimes the algorithm with
the highest predictive power will not necessarily lead to the best
optimal design results. A combination of the two predictors leads
to even better results with the optimal composition after one
iteration; however, the mean absolute error of the model was still
slightly worse (0.21 eV) than the one of the purely
electronegativity-based model.
Ling et al.329 treated a high-dimensional (with respect to the

descriptor space) materials design problem with the RF framework
FUELS.390 By adding a bias term to the uncertainty, which
accounts for noise and missing degrees of freedom, they
expanded upon previous uncertainty estimates from refs. 391,392.
Tested on 4 datasets (magnetocaloric, thermoelectric, super-
conductors, and thermoelectric) with higher descriptor number
(respectively, 54, 54, 56, 22), FUELS compared favorably with the
Bayesian framework COMBO and random sampling, while being
roughly an order of magnitude faster. In order to evaluate various
selection strategies or model algorithms, different metrics were
used. In materials science, a commonly used metric is the number
of experiments until the optimal material is found. While this
metric has some merit, in most cases opportunity cost (the
distance of the current best from the overall best) or the number
of experiments until the current best is within a specific distance
(e.g., 1%) is superior and is also used more often in the
literature.393,394

Monte Carlo tree searches395 are a second algorithm with
superior scaling that has recently been introduced to materials
science. The application is inspired by its success in go,2 where a
combination of neural networks, reinforcement learning, and
Monte Carlo tree search allowed for the first superhuman
performance in this ancient strategy game. Dieb et al.396

implemented a materials design version in the form of the open
source library MDTS. Using the test case of the optimal design of
thermoelectric Si-Ge alloys, they demonstrated that, although
Bayesian optimization has advantages for small problems due to
its advanced prediction abilities, Monte Carlo tree search design
time stays close to constant (see Fig. 17) with increasing problem
size. Furthermore, and in contrast to genetic algorithms, it does
not require the determination of hyperparameters. Owing to the
unfavorable scaling of Bayesian optimization, at some point the
computational effort of the design becomes larger than the
computational effort of the experiments, at which point Monte
Carlo methods become superior. For the interface structure
optimization in ref. 396, this is already the case for interfaces with
>22 atoms. Further applications to the determination of grain
boundary structures397 and the structure of boron-doped
graphene398 also demonstrate the viability of the method for
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structure design problems. A more in-depth review of Bayesian
optimization and Monte Carlo tree search in materials design can
be found in ref. 399.
Sawada et al.400 also developed an algorithm for multi-

component design based on game tree search. Optimizing the
composition in a seven-component Heusler compound, the
algorithm proved to be around nine times faster than expected
improvement or upper confidence bound401 strategies based on
Gaussian processes.
Dehghannasiri et al.402 proposed an experimental design

framework based on the mean objective cost of uncertainty. This
is defined as the expected difference in cost between the material,
which minimizes the expected cost for a surrogate model and the
optimal material.403 Applying the framework to the minimization
of the dissipation energy of shape memory alloys demonstrated
the superiority of the algorithm to pure exploitation and random
selection.
So far, none of the discussed algorithms considered nested

decision problems or cases where it is more efficient to carry out
experiments in batches of similar experiments instead of one at a
time. The latter is, for example, true for the case of the photoactive
device design considered by Wang et al.404 The size of thiol-gold
nanoparticles and their density on the surface determine the
efficiency of the device. While one can easily explore different
densities of nanoparticles in a batch of experiments, it is difficult
to change the size of the nanoparticle due to the cost of their
synthesis. Therefore, it is more efficient to consider a nested
problem where the algorithm first chooses a size and then a batch
of densities. Wang et al. extended the concept of knowledge
gradient388 to the case of nested decisions and batches of
experiments. Applying it to the previously described design
problem, the new algorithm proved to be superior to all naive
strategies (pure exploitation/exploration, or ε-greedy which
chooses either pure exploration or exploitation with probability
ε) and also to sequential knowledge gradient (batch size 1) if one
considers the number of batches. If one instead considers the total
number of experiments, the performance of knowledge gradient
was only slightly better.
If we consider typical design problems, one often has to

consider multiple objectives. For example, for the design of a
shape memory alloy, one desires a specific finish temperature,
thermal hysteresis, and possibly a high maximum transformation
strain. Naturally, this requires more sophisticated measures of
improvement (see ref. 405 for a review) than single objective

optimization methods. A typical measure is the expected hyper-
volume improvement406 that measures the change in hypervo-
lume of the space dominated by the best known materials.
Solomou et al.407 applied this metric to the optimization of shape
memory alloys in combination with a Gaussian process model,
once for two objectives (specific finish temperature and thermal
hysteresis) and once for three objectives (adding the maximum
transformation strain), and demonstrated that it is clearly superior
to a random or purely exploitative strategy.
Talapatra et al.408 also combined expected hyper-volume

improvement with Gaussian processes in order to simultaneously
maximize the bulk modulus while minimizing the shear modulus.
Instead of using a single Gaussian regressor, they developed a
method called Bayesian model averaging, which combines
different models. This approach can prove useful in cases where
the available data is too limited to choose good features or
hyperparameters.
Gopakumar et al.409 compared both SVRs and Gaussian

