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1. Introduction

In the modern academic and industrial environment, which
is characterized by continuously shortening lifetimes of
knowledge and products,1-3 the advent of combinatorial
chemistry and high-throughput experimentation has pro-
foundly changed the area of compound discovery and
characterization. Both synthesis and analysis can be carried
out on much reduced time scales, and sample throughput is
usually high.4-7 One of the consequences of the increase in
“discovery activity” is an explosion of experimental data that
needs to be organized, administered, stored, and evaluated.
This is particularly true in the area of polymer chemistry,
where the number of parameters that can be varied during
synthesis, formulation, and processing (e.g., monomers,
initiators, monomer/initiator ratio, concentrations, tempera-
tures, pressures, additives, stabilizers, etc.) is extremely
large.8 Additionally, there is an extensive amount of char-
acterization and screening data, originating from both clas-
sical polymer analysis (Tg, Tm, Mn, Mw, polydispersities) and
other materials analytical techniques (conductivity, elasticity,
hardness, blend formulations, etc.). The need for computa-
tional tools has given rise to the field of “cheminformatics”,
which has two main functions, namely, the administration
of data and the aiding of data comprehension (i.e., data
mining and modeling).

Whereas sophisticated cheminformatics systems already
exist in the area of medicinal chemistry and pharmacology,
similar “matinformatics” tools are only beginning to be
developed for materials science. The terms cheminformatics
and data handling have somewhat diffuse definitions and
encompass aspects ranging from the mechanics of data
handling, storage, and searching to data mining and library
design tools. This contribution will attempt to address recent
developments in all of these areas, with particular consid-
eration of polymer science applications.

2. Data Collection, Administration and Handling

2.1. Databases and Representation of Polymeric Struc-
tures. One of the crucial factors determining the success of

a combinatorial discovery program is the availability of a
database that allows for the storage of structure and reaction
information, as well as formulation, characterization, and
screening data. A number of companies have developed
database solutions for the storage and administration of
chemical information (such as the data cartridges Auspyx
by Tripos9 or DayCart by Daylight Chemical Information
Systems,10 as well as the Accord suite by Accelrys,11 and,
on a somewhat lower level, ChemFinder by Cambridge-
Soft12). Such databases are relational in the sense that they
allow for the association of structural information with, for
example, property as well as characterization and/or screen-
ing data. Moreover, there is usually some built-in functional-
ity that allows structure filtering. Whereas methods for the
representation of molecular structure have been well-
established and documented for small molecules [two
representatives are the SMILES strings developed by Wein-
inger13 and the SYBYL line notation (SLN)14], the repre-
sentation of polymeric structures, as well as the associated
database searching, poses special problems. While it is
possible to define a small molecule as a unique entity with
a clearly defined structure and properties, polymers are rather
ill-defined statistical composites, in terms of both structure
(e.g., chain length, tacticity, monomer segments) and com-
position (monomer content, blends, additives), as well as
properties. Whereas the 2D structure of benzene, for example,
can be exhaustively defined by the string

in the SYBYL line notation, the same is not possible for
polymeric structures. In this case, SLN uses a more
“categorical” encoding systemsan ethylene/propylene co-
polymer consisting of 40% ethylene and 60% propylene, for
example, would be described using the more general string

Ethylene and Propylene are used as “macroatoms”s
shorthand notations for groups of atoms that can be expanded
into full structure descriptions.14
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DuPont developed a hierarchical classification scheme in
which polymers are first divided into three categories: (a)
prescribed monomer condensation (PMC), (b) actual starting
monomer (ASM), and (c) structural repeating unit (SRU).15

PMC polymers are subsequently classified as belonging to
one of 15 subclasses. To avoid duplicate entries, the polymers
are described by stylized monomer component names and
formulae. Poly(ethylene terephthalate), for example, can be
prepared in a number of ways (from ethylene glycol and
terephthalic acid or from ethylene glycol and terephthaloyl
chloride, etc). In the DuPont system, however, the polymer
is represented as if it had been prepared from ethylene glycol
and terephthalic acid. ASM polymers are registered using
the name and molecular formulas of the monomers used in
the preparation, whereas SRU polymers are registered
structurally using a series of atoms that, through repetition,
make up all or part of the polymer backbone. Other
classification systems, which have been developed by a
number of commercial databases, were reviewed some years
ago, and the reader is referred to the literature for further
information (see, for example, refs 16-18).

2.2. Data Handling. Chemical databases on their own,
however, act only as repositories of data. Although greatly
simplifying routine procedures in terms of data administration
and communication across laboratories, they are “stand-
alone” systems in that they are only very loosely integrated
into a typical laboratory workflow. However, only data that
have been put into context gain added value and can
potentially be converted into knowledge.

