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We investigate the effects of micellar entanglement density on the kinetics of shear
banding flow formation in a Taylor-Couette flow via a combination of experiments and
simulations of the Vasquez-Cook-McKinley (VCM) model. In experiments, three sets
of wormlike micellar solutions, each set with a similar fluid elasticity and zero-shear-
rate viscosity, but with varying entanglement densities, are studied under start-up of
steady shear. Our experiments indicate that in the set with the low fluid elasticity,
the transient shear banding flow is characterized by the formation of a transient flow
reversal in a range of entanglement densities. Outside of this range, the transient flow
reversal is not observed. For the sets of medium and high elasticities, the transient
flow reversals exist for relatively small entanglement densities, and disappear for large
entanglement densities. Our analysis shows that wall slip and elastic instabilities do
not affect this transient flow feature. Consistent with experiments, simulations of the
VCM model predict that as the micellar entanglement density increases, the strength
of the transient flow reversal first increases, then, at a higher entanglement density,
the transient flow reversal weakens. We identify a correlation between micellar en-
tanglement density, the width of the stress plateau, and the extent of the transient
flow reversal. As the micellar entanglement density increases, the width of the stress
plateau first increases, then, at a higher micellar entanglement density, plateau width
decreases. Therefore, we hypothesize that the transient flow reversal is connected to
the micellar entanglement density through the width of the stress plateau.
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I. INTRODUCTION AND BACKGROUND

Surfactants and salts in aqueous solutions can self-assemble into micelles of different
shapes, and among them are wormlike micelles (WLMs), which are long flexible cylindrical
assemblies of surfactant molecules. WLMs that form entangled networks exhibit strong
viscoelastic properties that make them useful in various practical applications such as in
personal care products1, oil-gas fields2, and as model viscoelastic systems for fundamental
research3,4. In particular, the viscoelastic properties of WLMs can be tuned as needed by
adjusting the types and concentrations of the surfactants and salts.

One common and well-studied flow phenomenon observed in some WLMs is shear band-
ing. Shear banding is associated with the formation of (at least) two co-existing bands of
different shear rates that undergo the same shear stress5,6. Our understanding of the shear
banding in WLMs is advanced in Taylor-Couette (TC) flows (flow between two concen-
tric cylinders)5,7,8. A key aspect of the shear banding flows that has been studied is the
kinetics of shear banding flow formation upon inception of flow; i.e., the temporal evolu-
tion of flows before a quasi-steady shear banded flow is established9–17. Recent studies in
TC flows have shown that the kinetics of shear banding flow formation in WLMs feature
wall slip11,12,15,16,18–21, elastic instabilities10,20,22,23, micellar alignment24,25 and transient flow
reversal17,26. In principle, the kinetics of the shear banding flow formation can be influ-
enced by two factors; (i) the TC flow geometry and (ii) material properties of the WLMs.
The effects of flow geometry, in particular the surface conditions of the flow cell, have been
studied fairly extensively15,27. Lettinga and Manneville showed that modification of the sur-
faces of the TC cell affects the kinetics of shear banding flow formation through enabling or
preventing wall slip. Wall slip can interfere with shear banding but can be diminished by
roughening the surfaces in the measurement cell15. In transient flow, Mohammadigoushki
and coworkers17 quantified wall slip in start-up flow for a CTAB/NaSal solution using rheo-
PTV and found that wall slip is most prominent at two times: (1) immediately after the
start of applied shear, and (2) as the high shear band initially forms. Additional studies
have illustrated that as the high shear band initially forms, the interface between the high
and low shear bands becomes unstable due to formation of secondary flows in the high shear
band near the inner rotating cylinder27–30.