processes on multiple datasets: optimal thermal hysteresis and
transition temperature for shape memory alloys, optimal bulk and
Young’s modulus for M2AX phases, and optimal piezoelectric
modulus and band gap for piezoelectric materials. SVRs performed
better as regressors and were consequently chosen as surrogate
model. Several optimal design strategies were used, specifically
random, exploitation, exploration, centroid, and maximin. For the
smallest dataset, maximin surprisingly performed only slightly
better for large experimental budgets and worse than pure
exploitation for small budgets. However, for the larger dataset of
elastic moduli both centroid and maximin proved to be clearly
superior.
An additional popular choice of global optimization algorithms

that can also be applied to adaptive design, especially to structure
development, are genetic algorithms. Reviews of their application
to materials design can be found in refs. 230,410.
It is difficult to compare the ability of the different optimal

design algorithms and frameworks discussed in this section
because no systematic study has ever been carried out. Never-
theless, it is quite clear that, given sufficient data, adaptive design
algorithms produce superior results in comparison to naive
strategies like pure exploration or exploitation, which are
unfortunately still extremely common in materials science.
Furthermore, several works demonstrated that experimental
resources are used more efficiently if they are allocated to the
suggestions of the design algorithm instead of a larger initial
random training set. Machine learning models can be quite
limited in their accuracy; however, the inclusion of knowledge of
this uncertainty in the design process can alleviate these
limitations. This allows for a feedback cycle between experimen-
talists and theoreticians, which increases trust and cooperation
and reduces the number of expensive experiments.

MACHINE LEARNING FORCE FIELDS
As previously discussed, first-principle calculations can accurately
describe most systems but at a high computational price. Usually
this price is too high for use in molecular dynamics, Monte Carlo,
global structural prediction, or other simulation techniques that
require frequent evaluations of the energy and forces. Even DFT is
limited to molecular dynamics runs of a few picoseconds and
simulations with hardly more than thousands of atoms. For this
reason, the research concerning empirical potentials and the
development of models for the potential energy surfaces never
faded away.
In fact, most molecular dynamics simulations are normally

computed with classical force fields.411–417 As these potentials
often scale linearly with the number of atoms, they are
computationally inexpensive and the loss in accuracy is over-
looked in favor of the possibility to perform longer simulations or

Fig. 17 Design time of Bayesian optimization and Monte–Carlo tree
search for different numbers of atoms in the interface. (Reprinted
with permission from ref. 396 licensed under the CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/).)
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simulations with hundreds of thousands or even millions of atoms.
Another approach is DFT-based tight binding.418–420 This
quantum–mechanical technique scales with the cube of the
number of electrons but has a much smaller prefactor than DFT.
Certainly, calculations performed with this method are not as
accurate as in DFT, but they are more reliable than classical force
field calculations. In addition to the reduced precision, the
construction of force fields and tight-binding parameters is
unfortunately not straightforward.
Neural networks were the first machine learning method used

in the construction of potential energy surfaces. As early as 1992,
Sumper et al.421 used a neural network to relate the vibration
spectra of a polyethylene molecule with its potential energy
surface. Unfortunately, the large amount of input data and
architecture optimization required deemed this approach as too
cumbersome and difficult to apply to other molecular systems. It
was the work of Blank et al.422 in 1995 that really showed the
potential, and marked the birth, of machine learning force fields.
Their work on the surface diffusion of CO/Ni(111) relied on neural
network potentials, which mapped the energy of a system with its
structure, mainly the lateral position of the center of mass, the
angle of the molecular axis relative to the surface normal, and the
position of the center of mass. The training set was obtained from
electronic structure calculations and no further approximations
were used. Their seminal study proved that neural networks could
be used to make accurate and efficient predictions of the potential
energy surface for systems with several degrees of freedom.
Since then, many machine learning potentials were reported. As

several reviews on these potentials can be easily found in the
literature,112,423–425 here we discuss only the most prominent and
recent approaches related to materials science.
One of the most successful applications of machine learning to

the creation of a reliable representation of the potential energy
surface is the Behler and Parrinelo approach.110 Here the total
energy of a system is represented as a sum of atomic
contributions Ei. This became the standard for all later machine
learning force fields, as it allows their application to very large
systems. In the Behler–Parrinelo approach, a multilayer perceptron
feedforward neural network is used to map each atom to its
contribution to the energy. Every atom of a system is described by
a set of symmetry functions, which serve as input to a neural
network of that element. Every element in the periodic table is
characterized by a different network. As the neural network
function provides an energy, analytical differentiation with respect
to the atomic positions or the strain delivers, respectively, forces
and stresses. This approach was originally applied to bulk silicon,
reproducing DFT energies up to an error of 5 meV/atom.
Furthermore, molecular dynamic simulations using this potential
were able to reproduce the RDF of a silicon melt at 3000 K. Many
applications of this methodology to the field of materials science
have appeared since then, for example, to carbon,426 sodium,427

zinc oxide,428 titanium dioxide,111 germanium telluride,429 cop-
per,430 gold,431 and Al-Mg-Si alloys.432

Since its publication in 2007, several improvements were made
to the Behler and Parrinelo approach. In 2015, Ghasemi et al.
proposed a charge equilibration technique via neural networks,433

where an environment-dependent atomic electronegativity is
obtained from the neural networks and the total energy is
computed from a charge equilibration method. This technique
successfully reproduced several bulk properties of CaF2.