Particularly from a combinatorial point of view, optimal
contextualization and synergisms could be achieved if
database content could be combined with design-of-experi-
ment (DoE), design-of-synthesis, and modeling software,
which, in turn, could be integrated with both the control of
synthetic and analytical equipment and the gathering, ar-
chiving, and evaluation of screening and analysis data.
However, in a typical present-day laboratory, one encounters
a situation in which chemical information is generally
contained in a number of often incompatible formats,
requiring a collection of conversion programs designed to
make incompatible data formats compatible.19

An early example of an attempt to integrate disparate data
formats and thus to utilize the synergisms that can arise from
such integration, was the program suite CACTVS (Chemical
Algorithms Construction, Threading and Verification Sys-
tem), reported in 1994 by Ihlenfeldt and co-workers.19,20

CACTVS is essentially a chemical information handling tool
that can handle any kind of arbitrarily complex information
“by referring to an open set of descriptions of chemical data
and data objects and [using] loadable modules to define and
extend its capabilities instead of providing only a fixed set
of functions and data it can operate upon.”20 CACTVS is
modular and has a graphical worktop: a computational
operation is represented by a module icon, and data can be
piped from module to module. It is expandable in the sense
that modules can be user-defined. Individual modules,
containing data format and handling as well as property
computation and analysis routines, are stored in a database,
allowing the reuse of modules and exchange between

different users. The routines are loaded only when they are
actually ready to be executed, which allows the core program
to remain relatively small and to grow with computational
demand.19 In its most recent incarnation, CACTVS is a
distributed client/server system using a network of databases
with property descriptors, computational tools, and visualiza-
tion servers.21

Another early attempt was reported by Lindsey et al., who,
in the early 1990s, began to develop both the hardware and
software pertaining to an automated chemistry workstation.22-25

By now, the instrumentation and software is in its third
generation and includes experimental planning and schedul-
ing modules. The planning functions seem to be similar to
what one would expect from the software accompanying
commercial synthesizers. However, the software does include
modules for the factorial design of experiments, as well as
decision-tree, multidirectional, Simplex, and successive-
focused grid search algorithms. Moreover, the software
allows for adaptive experimentation in some cases, which
opens paths toward integrating experimental design and
execution.26-32

A conceptually very similar but even more closely
integrated solution has recently been developed by Avantium
Technologies with their software suites VirtualLab (VL) and
Data Analysis Package (DAP), which allow for the complete
integration of design, execution, analysis, and evaluation of
high-throughput experiments (Figure 1).33 VirtualLab allows
for the planning, in work-flow terms, of both classical
benchtop experiments and high-throughput designs. Once the
workflow for the actual experiment has thus been mapped,
it can be combined with a “method editor”, allowing for the
generation of methods combining manual operations, auto-
mated synthesis, and classical as well as parallel character-
ization techniques into one experimental method. These
methods can then be added to scheduling functionality,
which, in turn, can be appended to automated equipment.
As the experimental methods are being completed, com-
mands can be sent by VirtualLab to the appropriate laboratory
equipment to perform the required operations, or if a manual
procedure has been defined, VirtualLab instructs users to
perform it and to provide data inputs and results as required.
The software is furthermore capable of autocollecting
analytical data. When combining VirtualLab with DAP, data
analysis can also be automated, allowing the chemist to focus
on interpretation rather than manipulation.33 Although Vir-
tualLab was developed for applications in the biosciences,
in principle, it is possible to expand the system with the
specific requirements of a materials discovery program in
mind.34

Accelrys developed the software package CombiMat,
allowing the user to capture the process of library design,
characterization, testing, and analysis.11 The software is based
on an Oracle database and associated application modules.
When designing a synthetic procedure, CombiMat allows
the user to define arbitrary processing steps with associated
arbitrary parameters. These can then be used to create
libraries of samples. Recipes for analysis and testing can be
defined, and the results can be imported into the CombiMat
database (Figure 2).
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Creon Lab Control, in collaboration with BASF, recently
announced the development of a combinatorial materials
research data management system called Q-DIS/DOLPHIN.35

This system combines modules automating the design of
samples and experiments and controls experiment processing,
as well as the collection and storage of results. Furthermore,
it allows for the evaluation of data and the design of new
experiments on the basis of evaluation results (adaptive
experimentation). Both workflow and library design are
accomplished in a graphical editor.