While the effects of TC flow geometry have been studied, less is known about the effects
of material properties of WLMs on the kinetics of shear banding flow formation based on ex-
periments. Our group has recently started investigating the role of material properties on the
kinetics of shear banding flow formation in experiments. In particular, Mohammadigoushki
and coworkers17 observed a transient flow feature in flows of shear banding CTAB/NaSal
WLMs. When a steady shear flow is first applied, there may be a temporary reversal in flow
direction in part of the flow field during the formation of the steady-state shear-banding flow,
which occurs during the transient stress decay period17. By comparing these observations
with the predictions of the Vasquez-Cook-McKinley (VCM) model, the authors suggested
that these transient flow reversals are associated with a relatively high fluid elasticity E17

compared to prior literature reporting experiments of transient flow evolution of WLMs14–16.
According to the predictions of the VCM model, the transient flow reversal occurs only be-
yond a critical fluid elasticity number, E (E = Wi/Re, where Wi = λγ̇, Re = ργ̇d2/η0. Here,
λ is the fluid relaxation time, γ̇ is the shear rate, ρ is the fluid density, d is the gap size, and
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η0 is the zero-shear viscosity) and the dimensionless applied shear ramp-up rate a (a = λ/ts
where ts is the duration of the initial shear ramp)31,32. This conclusion was confirmed in a
subsequent study by Rassolov and Mohammadigoushki26, which reports a critical threshold
in E and a beyond which a transient flow reversal is observed.

Besides the VCM model, predictions of transient flow reversals have been reported using
the diffusive Rolie-Poly (DRP) model33. Adams et al. showed that the formation of transient
flow reversals in viscoelastic polymer solutions depends on the polymer entanglement density,
Z, and the viscosity ratio, β = ηs/ηp, where ηs is the solvent viscosity and ηp ≈ η0 − ηs is
the solute zero-shear viscosity. In our recent experimental study, we found that increasing
the value of the micellar entanglement density Z at a constant fluid elasticity may tend
towards transient flow reversal26; however, this observation is based on one comparison. A
systematic study is needed to fully understand the effect of micellar entanglement density
Z on the transient evolution of shear banding flows. Therefore, the main objective of this
study is to assess the effect of Z on this flow feature using both experiments and simulations.
In the following sections, we will present a systematic study of a start-up flow evolution for
sets of WLMs where the value of Z is varied while those of the other relevant material
parameters (particularly E and β) are held nearly fixed. We will report both experimental
evidence of the effect of Z on transient flow evolution from rheo-optical measurements in a
TC cell and a corresponding study of transient flow evolution predictions using the VCM
model.

II. EXPERIMENTS

A. Materials

Fluids were prepared in the same manner as in our prior work26. Cetyltrimethylam-
monium bromide (CTAB) and sodium salicylate (NaSal) were mixed in deionized water.
Both solutes were obtained from Millipore Sigma and used as received. Following mixing,
solutions were kept sealed and away from ambient light for a minimum of two weeks prior
to any measurements. For rheo-PTV experiments, glass microspheres (Potters 110P8, di-
ameter ≈ 8µm) were mixed at 50 ppm by mass along with the solutes. For visualization of
flow instabilities, mica flakes (Jacquard PearlEx 671) were added at 250 ppm in a similar
manner.

B. Fluid characterization

To find the relaxation time and the entanglement density of the fluids, linear viscoelastic
data were measured using Small-Amplitude Oscillatory Shear (SAOS) experiments in an
Anton-Paar MCR 302 with an off-the-shelf TC measuring cell with dimensions Ri = 13.328
mm, R0 = 14.449 mm, and h = 40 mm. Here Ri and R0 refer to inner and outer radii
respectively, and h is the height of the TC cell. To assess the micellar entanglement density,
the local minimum in the loss modulus (G′′) where the elastic modulus (G′) approaches
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a plateau is needed (see details below). For several of the selected fluid preparations, the
local minimum in the loss modulus occurs at a fairly high frequency, near 100 radians/s.
This is close to the high frequency limit accessible in SAOS experiments beyond which
measurements have significant errors due to inertia in the measuring system. For fluid
preparations where the minimum in G′′ is at or near this limit, a different method based on
Diffusing Wave Spectroscopy (DWS) was used to extend the measured frequency spectrum
to higher frequencies. For DWS experiments, fluids were prepared with 1% by mass of
latex spheres (Life Technologies, R = 300 nm) and measured using a commercially available
DWS instrument, LS Instruments RheoLab II, in 5 mm cuvettes with a 300 s multi-tau
measurement time and a 60 s echo time. A preparation of 1% latex spheres in DI water was
used to obtain the mean free path length l∗ for DWS measurements.