434 In
2011, the cost function was expanded to include force
terms.424,428 This extension was first proposed by Witkoskie
et al.435 and later extended and generalized by Pukrittayakamee
et al.436,437 These works show that the inclusion of the gradients in
the training substantially improves the accuracy of the force fields,
not only due to the increase of the size of the training set but also
due to the additional restrictions in the training. Hajinazar et al.438

devised a strategy to train hierarchical multicomponent systems,

starting with elemental substances and going up to binaries,
ternaries, etc. They then applied this technique to the calculations
of defects and formation energies of Cu, Pd, and Ag systems and
were able to obtain an excellent reproduction of phonon
dispersions. Another improvement concerns the replacement of
the original Behler–Parrinelo symmetry functions by descriptors
that can be systematically improved. One such descriptor is given
by Chebyshev polynomials,117 which also allow for the creation of
potentials for materials with several chemical elements, due to its
constant complexity with respect to the number of species.
Potentials constructed with this descriptor are the reported
machine learning potentials that can describe more chemical
species, with 11 so far.
Artrith et al.439 proved the applicability of specialized neural

network potentials in their study of amorphous Li–Si phases. They
compared the results obtained with two different sampling
methods. The first involved a delithiation algorithm, which
coupled a genetic algorithm with a specialized potential trained
with only 725 structures close to the crystalline LixSi1−x phase. The
second method consisted of an extensive molecular dynamics
heat-quench sampling and a more general potential. Figure 18
shows the accuracy of the latter neural network potential.
We note that not only machine learning methods are changing

the field of materials science but also machine learning
methodologies. The spectral neighbor analysis potential440 from
Thompson et al. consists of a linear fit that associates an atomic
environment, represented by the four-dimensional bispectrum
components, with the energies of solids and liquids. The first
application of these potential to tantalum showed promising
results, as it was able to correctly reproduce the relative energy of
different phases. Furthermore, in the application of this potential
to molybdenum by Chen et al.,441 PCA was used to examine the
distribution of the features in the space. This technique increases
the efficiency of the fitting, as it ensures a good coverage of the
feature space and reduces the number of structures in the training
set. Their potential achieved good accuracies for energies and
stresses (9 meV and 0.9 GPa, respectively). Although the accuracy
in the forces was considerably worse (0.30 eVÅ), they also
managed to reproduce correctly several mechanical properties
such as the bulk modulus, lattice constants, or phonon dispersions
(see Fig. 19). Wood et al.442 proposed an improvement of the

Fig. 18 Phase diagram of 45,000 LixSi1−x structures depicting the
formation energies predicted using the general neural network
potential (green stars) and the density functional theory reference
formation energies (black circles). (Reprinted from ref. 439, with the
permission of AIP Publishing.)
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model that consisted in the introduction of quadratic terms in the
bispectrum components and Li et al.443 introduced a two-step
model fitting work-flow for multi-component systems and applied
it to the binary Ni–Mo alloy.
Other linear models include the work of Seko et al.,113 who

reproduced potential energy surfaces to Na and Mg using KRR and
LASSO combined with the multinomial expansion descriptor (see
section “Basic principles of machine learning—Features”). Phonon
dispersion and specific heat curves calculated with the LASSO
technique for hcp-Mg were in good agreement with the DFT
results. Using a similar methodology, Seko et al. applied elastic net
regression,444,445 a generalization of the LASSO technique, to 10
other elemental metals446 (Ag, Al, Au, Ca, Cu, Ga, In, K, Li, and Zn).
The resulting potential yielded a good accuracy for energies,
forces, and stresses, enabling the prediction of several physical
properties, such as lattice constants and phonon spectra.
In a different approach, Li et al.447 devised a molecular

dynamics scheme that relies on forces obtained by either Bayesian
inference using GPR or by on-the-fly quantum mechanical
calculations (tight binding, DFT, or other). Certain simulations in
materials science involve steps where complex, recurring,
chemical bonding geometries are encountered. The principal idea
behind this scheme is that an adaptive approach can handle the
occurrence of unseen geometries while the recurring ones are
trained for. This is achieved by the following predictor-corrector
algorithm448,449: After n steps of the simulation with a force field,
the latest configuration is selected for quantum mechanical
treatment and the accuracy of the force field is tested. Should the
accuracy fall below a certain threshold, the force field is refitted.
This scheme might not be the most efficient for a singular
molecular dynamics cycle but excels when the simulations involve
monotonic cycles between two temperatures, for example.
Applications to silicon,447 aluminum, and uranium450 (with linear
regression) reveal accuracies for forces <100 meV/Å. The phonon
density of states and melting temperature of aluminum obtained
with this scheme are also in good agreement with ab initio
calculations. In the same spirit, Glielmo et al.451 employed vectorial
Gaussian process452,453 regression to predict forces using vector
two-body kernels of covariant nature. Their results for nickel,
silicon, and iron indicate that the inclusion of symmetries results in
a more efficient learning and that it is not necessary to impose
energy conservation to achieve force covariance. Additional
improvements of this methodology include the replacement of
the features by higher-order n-body-based kernels.454