Apart from these published solutions, companies that are
active in the area very often develop their own software to

solve matinformatics problems. However, reports concerning
the design and functionality of such software are usually
sparse. Symyx, for example, has developed a suite of
informatics tools, allowing the design of libraries (Library
Design Studio); the execution of screening protocols (Im-
pressionist); and the processing, storage, and handling of data
in a central database. The company markets the software
under the Renaissance trademark.36

3. Data Mining

High-throughput experimentation techniques generate large
amounts of mostly multivariate data. Although this presents

Figure 1. Screenshots of Avantium’s VirtualLab and Data Analysis Package software (courtesy of Avantium, http://www.avantium.com).

Figure 2. Screenshots of Accelrys’ CombiMat software (courtesy of Accelrys Ltd., http://www.accelrys.com).
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a significant scientific opportunity, a caveat is in order:
complex data sets obtained in this way often tempt research-
ers to establish relationships using only subsets of the data
available, which, in turn, are often fraught with error.37

Moreover, examples in medicinal chemistry have shown that
smaller data sets, provided they are well designed, can yield
the same quality of information as large data sets, but with
huge gains in efficiency and speed.38,39Therefore, before any
data mining is undertaken, indeed before any library is
synthesized, DoE tools should be used when planning any
high-throughput experimentation.40-43 This will ensure that
any information that can be derived from a set of experi-
mentally acquired data is maximized, while keeping the
number of necessary experiments to a minimum.

However, if experimentation, even if it has been optimized
in this way, leads to large collections of data, the latter needs
to be “mined” to derive knowledge. Data mining is an
information extraction activity that allows one to uncover
the knowledge and information contained in a database. This
is usually accomplished using a combination of artificial
intelligence, statistical analysis, modeling, and database
technology. The process of data mining generally uncovers
subtle relationships between sets of data and allows the
researcher to make predictions about systems that were not
themselves used in the derivation of the relationships. Hand
recently published a general and very readable introduction
to the field.44 Modern statistical science has made available
a whole armory of techniques that can be used to compute
such relationships. When surveying the literature, a number
of key methodologies seem to emerge, which will be
reviewed briefly in the following section.

3.1. Mining by Visualization. The easiest manner in
which data can be mined is by visual inspection, as general
trends can be discovered quickly. A number of programs
are available for data visualization, including, on a low level,
Excel45 and Origin46 and, on a more sophisticated level,
Spotfire,47 OpenViz,49 and Mathematica.50 Spotfire in this
context is very interesting, as both its database connectivity
and its query features make it very suitable for data analysis.

3.2. Mining by Principal Component Analysis (PCA).
Principal component analysis (PCA) is a statistical methodol-
ogy that allows the dimensionality of information space to
be reduced while concurrently keeping the loss of informa-
tion to a minimum.51-53 This approach assumes that descrip-
tors are tightly correlated and that one can produce a set of
N orthogonal descriptors from a set ofN correlated descrip-
tors. The uncorrelated descriptors are called “principal
components” and are essentially a linear combination of the
original descriptors. Coefficients (eigenvalues) indicate the
weight of these descriptors. The first principal component
(the one with the highest eigenvalue) accounts for most of
the variance in the system, the second principal component
for most of the remaining variance, and so forth. Once all
of the eigenvalues have been calculated, only those principal
components with variances above a certain threshold are
retained.

Within polymer science, PCA methodologies have been
used mainly for the characterization and classification of
polymeric species. In 1997, Vanden Eynde and Bertrand

reported the use of PCA for the quantification of ToF-SIMS
polystyrene spectra.54 In a prior study, the authors had noticed
that the molecular weights of their polystyrene samples had
a significant impact on some secondary molecular ion
intensities arising from both end groups and the macrochain.
By applying PCA to their spectral data, the researchers were
able to demonstrate that only one principal component was
sufficient to account for the molecular weight variances and
a second one allowed samples to be discriminated depending
on the type of the butyl end group present. Furthermore, they
showed that the correlation between the first principal
component and the sample molecular weight allowed for the
determination of the polymer molecular weights of an
unknown monodisperse polystyrene sample from its second-
ary ion mass spectrum.54

Batur et al. compared the performance of both principal
component analysis and artificial neural networks (see below)
in the prediction of the crystallinities of low-density poly-
ethylene films.55 First, a training set was produced by heating
a thin polymer film to 120°C to achieve a completely
amorphous state. Subsequently, the polymer sample was
slowly cooled in steps of 2°C, and a Raman spectrum was
recorded for each temperature step. The obtained spectra
were used as inputs for both principal component and neural
network modeling, and the input data were correlated to a
crystallinity value (linear regression between factor loadings
and crystallinity value in the case of PCA) obtained from
small-angle light scattering (SALS) experiments. The SALS
methodology, in turn, was calibrated by using the differential
scanning calorimetry (DSC) technique. Models developed
in this way were subsequently tested on two data sets
obtained using cooling rates of 3 and 0.3°C/min. The authors
found that both models performed well in the estimation of
crystallinity, although the results estimated for the data set
cooled at a rate of 3°C/min more closely resembled the
experimental data (see Figure 3). Furthermore, both models
approached the final crystallinity determined after the end
of cooling and measured by DSC. However, the researchers