To mfind the zero-shear viscosity and the high and low shear rate limits of shear banding,
steady shear stress measurements were completed at shear rates from 0.001 to 100 s−1 in
the same measurement cell as for SAOS. The viscosity was measured over time under each
applied shear rate until it reached a steady value or quasi-steady oscillation, and either the
steady value or the average value over several oscillations respectively was used to assemble
the flow curve.

C. Rheo-optical measurements

Rheo-optical measurements were completed using a custom-built TC cell with Ri =
13.35 mm, Ro = 14.53 mm, and h = 50 mm. Details of the cell design and operation are
given in our previous work17,26. Different from our previous work, the inner cylinder in
this study was roughened by sandblasting in order to reduce wall slip. Several attempts
to reduce wall slip at the outer cylinder were tested (discussed in detail in the following
section). Additionally, all rheo-optical measurements were completed under initially applied
steady shear rate flow with the shortest possible ramp-up duration (measured to be 0.1 s).
Spatially and temporally resolved fluid velocity was measured using rheo-PTV. As in our
previous work, the fluids were prepared with glass microspheres, and a laser (with wave-
length of 532 nm) and a high speed camera (Phantom Miro 310) were used to image the
flow plane. Particle trajectories were obtained from short clips of the video of the flow (much
shorter than the time scales of flow evolution) using a Python script based on the TrackPy
library34 and (in the same script) averaged over small intervals along the radial axis to
obtain spatially resolved velocity data with quantified uncertainty. In a modified version of
the script, the above analysis was repeated for many consecutive intervals throughout longer
videos to obtain a spatiotemporal map of either start-up or quasi-steady flow velocity.

In addition to rheo-PTV, flow instabilities were visualized using the fluids prepared with
mica flakes, which orient to the flow direction and reflect light in an orientation-dependent
manner. The fluid in the TC cell was illuminated by a desk lamp, and videos of the fluid
under start-up of a shear flow were captured using a USB video camera (SenTech STC-
MBS241U3V) aimed along the axis of the TC cell (i.e. imaging the θ− z plane). A Python
script was used to assemble the video frames into a static image showing spatiotemporal
evolution of the flow pattern. Further details of such visualizations are given in our previous
work35.
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D. Modifications of the Taylor-Couette cell surfaces and the effect on wall slip

Shear banding systems under start-up of shear flow are known to exhibit wall slip during
both the initial transient evolution and the quasi-steady state. Previous work with our
apparatus has featured wall slip at both the inner and the outer cylinders of the TC cell17,26.
The wall slip at the TC cell surfaces may affect the kinetics of shear banding flow formation15.
Therefore, we have attempted to reduce the wall slip at both inner and outer cylinders
by modifying the TC cell surfaces. The inner cylinder was roughened by sandblasting.
Since the outer cylinder must remain optically transparent to allow for velocimetry and
flow visualization, it cannot be roughened. Instead, it was modified in three different ways:
(i) The outer cylinder was made hydrophobic by functionalizing with octyltrichlorosilane
(i.e. silanized). (ii) A separate outer cylinder was cleaned by the RCA-1 protocol (5:1:1
water:ammonium hydroxide (25%):hydrogen peroxide(30%)) to obtain a hydrophilic surface.
(iii) A third outer cylinder was coated with a screen protector (Vivitar VIV-SS-45) to increase
the surface roughness and hydrophobicity slightly. Prior studies have shown reduction in
wall slip when the screen protector was applied36.