Another family of highly successful machine learning potentials
is the Gaussian approximation potentials (GAPs). First introduced
by Bartók et al.,114 these potentials interpolate the atomic energy
in the bispectrum space using GPR. Tests for semiconductors and
iron revealed a remarkable reproduction of the ab initio potential
energy surface. Advances in this methodology include the

replacement of the bispectrum descriptor by the SOAP descriptor
and the training of not only energies but also forces and
stresses,455 the generalization of the approach for solids456 by
adding two- and three-body descriptors, and the possibility to
compare structures with multiple chemical species.457 The
materials studied in these works were tungsten, carbon, and
silicon, respectively. The application of the GAPs to bcc
ferromagnetic iron by Dragoni et al.458 proves the accuracy of
these potentials for both DFT energetics and thermodynamical
properties. In particular, bulk point defects, phonons, the Bain
path, and Γ surfaces459 are correctly reproduced. By combining
single-point DFT calculations, GAPs, and random structure
search,220,221 Deringer et al. showed a procedure that simulta-
neously explores and fits a complex potential energy surface.460

They used 500 random structures to train a GAP model, which was
then used to perform the conjugate gradient steps of the random
search. The minimum structures were added to the training set
after being recalculated with single-point DFT calculations. The
potential for boron resulting from this procedure was able to
describe the energetics of multiple polymorphs, which included
αB12 and βB106.
The GAP methodology was also applied to graphene.461 The

potential constructed by Rowe et al. was able to reproduce DFT
phonon dispersion curves at 0 K. In addition, the potential
predicted quantitatively the lattice parameter, phonon spectra at
finite temperature, and the in-plane thermal expansion. Other
works concerning GPR include its application to formaldehyde
and comparison of the results with neural networks462 and the
acceleration of geometry optimization for some molecules.463

Jacobsen et al. presented another structure optimization
technique based on evolutionary algorithms and atomic poten-
tials constructed using KRR.464 To represent the atomic environ-
ment, they used the fingerprint function proposed by Oganov and
Valle.465 By using the atomic potentials to estimate the energy,
they were able to reach a considerable speed-up of the search for
the global minimum structure of SnO2(110)-(4 × 1).
In an unconventional way to construct atomic potentials, Han

et al.466 presented a deep neural network that, for each atom in a
structure, takes as input Nc functions of the distance between the
atom and its neighbors, where Nc is the maximum number of
neighbors considered. As a consequence, some of the inputs of
the neural network have to be zero. Furthermore, the potential
might have transferability problems if ever used on a structure
with smaller inter-atomic distances than the ones considered in
the training set. Nevertheless, their potential showed good
accuracy in energy predictions for copper and zirconium. Zhang
et al.467 improved this methodology with the generalization of the
loss function to include forces and stresses.

DFT FUNCTIONALS
The application of machine learning techniques also spread to the
creation of exchange and correlation potential and energy
functionals. The first application emerged from the work of Tozer
et al.468 in 1996, where they devised a one-layer feed-forward
multiperceptron neural network to map the electronic density ρ(r)
to the exchange and correlation potential vxc(r) at the same points.
Technically, this exchange and correlation functional belongs to
the family of local-density approximations. Tozer et al. trained the
neural network on two different datasets, first on the data of a
single water molecule and afterwards on several molecules
(namely, Ne, HF, N2, H2O, and H2). Using 3768 data points
calculated with a regular molecular numerical integration
scheme,469 the method achieved an accuracy of 2–3% in the
exchange and correlation energy of the water molecule. When
applied in a self-consistent Kohn–Sham calculation, the potential
lead to eigenvalues and optimized geometries congruent with the
local density approximation. On the other hand, for the set of

Fig. 19 Comparison between the phonon dispersion curves
obtained with density functional theory and the spectral neighbor
analysis potential model for a 5 × 5 × 5 supercell of Mo. (Reprinted
with permission from ref. 441. Copyright 2017 American Physical
Society.)
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several molecules, Tozer et al. obtained an error of 7.6% using
1279 points. The points were obtained in the same manner as
before but were constrained to avoid successive points with
similar densities. This potential generated geometries close to the
local density approximation and good eigenvalues for molecules
sufficiently represented in the training set. Meanwhile, and as
expected, the neural network potential failed for molecules not
sufficiently represented in the training like LiH and Li2.
In 2012, Snyder et al. tackled the problem of noninteracting

spinless fermions confined to a 1D box.470 They employed KRR to
construct a machine learning approximation for the kinetic energy
functional of the density. This is the idea behind orbital-free DFT
and an attempt to bypass the need to solve a Shrödinger-like
equation. The kinetic energy and density pairs of up to four
electrons were obtained using Numerov’s method471 for several
external potentials. These potentials were created using a linear
combination of three Gaussian dips with random depths, widths,
and centers. Furthermore, 1000 densities were taken for the test
set while M were taken for the training set. For M= 200 chemical
accuracy was achieved, as no error surpassed 1 kcal/mol. To obtain
the correct behavior of the functional derivative of this energy,
which is necessary for the self-consistent DFT procedure, PCA was
used. Self-consistent calculations with this functional led to a
range of similar densities instead of a unique density and to
higher errors in the energy than when using the exact density.
Nevertheless, the functional reached chemical accuracy.
This methodology was later improved during the study of the