Figure 3. Comparison of crystallinities of polyethylene films
determined experimentally by small-angle light scattering (SALS)
and differential scanning calorimetry (DSC) and predicted by
principal component analysis (RAPCA) and neural networks
(RANNs).55
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pointed out that, if a new data set were to be applied to the
existing model, the neural network would not require further
calculations to determine crystallinity, whereas the principal
component method would require the redetermination of
factor loadings corresponding to the new spectra.55

Miranda et al. studied the cross-linking of poly(vinyl
alcohol) (PVA) induced by ultraviolet light in the presence
of sodium benzoate as a sensitizer through the use of FTIR
spectroscopy and PCA.56 Their study was carried out by
casting an aqueous solution of PVA and sodium benzoate
onto glass plates and allowing the solvent to evaporate. The
resulting polymer films were subsequently irradiated for 1,
2, 3, and 4 h, and IR spectra were recorded. The spectral
data were then decomposed by PCA. Analysis of the results
helped to clarify the cross-linking mechanism: the authors
suggested that a free radical arising from the photolytical
decomposition of sodium benzoate abstracts a hydrogen atom
from the polymer chain, thus producing a polymeric radical.
The latter, in turn, reacts with PVA hydroxyl groups to form
ether linkages and therefore cross-links. Furthermore, the
authors were able to demonstrate a linear correlation between
the second principal component arising from the analysis
and the irradiation time. This should allow for the determi-
nation of irradiation times of unknown polymer samples after
measurement of the corresponding FTIR spectra.56

Vazquez et al. used total reflection X-ray fluorescence
spectroscopy to develop a taxonomy of a set of synthetic
and biopolymers.57 The authors produced thin films of
scleroglucan, xanthan, poly(ethylene oxide), glucomannan,
o-ethylamylose, and polyacrylamide and recorded the X-ray
fluorescence spectra of all samples. The spectra were
subsequently subjected to PCA. Analysis of the results
revealed that the first two principal components accounted

for approximately 96% of the observed variance in the
spectra. A biplot of the scores revealed six distinct clusters
corresponding to the six polymer classes, indicating that
X-ray fluorescence can indeed be used to classify unknown
polymer samples (Figure 4).57

Within the framework of a high-throughput experimenta-
tion discovery program, Tuchbreiter and Mu¨lhaupt used
principal component regression (PCR) on data generated by
attenuated total reflection Fourier transform infrared (ATR-
FTIR) spectroscopy on olefin copolymers to determine
polymer compositions.58 ATR-FTIR spectroscopy allows for
the rapid analysis of powders and polymeric solids without
the need for sample preparation, as is the case in conventional
FTIR techniques, which require the production of KBr
pellets. When ATR-FTIR spectroscopy is combined with
principal component regression, polymer composition (e.g.,
comonomer incorporation) can be determined quickly.

3.3. Mining by Quantitative Structure-Property Re-
lationships (QSPRs). The goal of many data mining
activities in high-throughput experimentation is ultimately
the establishment of quantitative structure-property relation-
ships (QSPRs). Quantitative structure-activity relationships
(QSARs) have been used extensively in biology and bio-
molecular science for many years and have reached a high
degree of sophistication.59 Quantitative structure-property
relationships are the materials science equivalent of QSARs.
They are multivariant statistical correlations between a
property of a system and a number of descriptors of the same
system. They generally take the form

wheredn is a property descriptor and the coefficientcn is

Figure 4. Biplot of principal component scores originating from X-ray fluorescence spectra of (A) scleroglucan, (B) glucomannan, (C)
xanthan, (D) poly(ethylene oxide), (E)ortho-ethylamylose, and polyacrylamide.57

property) constant+ (c1d1) + (c2d2) + ‚‚‚ + (cndn) (1)
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reflective of the influence of that descriptor on the overall
property. In the simplest case, one can discern a QSAR/
QSPR using simple linear regression analysis on a data set.
Linear regression is a standard statistical technique, and the
reader is referred to the literature for further information.60

Within the area of polymer science, QSPR techniques have
been used to address a number of problems. A prominent
area is Ziegler-Natta catalysis. Although many theoretical
investigations have been carried out to elucidate polymeri-
zation and activation mechanisms, as well as factors influ-
encing the activity of this type of catalyst, the very large
majority of these studies have employed computationally
expensive methodologies, involving ab initio or density
functional methods that focused on the structure of only the
cationic metal fragment.61-67 It has been demonstrated,
however, that the interaction between catalyst and cocatalyst
is of crucial importance in determining the activity of a
Ziegler-Natta species.68