Fig. 1 shows the transient evolution of shear stress at the inner cylinder and the tem-
poral evolution of velocity profiles in the Taylor-Couette cell for one of the selected fluid
preparations (see Table I below) under start-up of steady shear flow with different surfaces.
Although there is little difference in the evolution of shear stress with time for the different
surfaces, the measured velocity profiles show significant differences. For untreated inner and
outer cylinders, this solution exhibits a slight transient flow reversal right after the onset
of stress decay and a significant wall-slip during quasi-steady flows. For a roughened inner
cylinder, the quasi-steady wall-slip at the inner cylinder still exists, but the transient flow
reversal becomes stronger than the experiments with the smooth inner cylinder. In Fig. 1
(d,e), the roughened inner cylinder is used with the functionalized outer cylinder and the
screen protector on the outer cylinder respectively. For such conditions, the wall-slip at
the outer cylinder is no longer negligible and the transient flow reversal is not observed for
either of these surface treatments. Therefore, changing the surface of the outer cylinder
(whether it is made hydrophilic or hydrophobic) not only leads to stronger wall-slip at the
outer cylinder, but also changes the kinetics of shear banding flow formation by diminishing
the transient flow reversal. To minimize wall slip and the resulting suppression of transient
flow reversal, we completed the remainder of this work with a sandblasted inner cylinder
and an untreated outer cylinder.

III. RESULTS AND DISCUSSIONS

A. Fluid Selection and Characterization

Following characterization of the linear and non-linear viscoelastic properties of the
micellar solutions, three sets of fluid preparations, each with closely matched E, closely
matched η0, and broadly varied Z, were identified. Fig. 2 shows the rheological results
for these samples, and the sample compositions and the rheological properties are listed in
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FIG. 1. Transient flow evolution for Wi = 20, Z = 57, E = 1.56 × 105 with different surface
treatments at the (inner/outer) cylinders: U, untreated; R, roughened; S, silanized; F, film applied
(screen protector). (a) Shear stress evolution with shear strain. (b-e) Temporal evolution of nor-
malized velocity profiles measured in the gap of the TC cell at selected shear strains. Symbols used
in (b-e) correspond to those plotted on the shear stress curves in (a), and Ui is the applied velocity
at the inner cylinder.

Table I. The micellar entanglement density, Z, cannot be measured directly in experiments.
However, previous theoretical studies have provided approximate equations that can be used
to assess Z in linear wormlike micellar solutions. Cates and Granek37 developed a scaling
relationship that links the micellar entanglement density to the measured storage and loss
moduli in the fast breaking regime as ZCG ∼ (G0/G

′′
min), where G0 and G′′min respectively

denote the plateau modulus and the local minimum in the loss modulus at high frequencies
for which the storage modulus shows a plateau. Later, Granek38 incorporated the effects
of fluctuations in contour-length and suggested an improved version of this scaling relation
as Z0.82

G ≈ (G0/G
′′
min). More recently, Larson and co-workers used the simulations of their

pointer algorithm and through fitting to experimental data for a series of micellar solutions,
suggested the following scaling relationship39:

0.317 Z0.82 ≈ (G′min/G
′′
min) (1)
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FIG. 2. Rheological properties for selected fluid conditions. (a,c,e) Frequency response data shown
as SAOS storage modulus (filled symbols) and loss modulus (open symbols), and adjusted DWS
storage modulus (thick curves) and loss modulus (narrow curves) low E (a), medium E (c) and high
E (e) sets in Table I. (b,d,f) Flow curves for the same conditions as shown in (a,c,e) respectively.

where G′min is G′ at the same angular frequency as G′′min.

Eq. (1) differs from the scaling relation of Granek in that the prefactor of unity and
the plateau modulus are replaced with a prefactor of 0.317 and the storage modulus at the
frequency for which loss modulus shows a local minimum. In our study, we primarily use
Larson’s relation to estimate the micellar entanglement density; however, we also report
the estimate according to Granek’s relation. In order to do so, the rheological properties
G′min and G′′min are needed for the former, and G0 and G′′min are needed for the latter.
For our selected fluid preparations, G0 can be measured from SAOS results obtained by
mechanical rheometry. However, for some WLMs, G′′min and G′min are not captured within
the range of frequencies accessible by this method (ω ≤ 100 rad/s). To obtain higher
frequency linear viscoelastic response of such fluids, we used DWS. DWS results were fitted
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Fluid CTAB/NaSal (mM/mM) T (◦C) ZCG Z η0(Pa·s) E × 105

250/45 25 6.2 38 123 1.45
250/50 28 7.4 46 130 1.38

Low E 200/50 30 8.7 57 122 1.56
200/70 38 20 160 136 1.17
150/67.5 40 25 200 133 1.77
250/45 19 9.6 64 533 23.9