bond breaking for a 1D model of a diatomic molecule, subjected
to a soft Coulomb interaction.472 The training data consisted of
Kohn–Sham energies and densities calculated with the local-
density approximation for 1D H2, H2, Li2, Be2, and LiH with
different nuclear separations. Choosing up to 20 densities for each
molecule for the training set produced smaller errors in the kinetic
energy functional than those due to the approximation to the
exchange-correlation functional. This new functional was able to
produce binding energy curves indistinguishable from the local-
density approximation.
A different path was taken by Brockherde et al.473 that, instead

of solving the Kohn–Sham equations self-consistently as usually,
used KRR to learn the Hohenberg–Kohn map between the
potential v(r) and the density n(r). Among the machine learning
community, this approach is normally designated as transductive
inference. The energy is obtained from the density, also using KRR.
When applied to the problem of noninteracting spinless fermions
confined to a 1D box (same problem as in ref. 470), this machine
learning map reproduced the correct energy up to 0.042 kcal/mol
(if calculated in a grid) or 0.017 kcal/mol (using other basis sets),
for a training set of 200 samples. Comparison of this map with
other machine learning maps that learn only the kinetic energy
reveals that the Hohenberg–Kohn map approach is much more
accurate. Furthermore, this map achieved similar results when
applied to molecules, reaching accuracies of 0.0091 kcal/mol for
water and 0.5 kcal/mol for benzene, ethane, and malinaldehyde.
These values measure the difference to the PBE energy. The
training sets consisted of 20 points for the water and 2000 points
for the other molecules. To generate the training sets for the
larger molecules, molecular dynamics simulations using the
general amber force-field474 were used to yield a large set of
geometries. These were subsequently sampled using the k-means
approach to obtain 2000 representative structures that were only
then evaluated using the PBE functional. In addition, the precision
of the density prediction for benzene was compared with the
results for the local-density approximation and PBE. Not only did
the Hohenberg–Kohn map produce densities with errors smaller
than the difference between different functionals (when evaluated
on a grid) but these errors were also smaller than the ones
introduced by evaluating the PBE functional using a Fourier basis
representation instead of the evaluation on the grid.

A distinct approach comes from Liu et al.,475 who applied a
neural network to determine the value of the range-separation
parameter μ of the long-range corrected Becke–Lee–Yang–Parr
functional.476,477 They trained a neural network, characterized by
one hidden layer, with 368 thermochemical and kinetic energies.
These values came from experimental data and from highly
accurate quantum chemistry calculations. When compared with
the original functional (μ= 0.47), the new functional improved the
accuracy of heats of formation and atomization energies while
performing slightly worse in the calculation for ionization
potentials, reaction barriers, and electronic affinities.
Nagai et al.478 trained a neural network with 2 hidden layers

(300 nodes) to produce the projection from the charge density
onto the Hartree-exchange-correlation potential (vHxc). For that,
they solved a simple model of two interacting spinless fermions
under the effect of a 1D Gaussian potential, using exact
diagonalization. The ground state density was then used to
calculate vHxc using an inverse Kohn–Sham method based on the
Haydock–Foulkes variational principle.479,480 When applied in the
Kohn–Sham self-consistent cycle, this potential reproduced the
exact densities and total energies, provided that a suitable training
set was chosen (see Fig. 20). The system studied by the authors
admits as solution either a bound and an unbound state or two
bound states, depending on the Gaussian potential. Choosing
points surrounding the boundary for the training set of the neural
network leads to the most accurate results, with errors around
10−3 a.u. everywhere except at the boundary (where they can

Fig. 20 Transferability of the neural network vHxc. The bold frames
indicate the training set and the lines show the boundary between
solutions with (green) and without (pink) the Coulomb interaction.
The errors are plotted as color maps. (Reprinted from ref. 478 with
the permission of AIP Publishing.)
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almost reach 1 a.u.). On the other hand, choosing points in one of
the regions results in a poor description of the other region.

DISCUSSION AND CONCLUSIONS
Interpretability
We already noted in the introduction that a major criticism of
machine learning techniques is that their black-box algorithms do
not provide us with new “physical laws” and that their inner
workings remain outside our understanding.481 For example,
Ghiringhelli et al. argue that “a trustful prediction of new
promising materials, identification of anomalies, and scientific
advancement are doubtful,” if the scientific connection between
features and prediction is unknown.96 Johnson writes in the
context of quantitative structure–activity relationships: “By not
following through with careful, designed, hypothesis testing we
have allowed scientific thinking to be co-opted by statistics and
arbitrarily defined fitness functions.”378 The main concern is that
models not based on physical principles might fail in completely
unexpected cases (that are trivial for humans) while providing a
very good result on average. Such cases can only be predicted and
prevented if one understands the causality between the inputs
and outputs of the model. Furthermore, especially in applications
where a single failure is extremely expensive or potentially deadly
(as in medicine), the lack of trust in black-box machine learning
models stops their widespread use even when they provide a
superior performance.273