Yao and co-workers investigated the interaction between
[Cp2ZrMe] and a number of fluorophenylborates [B(Ph-
Fn)4] (n ) 0-5) using computationally “cheap” molecular
mechanics (MM) and QSPR methods.69 To obtain optimized
stable structures, the authors employed combined molecular
dynamics and mechanics (MD/MM) calculations. The results
suggested that, in all of the desired cases, the counterion is
located opposite to the methyl group on the metal center.
This, in turn, means that one of the aromatic rings on the
counterion is oriented in such a way as to shield the vacant
site in a “face-capping” manner. A subsequent QSPR analysis
revealed that the metal-aryl ring centroid distance and the
centroid-methyl group angle are the most pertinent descrip-
tors with respect to catalytic activity.

In a subsequent paper, the same authors used a similar
methodology to evaluate the influence of external ethereal
donors on classical Ziegler catalyst systems [TiCl4 im-
mobilized on MgCl2 and activated by trimethylaluminum
(TMA)]. 70 In addition to the interaction energy between the
donor and the metal centers, the authors also calculated
parameters such as the dipole moment, density, and molec-
ular weight of the donor. A QSPR analysis showed that only
the interaction energy and the dipole moment of the donor
correlate with the observed activities. Furthermore, it was
demonstrated that a correlation exists between the molecular
weight distributions of the polymers produced by the catalyst
systems and the principal moment of inertia of the external
donor: donors with low moments of inertia give rise to
polymers with low molecular weight distributions, whereas
donors with high moments of inertia produce polymers with
broad distributions. The authors reason that smaller molecules
are more mobile and can thus move easily to minimize steric
interactions with the support, thereby leading to active sites
of similar sterics and, consequently, to narrow molecular
weight distributions. Heavier external donors cannot achieve
this to the same extent, thus maintaining the steric inhomo-
geneities resulting from the support and, in turn, giving rise
to broader molecular weight distributions.70

In an earlier paper, Scordamaglia and Barino showed that
some conformational features of external donors are strong
descriptors for both activity and stereoregularity in the

isospecific polymerization of propene.71 A set of dimethoxy-
silanes was evaluated by calculating a number of molecular
descriptors using a set of most-probable structures derived
from a search of the rotational hypersurface of each molecule
in the silane set. Of all of the calculated descriptors, two
showed significant correlations with respect to donor ste-
reoregulating power: the oxygen-to-oxygen distance and the
conformations of the methoxy groups. These results led the
authors to consider a new class of potential internal donors
in the shape of 1,3-diethers. The compounds were evaluated
in the same way as the set of dimethoxysilanes. Subsequent
experiments confirmed that those diether compounds that
most closely matched the optimal criteria in terms of
oxygen-oxygen distance and methyl group conformations
indeed gave rise to the most strongly stereoregulated
polymers.71,72

QSPR methodologies have also found extensive applica-
tions in the area of the modeling of polymer properties,
particularly the glass transition temperature (Tg). Below the
glass transition temperature, polymer strands can both
oscillate and vibrate around a fixed position, creating a
certain amount of free volume. The size of the motion, and
thus the amount of free volume, is dependent on the
temperature. The glass transition occurs at the point at which
the free volume is sufficient for the polymer backbones to
move relative to one another. At this point, the backbone
relaxes, and the material makes a transition from the solid
to a quasiliquid state.73

On a very simple level, van Krevelen used group additive
theory to predictTg.74 Here, the property under consideration
is regarded as the scalar sum of the properties of the
corresponding chemical groups. Examining a set of 77
samples of various cross-linked resins, Bicerano used a
similar approach to develop a simple QSPR showing that
Tg increases with a decreasing average number of “repeat
units” between cross-links.75 Hopfinger and Koehler subse-
quently extended the group additive theory methodology and
combined it with molecular modeling, allowing for the
estimation of unknown parameters. In their approach, the
authors demonstrated thatTg can be correlated with the
intramolecular flexibility of the polymer chain, which is
composed of linear contributions of conformational entropies
of the repeat units and intermolecular interactions arising
mainly from electrostatic phenomena.76,77

In 1996, Katritzky and co-workers published a paper on
the prediction of glass transition temperatures for low-
molecular-weight homopolymers using a quantitative struc-
ture-property relationship treatment on a set of 22 poly-
mers.78 Using the CODESSA suite,79 238 different molecular
descriptors (constitutional, geometrical, topological, electro-
static, quantum-chemical, and thermodynamic) were calcu-
lated in the first step. As considering all possible multipa-
rameter correlations in such a huge descriptor space is
practically impossible, the following procedure was used to
find the final QSPR equations: (i) After intercorrelations of
all 238 descriptors had been calculated, only those pairs of
orthogonal descriptorsi andj whereRij