Medium E 250/50 22 12 83 576 21.1
200/50 25 14 98 472 20.0
200/70 32 32 270 513 19.2
250/50 17 16 120 1670 175

High E 200/50 20 20 160 1540 204
200/70 27 32 280 1600 180
150/67.5 29 57 570 1590 251

TABLE I. List of shear banding wormlike micellar solutions used in this study and the rheological
characteristics. ZCG is the estimate of the entanglement density according to the Cates and Granek
scaling law, and Z is the estimate according to the Larson scaling relation.

to mechanical rheometry results by multiplying the storage and loss moduli by an optimized
prefactor. This fitting procedure and its theoretical justification are described in detail by
Larson and co-workers40 and are plotted as the dashed lines in Fig. 2. The DWS method is
only reliable for frequencies beyond 10 rad/s and is known to deviate from the mechanical
rheology data for which G′ is of much larger magnitude than G′′41. Therefore, accurate and
reliable DWS results could not be obtained for WLMs with high entanglement density, and
hence, DWS results are not plotted for such fluid preparations. However, G′min and G′′min
for these particular fluid preparations can be estimated reliably from mechanical rheometry
data alone.

B. Impact of the imposed Weissenberg number

As mentioned above, the main objective of this study is to assess the impact of micellar
entanglement density on transient flow reversal, and wall slip may obscure the true impact of
the micellar entanglement on this flow feature. The transient and quasi-steady wall slip both
depend on the imposed Weissenberg number (Wi), as has been reported in the literature15,18.
Therefore, before addressing the impact of micellar entanglement density, we assessed the
impact of the applied Wi on the transient flow reversal in prepared fluids and identified
the applied Wi that produced the maximum transient flow reversal (or equivalently the
minimum wall slip). Fig. 3 shows the temporal evolution of the shear stress and velocity
profiles for a selected fluid preparation at different applied Wi. Below the onset of shear
banding, the transient flow reversal is not observed. For values of Wi that correspond to
the onset of shear banding (Wi ≈ 2-5) the transient flow reversal is not observed due to
significant wall slip at the outer cylinder. At high Wi numbers (50 and beyond) the transient
flow reversal is very weak. Interestingly, at the intermediate values (Wi = 20), wall slip at
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FIG. 3. Transient flow evolution for Z = 57, E = 1.56 × 105 at different Wi. (a) Shear stress
evolution with shear strain. (b-e) Temporal evolution of normalized velocity profiles measured in
the gap of the TC cell at selected shear strains. Symbols used in (b-e) correspond to those plotted
on the shear stress curves in (a), and Ui is the applied velocity at the inner cylinder.

the outer cylinder is minimal, and the transient flow reversal is at its maximum. This result
was also confirmed for other fluid preparations (see Fig. S1 in the supplemental materials).
Therefore, for the remainder of this work, we focus on the impact of micellar entanglement
density at a fixed Weissenberg number Wi = 20 for which the transient flow reversal is at
its maximum.

C. Effects of micellar entanglement density

Fig. (4) shows transient evolution of the flow for the set of micellar solutions with low
E at Wi = 20 for various entanglement densities. For the lowest Z in this set, Z = 38, flow
develops inhomogeneity (i.e., deviates from a linear velocity profile) during the stress over-
shoot, and this inhomogeneity then evolves to a shear banded profile. However, the elastic
recoil is not strong enough to generate transient flow reversal. At longer times, a multiple-
band quasi-steady velocity profile forms, which is characterized by two high shear bands
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FIG. 4. Transient flow evolution for E = (1.36 ± 0.20) × 105 and Wi = 20 at varied Z. (a)
Shear stress evolution with shear strain. (b-e) Temporal evolution of normalized velocity profiles
measured in the gap of the TC cell at selected shear strains. Symbols used in (b-e) correspond to
those plotted on the shear stress curves in (a), and Ui is the applied velocity at the inner cylinder.