As there are different concepts of interpretability, we will define
its various facets according to Lipton et al.482 To start with, we can
divide interpretability into transparency and post hoc explana-
tions, which consist of additional information provided by or
extracted from a model.
Transparency can once again be split into the concepts of

simulatability, decomposability, and algorithmic transparency.
Simulatability is a partially subjective notion and concerns the
ability of humans to follow and retrace the calculations of the
model. This is, e.g., the case for sparse linear models such as the
ones resulting from LASSO,159 SISSO,163 or flat decision tree
models. Decomposability is closely related to the intelligibility of a
model and describes whether its various parts (input, parameters,
calculations) allow for an intuitive interpretation. Algorithmic
transparency considers our understanding of the error surface
(e.g., whether the training will converge to a unique solution). This
is clearly not the case for modern neural networks, for example.
Post hoc interpretability considers the possibility to extract

additional information from the model. Examples for this are
variable importance from a decision tree model or active response
maps, which highlight regions of a picture that were particularly
important for its classification by a convolutional neural network.
Starting from these concepts of interpretability, it is obvious

that the notion of a complex model runs counter to the claim that
it is simulatable by a human. Furthermore, models that are
simulatable (e.g., low-dimensional linear models) and accurate
often require unintuitive highly processed features that reduce the
decomposability483 (e.g., spectral neighbor analysis potential
potentials) in order to reach a comparable performance to a
more complex model. In contrast, a complex model like a deep
convolutional neural network only requires relatively simple un-
engineered features and relies on its own ability to extract
descriptors of different abstraction levels. In this sense, there is a
definite conflict between the complexity and accuracy of a model,
on one hand, and a simulatable decomposable model on the
other hand.
The simplest examples of models that are simulatable are

techniques based in dimensionality reduction or feature selection
algorithms, like SISSO.163 These are usually used in combination
with linear fits and result in simple equations describing the

problem. An example is the estimation of the probability of a
material to exist as a perovskite (ABX3), as given in ref. 143:

τ ¼ rX
rB
� nA nA � rA=rB

lnðrA=rBÞ
� �

; (42)

where nA is the oxidation state of A and ri is the ionic radius of ion
i. Another example is given by Kim et al.,38 who used LASSO, as
well as RF and KRR, to predict the dielectric breakdown field of
elemental and binary insulators, on the basis of eight features
obtained from first-principle calculations (e.g. band gap, phonon
cutoff frequency, etc.). In the end, all three methods determined
the same two features as optimal and demonstrated nearly the
same error. However, Kim et al. favored LASSO,159 because it
provided a simple analytical formula, even if no further knowledge
was gained from the formula. In any case, the knowledge of the
analytical formula and therefore the simulatability seems to be far
less relevant than the knowledge of the most relevant physical
variables. In general, we can even argue that simulatability is not
relevant for materials science as computational methods based on
physical reasoning, like DFT or tight binding, are even further
removed from simulatability than most machine learning models.
A second method that provides a variable importance measure

(see section “Basic principles of machine learning—Features”) are
RFs or other decision tree-based methods. Stanev et al. demon-
strate the usefulness of this method for post hoc interpretability in
ref. 76, by recovering numerous known (e.g., isotope effect) and
some unknown rules and limits for the superconducting critical
temperature. This was done by first reducing the number of
features via variable importance measure (Gini importance) and
subsequently visualizing the correlation between the features and
the critical temperature (see Fig. 21).
Pankajakshan et al.168 developed bootstrapped-projected gra-

dient descent as a feature selection method specifically for
materials science. The motivation came from some consistency
issues for correlated or linearly dependent variables (present, for
example, in LASSO), which bootstrapped-projected gradient
descent can alleviate through extra clustering and bootstrapping.
In their work, Pankajakshan et al. used machine learning mostly to
find and understand descriptors, in order to improve the d-band
model of catalysts for CO2 reduction,484 instead of actually using
the machine learning model for predictions. This can definitely be
a reasonable approach in cases where datasets are too small and
incomplete for any successful extrapolation. Notwithstanding, in
most cases it is questionable if a classical (in the sense of “non-
machine learning”) model should be used directly when a
machine learning model is superior, as in the case of the d-band
model.485 Of course, it is a bonus when a classical model exists, as
it can be used to check for consistency issues or as a crude
estimation of property. However, in our opinion, pragmatic
applications of advanced materials design should always use the
best model.
While RFs and linear fits are considered more accessible from a

interpretability point of view, deep neural networks are one of the
prime examples for algorithms that are traditionally considered a
black box. While their complex nature often results in superior
performance in comparison to simpler algorithms, an unwanted
consequence is the lack of simulatability and algorithmic
transparency. As the lack of interpretability is one of the main
challenges for a wider adoption of neural networks in industry and
experimental sciences, post hoc methods to visualize the response
and understand the inner workings of neural networks were
developed during the past years. One example are attentive
response maps for image recognition networks that highlight
regions of the picture according to their importance in the
decision making process. Kumar et al.271 demonstrated that, by
combining the understanding gained from attentive response
maps with domain knowledge and applying it to the design
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process of the neural network, one can not only achieve a better
informed decision making process but also higher performance.
An improvement of the performance through integration of
domain knowledge is not completely surprising, but the result is
nevertheless remarkable, as usually higher interpretability comes
at the cost of a lower performance.
Zilleti et al.268 introduced attentive response maps, as

implemented in ref. 271, to materials science in order to visualize
the ability of their convolutional neural networks to recognize
crystal structures from diffraction patterns. The response maps of
the different convolutional layers demonstrate that the neural
networks recover the position of the diffraction peaks and their
orientation as features (see Fig. 22).
A second example, which demonstrates the ability of neural

networks to convey additional post hoc information, is described
in ref. 40. Xie et al. used a crystal graph convolutional neural
network to learn the distance to the convex hull of perovskites
ABX3. By using the output of the pooling layers instead of the fully
connected layers as a predictor, the energy can be split into
contributions from the different crystal sites (see Fig. 23). This
allowed Xie et al. to not only confirm the importance of the radii of
the A- and B-atoms but also to gain new insights that were then
used for an efficient combinatorial search of perovskites. In ref. 486,
Xie et al. follow up with the interpretation of the features
extracted from the convolutional neural networks and demon-
strated how similarity patterns emerge for different material
groups and at different scales.