2 < 0.1 were chosen
for the development of a first QSPR model. Such treatment
afforded 10 755 orthogonal pairs. (ii) Subsequently, an initial
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statistical analysis was carried out using the identified
descriptor pairs. Of these, the 400 pairs that gave the highest
regression correlation were used for higher-order regression
analysis. (iii) Noncollinear descriptor scales were added, and
a three-parameter regression was calculated. The calculation
was repeated for all noncollinear scales. Of the triplets thus
obtained, the 400 with the highest regression correlation were
chosen. The process was repeated to give a set of quartets.
Subsequently, the descriptor set showing the highest regres-
sion correlation was chosen as the final regression model
(R2 ) 0.928). Analysis of the model showed that the glass
transition temperature is strongly influenced by four fac-
tors: the difference between the negative and positive partial
surface areas normalized by the number of atoms (describing
electrostatic properties), the topological Randic index (de-
scribing the degree of branching), the number of OH groups
present (as a measure of possible hydrogen-bonding interac-
tions), and finally the partial negative surface area (again
describing electrostatic properties).

In a subsequent paper, Katritzky et al. expanded this work
considerably, both by using a larger data set (88 polymers)
and by using only those descriptors that were calculated
solely on the basis of theory.80 The latter was done to ensure
that the determined QSPRs would be applicable to any linear
polymeric structure. This treatment afforded five strongly
correlated descriptors (R2 ) 0.946): the moment of inertia
(measuring the mass distribution around the principal axis
of rotation), the Kier shape index (relating to the number of
skeletal atoms, molecular branching, and the ratio of the
atomic radius and the radius of an sp3-hybridized carbon
atom), the most negative atomic charge in the molecule, the
descriptor HSA/TFSA (quantifying the ability of a polymer
to form hydrogen bonds), and finally the fractional positive
partially charged surface area (describing electrostatic in-
teractions between molecules). These findings are certainly
important, as they show that structure-property relationships
can be established for large sets of polymers with differing
chemical structures simply on the basis of calculated mo-
lecular descriptors.80

Cao and Lin subsequently developed a set of descriptors
based on the rotation of the side chain, the bond count of
the freely rotating part of the side chain, the substituted
backbone electronegativity discrepancy, the polarizability
effect index, and a hydrogen-bonding descriptor. These
descriptors were subsequently evaluated using the same set
of 88 polymers examined by Katritzky et al. QSPR methods
showed that there is a good correlation between these
descriptors and the glass transition temperature (R2 )
0.9056).81 Very recently, Shuai et al. developed QSPRs with
respect to glass transition temperatures for amorphous low-
molecular-weight materials used in the production of organic
light-emitting diodes.82

Kohn and co-workers made extensive use of QSPRs when
investigating a library of biodegradable polyarylates as novel
candidates for biomedical applications.83,84 Having synthe-
sized the library using manual parallel synthesis methodolo-
gies, both the contact angles and the glass transition
temperatures were determined experimentally (Figure 5). In
an initial set of correlations, the researchers were able to

show that there was a broad correlation between the length
of the aliphatic side chains present in the polymer and the
glass transition temperature: as the number of aliphatic
carbon atoms in the side chains increased,Tg decreased in
an exponential manner. Furthermore, a linear correlation
between the air-water contact angle (CA) and the number
of carbon atoms was discerned: as the latter increased, so
did the angle. Branching could be shown to affectTg only
modestly, whereas oxygen substitutions in both side chains
and polymer backbones affected bothTg and the contact
angles very markedly. The polymers were subsequently
screened against fibroplast proliferation. Again, good linear
correlations could be demonstrated: fibroblasts tended to
proliferate polymeric materials much more effectively if
oxygen substitutions were present in either the backbone or
the side chains. Furthermore, proliferation was found to
decrease linearly with an increase in polymer surface
hydrophobicity, except for those polymers incorporating
oxygen in their backbone.84

In an elegant piece of work, Reynolds recently demon-
strated the use of QSPRs for the design of polymer libraries.40

In a first step, a subset of 17 members of a 112-membered
virtual polymer library was selected on the basis of repeat
unit topology and shown to be representative of the property
space encompassed by the library as a whole. Subsequently,
the subset was used to derive the topology and genetic-
algorithm-optimized QSPR equations forTg and CA. The
predictions were tested against experimentally determined
values for the residual polymers, and good correlations could
be shown to exist: models gaveR2 values of 0.89 forTg

and 0.92 for CA. In a final step, the validated models were
used to build focused libraries of polymers having specific
values ofTg and CA. Again, it could be shown that the
equations correctly identified polymers falling into the preset
ranges.40