Zhang et al.321 also highlighted the ability of convolutional
neural networks to extract physically meaningful features out of
un-engineered descriptors. They built a convolutional neural
network (two convolutional layers, one fully connected layer) to
calculate the topological winding number of 1D band insulators
with chiral symmetry based on their Hamiltonian as input data

hxð0Þ hx 2π
L

� � � � �
hyð0Þ hy 2π

L

� � � � �

" #T
¼ cosðΦÞ cos ðΦþ ΔΦÞ � � �

sinðΦÞ sin ðΦþ ΔΦÞ � � �
 �T

: (43)

From the theoretical equation for the winding number,487 one
can derive that the second convolutional layer should produce an
output linearly depending on ΔΦ with the exception of a jump at
ΔΦ= π. We can see in Fig. 24 that this is exactly the case, and
consequently, the convolutional neural network actually learned
the discrete formula for the winding number. Sun et al.323 studied
similar models of higher complexity with deep convolutional
neural networks and were also able to demonstrate that their
networks learned the known mathematical formulas for the
winding and the Chern numbers.488

Naturally, neural networks will never reach the algorithmic
transparency of linear models. However, representative datasets, a
good knowledge of the training process, and a comprehensive
validation of the model can usually overcome this obstacle.
Furthermore, if we consider the possibilities for post hoc
explanations or the decomposability of neural networks, they
are actually far more interpretable than their reputation might
suggest.

Fig. 21 Superconducting critical temperature TC plotted versus the various features; a demonstrates the isotope effect and b–d show how the
critical temperature is limited and influenced by various physical quantities of the materials. (Reprinted with permission from ref. 76 licensed
under the CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).)
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To conclude this chapter, we would like to summarize a few
points: (i) Interpretability is not a single algorithmic property but a
multifaceted concept (simulatability, decomposability, algorithmic
transparency, post hoc knowledge extraction) (ii) The various
facets have different priorities depending on the dataset and the
research goal. (iii) Simulatability is usually non-existent in materials
science (e.g., in DFT or Monte Carlo simulations) regardless of
whether one uses a machine learning or a classical algorithm.
Therefore, it should probably not be a point of concern in
materials informatics. (iv) Part of the progress of materials
informatics has to include the increasing use of post hoc
knowledge techniques, like attentive response maps, to improve
the viability of, and the trust in, high-performing black-box
models. Often this knowledge alleviates the fear that the model is
operating on unphysical principles.268,321,323

Conclusions
Just like the industrial revolution, which consisted of the creation
of machines that could perform mechanical tasks more efficiently
than humans, in the field of machine learning machines are
progressively trained to identify patterns and to find relations
between properties and features more efficiently than us. In
materials science, machine learning is mostly applied to classifica-
tion and regression problems. In this context, we discussed a wide
variety of quantitative structure–property relationships, which
encompass a high number of properties essential for modern
technology. It seems likely that further properties, should they be
needed, can also be predicted with a similar level of accuracy.
If we consider the direction of future research, there will be a

clear division between methodologies depending on the avail-
ability of data. For continuous properties, which can be calculated
realistically for ≥105 materials, we assume that universal models
and especially deep neural networks, like Xie et al.’s crystal graph
convolutional networks40 or Chen et al.’s MatErials Graph Net-
works,132 will be the future. They are able to predict a diverse set
of properties, such as formation energies, band gaps, Fermi
energies, bulk moduli, shear moduli, and Poisson ratios for a wide
material space (87 elements, 7 lattice systems, and 216 space
groups in the case of ref. 40). At the same time, they reach an
accuracy with respect to DFT calculations that is comparable with
(or even smaller than) the DFT errors with respect to experiment.
Such models have the potential to end the need for applications
trained for only a single structural prototype and/or property,
which can in turn drastically reduce the amount of resources spent
by single researchers. Comparing to the state of the art of neural
network architectures and training methods in fields like image
recognition and natural language procession, we can also expect

that the success of neural network models will only increase once
modern topologies, training methods, and fast implementations
reach a wider audience in materials science. To reach this goal, a
closer interdisciplinary collaboration with computer scientists will
be essential.
In other cases that are characterized by a lack of data, several