Other quantitative structure-property or structure-
reactivity relationships have been developed for determining
kinetic chain-transfer constants in polystyrene polymeriza-
tions for a set of transfer agents,85 describing gaseous
diffusion in polymers,86 modeling transport behavior in
amorphous polymeric materials,87 and estimating inelastic
mean free paths for polymers and other organic materials.88

Moreover, an application for a patent concerning a QSAR
approach for the prediction of polymer properties was
recently filed by Procter & Gamble.89

3.4. Mining by Artificial Neural Networks (ANNs).
Another increasingly popular approach to data mining and
modeling is the use of artificial neural networks (ANNs).
Neural networks are designed to mimic the way in which
the human brain processes information and are composed
of a number of interconnected processing units (neurons)
that work in parallel to solve a given problem. In the human
brain, a neuron receives information in the form of electric
signals from other neurons to which it is connected. The
connection happens via an axon, which can split into
hundreds of branches. At the end of each branch, a synapse
converts signals emanating from axons into electrical effects
that can either inhibit or excite another axon connecting the
next neuron, which is, in turn, either inhibited or excited.90
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Although a vast number of different network architectures
exist,91 all neural networks have some basic elements in
common. Sumpter described a computational neural network
(CNN) “as a computational system made up of a number of
simple but highly connected processing elements that tend
to store experimental knowledge by a dynamic state response
to external inputs and make the information available for
use. Using available data, a typical CNN ‘learns’ the essential
relations between given inputs and outputs by storing
information in a weighted distribution of connections. A
learning algorithm provides the rule or dynamical equation
that changes the distribution of the ‘weight’ (parameter) space
to propagate the learning process.”92 A simple neuron has
the microstructure depicted in Figure 6.

The structure commonly employed for learning and
modeling tasks is that of the feed-forward network. This type
of network allows a signal to travel in one direction only,
thus associating inputs with outputs. Between the input and
output layers are one (or more) hidden layers of neurons.
Artificial neural networks are somewhat different from the
other data mining tools described so far in the sense that
they are theory-poor. Whereas linear regression, for example,
assumes that two variables are related in a linear fashion,
i.e., that the relationship can be described by the formulay
) a + bx, wherea is the intercept andb the slope, neural
networks do not require a similar sort of theoretical

underpinning; relationships between variables are stored in
the weight matrix of the network. Furthermore, neural
networks are capable of modeling any continuous function,
whether linear or not. It also appears that factors that would
normally present a serious obstacle to traditional modeling
techniques such as multimodal distributions, data fuzziness,
outliers, or partial nonavailability of data are less of an issue
in NN modeling.93 A number of general reviews have
appeared discussing the use of ANNs in drug discovery94

and materials science92 in greater detail.
As was the case with QSPRs, neural networks, too, have

been used to model glass transition temperatures. In a 1995
paper, Osguthorpe and co-workers described the use of neural
networks for the prediction of physical and mechanical
properties of linear homopolymers solely on the basis of their
monomer structures. Using a number of network architectures
and training procedures, they established that the best
networks are capable of predictingTg with an rms error of
35 K, thus demonstrating that information about the proper-
ties of the overall polymer is contained in the small monomer
molecules.95

Mattioni and Jurs used a combination of linear and
nonlinear modeling procedures to predict glass transition
temperatures.96 In the first part of their study, the authors
evaluated the use of descriptors derived exclusively from
the monomer units for the prediction of the glass transition

Figure 5. (a) Glass transition temperatures and (b) air/water contact angles for a 112-polymer library as a function of the polymer pendant
chain (x axis) and backbone structure (y axis).83,84
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temperature. In a first attempt, a number of topological,
geometric, and electronic descriptors were calculated, and
linear modeling was used to identify the most effective subset
of descriptors. Evaluation of the linear model showed that
the rms error in the training set was 25.87 K (R2 ) 0.869)
and 26.58 K (R2 ) 0.870) for the test set. The most effective
descriptors from linear modeling were subsequently fed into
computational neural networks of various architectures. The
best net subsequently generated models with an rms error
of 15.67 K for the training set (R2 ) 0.952) and 21.76 (R2

) 0.919) for the prediction set. Use of either simulated
annealing97 or genetic algorithms to select the best descriptors
did not lead to a significant improvement over the model
generated using the linear approach.96 In the second part of
the study, descriptors were derived from the structure of the
repeat unit, rather than the monomer, as this was thought to
represent the properties of the polymer more accurately.
However, despite the larger range and greater diversity of
the data set, the prediction accuracy did not improve
significantly: the best neural network prediction showed rms
errors of 21.14 K (R2 ) 0.958) for the training set and 21.94
K (R2 ) 0.962) for the test set.

Zhang et al. used experimentally determined values of
glass transition temperatures, entanglement molecular weights,
and melt densities to train a simple three-layer feed-forward
network with error back-propagation to model polymer chain
dimensions, namely, the characteristic ratioC∞. The char-
acteristic ratio is the ratio of the mean-square end-to-end
distance,〈r2〉0, of a linear polymer chain in the theta state to
the productNL2, whereN is the number of rigid sections in
the main chain, each of lengthL. In the case ofN f ∞, the
symbol for the characteristic ratio becomesC∞,98 Data for
19 polymeric species were used in the model development.
The authors were able to demonstrate that, using these three
parameters, the characteristic ratio could be modeled with
satisfactory accuracy.99

In 1998, Smith et al. reported the use of a combination of
neural networks in the modeling process: rather than using
one neural network to model all polymer properties, the
authors used neural network modules, termed “local property
experts”.100Each module was designed to model one property

only and contained an ensemble of neural networks. The
overall output of the model “consists of a committee of the
local experts (Figure 7) for which the result is taken as the
ensemble average over all the networks comprising each local
expert module”. The local property experts have different
architectures and topologies and have undergone different
training methods. By combining several experts, the authors
hoped both to optimize the accuracy of prediction and to
minimize any overfitting. The trained networks were sub-
sequently used in the design of new homopolymers not
included in the training set. Of particular interest to the
researchers was the design of bisphenol A polycarbonate
(BPAPC) with improved impact resistance. An evaluation
of nine BPAPC derivatives using the trained neural networks
delivered three lead compounds. Unfortunately, the authors
did not provide any experimental confirmation in their paper
as to whether the lead structures were indeed superior with
respect to already known polymers. However, in a subsequent
patent, they claimed that these materials do indeed show
improved impact resistance.101

Other papers reporting the use of neural network modeling
are concerned with the prediction of electronic properties of
polymers,102,103as well as the prediction of heat capacities,
tensile strength, tensile modulus, compressive strength, and
elongation.93 Furthermore, neural networks have been em-
ployed in the optimization of polymer processing104 and in
the inferential estimation of polymer quality during polym-
erization.105

3.5. Other Methods.The above overview does not present
a comprehensive list of all available data mining techniques,
but rather focuses on those methods most commonly used
in combinatorial polymer science to date. Methodologies
such as recursive partitioning106-109 are becoming increas-
ingly commonplace in the biomedical field but have, thus
far, not been applied to polymer science problems. Other
methods have been used only very sporadically. Debska et
al. reported the use of cluster analysis to improve the water
resistance of acrylamide-modified melamine resins,110 and
Sun et al. used fuzzy-set theory to investigate the relationship
between polymer structure and the glass transition temper-

Figure 6. Neuron microstructure.
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ature.111 However, these are isolated examples that, so far,
are not in common use.

4. Conclusion

Although, when compared to bioinformatics, the field of
materials informatics is small, it is nevertheless evolving
rapidly. This development is fueled by the increasing
application of combinatorial and high-throughput experi-
mentation techniques in the materials sciences and the
development of sophisticated data handling and statistical
technology, as well as by the easy and inexpensive avail-
ability of brute computing power. Particularly in the area of
polymer science, these developments present a huge window
of opportunity. On one hand, research will simply be
accelerated, i.e., it will be possible to carry out more
polymerizations, to produce more polymer blends, and to
evaluate more process conditions in continuously shortening
time spans. On the other hand, and more importantly,
research will become more intelligent, provided that the data
produced are of sufficient quality and structure to allow for
the development of quantitative structure-property relation-
ships. If this is the case, these developments will allow both
adaptive experimentation and materials design on the basis
of predictable properties, rather than as a result of what is
essentially serendipity. If, for example, a polymer with a
certain glass transition temperature is required, modeling
should enable the design of polymer architectures that are
known will fall in the desired property range even before
they have been physically prepared in the laboratory. The
data mining examples discussed in the previous sections
illustrate that the technology necessary to achieve this is, in
principle, in place. In this context, it is also becoming
increasingly clear that the crucial factor to success in any
combinatorial endeavor is not simply “high-throughput”

experimentation, generating huge amounts of possibly su-
perfluous data, but “smart high-throughput” experimentation
that includes both design-of-experiment methodologies and
data mining techniques in every step of the combinatorial
discovery process, making the latter adaptive. The further
integration of all aspects of compound discovery and
evaluation, from library design to data mining, will lead to
the most effective use of possible synergisms, thus making
smart high-throughput experimentation even smarter.
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