strategies are very promising. First of all, one can take into
consideration surrogate-based optimization (active learning),
which allows researchers to optimize the results achieved with a
limited experimental or computational budget. Surrogate-based
optimization allows us to somewhat overlook the limited accuracy
of the machine learning models while nevertheless arriving at
sufficient design results. As the use of such optimal design
algorithms is still confined to relatively few studies with small
datasets, much future work can be foreseen in this direction. A
second strategy to overcome the limited data available in
materials science is transfer learning. While it has already been
applied with success in chemistry,489 wider applications in solid-
state materials informatics are still missing. A last strategy to
handle the small datasets that are so common in materials science
was discussed by Zhang et al. in ref. 77. Crude estimation of
properties basically allows us to shift the problem of predicting a
property to the problem of predicting the error of the crude
model with respect to the higher-fidelity training data. Up to now,
this strategy was mostly used for the prediction of band gap, as
datasets of different fidelity are openly available (DFT, GW, or
experimental). Moreover the use of crude estimators allows
researchers to benefit from decades of work and expertise that
went into classical (non-machine learning) models. If the lower-
fidelity data are not available for all materials, it is also possible to
use a co-kriging approach that still profits from the crude
estimators but does not require it for every prediction.292

Component prediction is a highly effective way to speed up the
material discovery process and we expect high-throughput
searches of all common crystal structure prototypes that were
not yet researched in the coming years. While the prediction of
the energy can also be considered, a quantitative
structure–property relationships, metastable materials, and an
incomplete knowledge of the theoretical convex hull have to be
taken into account. Several studies demonstrated that better
accuracy can be achieved with experimental training data.
However, as experimental data are seldom available and
expensive to generate, the number of prototypes for which
studies analog to ref. 143 are an option will quickly be exhausted. A
second challenge is the lack of published data of failed
experiments. In this case, a cultural shift toward the publication
of all valid data, may it be positive or negative, is required.

Fig. 22 a Attentive response maps for the four most activated filters of the first, third, and last convolutional layers for simple cubic lattices.
The brightness of the pixel represents the importance of the location for classification. b Sum of the last convolutional layer filters for all seven
crystal classes showing that the network learned crystal templates automatically from the data. (Reprinted with permission from ref. 268

licensed under the CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).)
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The direct prediction or generation of a crystal structure is still
an extremely challenging problem. While several studies demon-
strate how to differentiate between a small number of prototypes
for a certain composition, the difficulty quickly rises with an
increasing number of possible crystal structures. This is amplified
by the fact that the majority of available data belongs to only a
small number of extensively researched prototypes. Recently,
more complex modern neural network structures (e.g., VAEs,
GANs, etc.) were introduced to the problem, with some interesting
results. Moreover, the use of machine learning-based optimization
algorithms, like Bayesian optimization for global structure predic-
tion, is also a direction that should be further explored.
Machine learning was successfully integrated with other

numerical techniques, such as molecular dynamics and global
structural prediction. Force fields built with neural networks enjoy
an efficiency that parallels that of classical force fields and an
accuracy comparable to the reference method (usually DFT in

solid state, although in chemistry some force fields already
achieved coupled cluster accuracy489). Consequently, we expect
them to completely replace classical force fields in the long term.
Owing to their vastly superior numerical scaling, machine learning
methods allow us to tackle challenging problems, which go far
beyond the limitations of current electronic structure methods,
and to investigate novel, emerging phenomena that stem from
the complexity of the systems.
The majority of early machine learning applications to solid-

state materials science employed straightforward and simple-to-
use algorithms, like linear kernel models and decision trees. Now,
that these proofs-of-concept exist for a variety of application, we
expect that research will follow two different directions. The first
will be the continuation of the present research, the development
of more sophisticated machine learning methods, and their
applications in materials science. Here one of the major problems
is the lack of benchmarking datasets and standards. In chemistry,
a number of such datasets already exists, such as the QM7
dataset,490,491 QM8 dataset,491,492 QM7b dataset,493,494 etc. These
are absolutely essential to measure the progress in features and
algorithms. While we discussed countless machine learning
studies in this review, definitive quantitative comparisons
between the different works were mostly impossible, impeding
the evaluation of progress and thereby progress itself. It has to be
noted that there has been one recent competition for the
prediction of formation energies and band gaps.495 In our opinion,
this is an very important step in the right direction. Unfortunately,
the dataset used in this competition was extremely small and
specific, putting the generalizability of the results to larger and
more diverse datasets into doubt.
The second direction regards the usability of machine learning

models. In the electronic structure community, both the models
(e.g., new approximations to the exchange-correlation functional
of DFT) and the computer codes are developed by a relatively

Fig. 23 Contributions to the distance to the convex hull per element, A site (c) and B site (d). (Reprinted with permission from ref. 40. Copyright
2018 American Physical Society.)

Fig. 24 Output of the second layer as a function of δΦ and Φ.
(Reprinted with permission from ref. 321. Copyright 2018 American
Physical Society.)
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small group of experts and put at the disposal of the much larger
community of materials scientists. Even though this is slowly
starting to change, models from most publications are not publicly
available. This results in most researchers spending resources on
building their own models to solve very specific problems. We
note that frameworks to disseminate models are now starting to
emerge.496

In conclusion, we reviewed the latest applications of machine
learning in the field of materials science. These applications have
been mushrooming in the past couple of years, fueled by the
unparalleled success that machine learning algorithms have found
in several different fields of science and technology. It is our firm
conviction that this collection of efficient statistical tools are
indeed capable of speeding up considerably both fundamental
and applied research. As such, they are clearly more than a
temporary fashion and will certainly shape materials science for
the years to come.
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