and two low shear bands forming a high-low-high-low band order from the inner cylinder
towards the outer cylinder. As Z increases slightly to 46, the flow inhomogeneity becomes
more significant; however, the transient and quasi-steady flows are otherwise unchanged. At
a still higher micellar entanglement density (Z = 57), the flow features a transient reversal
in direction. A similar flow feature has been reported in prior literature for E ∼ 10717,26;
however, it had not been observed for such a low elasticity as E = 1.56× 105. Interestingly,
as Z is increased to 160, the transient flow reversal disappears. Similar experiments were
performed on the solutions with higher fluid elasticity. Fig. 5 shows the transient evolu-
tion of flow for the high E set. At the lowest micellar entanglement density from this fluid
set (Z = 120), the flow features transient reversal followed by a quasi-steady two-banded
flow. At higher entanglement densities (Z = 160), a similar behavior is reported. Beyond a
critical micellar entanglement density (Z increased to 280), the transient flow reversal is no
longer observed, and the quasi-steady flow features a sharp high shear band near the inner
cylinder. A similar transition is reported for fluid sets with medium elasticity (see Fig. S2
in the supplementary materials).
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FIG. 5. Transient flow evolution for E = (2.13 ± 0.38) × 107 and Wi = 20 at varied Z. (a)
Shear stress evolution with shear strain. (b-e) Temporal evolution of normalized velocity profiles
measured in the gap of the TC cell at selected shear strains. Symbols used in (b-e) correspond to
those plotted on the shear stress curves in (a), and Ui is the applied velocity at the inner cylinder.

Fig. (6) shows a summary of experimental results in terms of the transient and final quasi-
steady flow response. For the fluids in the set with low elasticity, we observe two transitions
in the kinetics of shear banding flow formation depending on the micellar entanglement
density. The first transition is characterized by the appearance of transient flow reversal,
while beyond a second critical threshold of micellar entanglement density, flow reversal
is not observed. For fluids with higher elasticity, we only report the second transition.
Moreover, Fig. 6(b) shows that the quasi-steady flow profile is characterized by multiple
banded structures at the low fluid elasticity set and small micellar entanglement density. As
the micellar entanglement increases beyond a critical threshold, the quasi-steady flow profile
is characterized by a two-banded profile. At higher fluid elasticities, the quasi-steady flow
forms a two-banded profile regardless of the micellar entanglement density.

The first transition observed in Fig. 6(a) is consistent with existing predictions of the
DRP model33. According to the simulations of the DRP model, viscoelastic polymer so-
lutions exhibit the transient flow reversal beyond a critical polymer entanglement density
(see more detailed discussion below). However, to the best of our knowledge, the second
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FIG. 6. A phase diagram summarizing the results of experiments. (a) Filled symbols indicate flow
conditions that show transient flow reversals, while empty symbols indicate those that do not. (b)
Filled symbols indicate flow conditions that lead to multiple-banded quasi-steady-state flow profiles,
while empty symbols indicate those that are characterized by two-banded profiles.

transition observed in Fig. 6(a) is not reported in any model predictions.

D. Wall slip and flow instabilities

As noted in the above, flow of shear banding WLMs features wall slip as well as elastic
instabilities. In this section, we will assess any possible connection between the second
transition observed in Fig. 6(a) and the observed wall slip and/or elastic instabilities.

First, we assess the connection between transient flow reversals and wall slip. Fig. 7
shows the transient shear stress as a function of strain (a) along with transient wall slip at
the inner and outer cylinders (b) for start-up shear flow at Wi = 20 for two of the fluid
preparations from the low elasticity set and two from the high elasticity set. Spatiotemporal
maps of the transient, local fluid velocity are presented in Fig.7 (c-f) for each of these four
cases to provide a more complete visualization of the transient and quasi-steady flows. For
the fluids from the set with the low elasticity, the flow evolution features transient flow
reversal at the lower entanglement density Z = 57 (shown in Fig. 7(c)), while at the higher
entanglement density Z = 160, no transient flow reversal is observed (shown in Fig. 7(d)).
However, for both of them, the wall slip at the inner cylinder follows a similar trend during
the initial transient evolution. Specifically, the wall-slip initially increases at the inner
cylinder following the shear stress overshoot. Beyond a critical shear strain, a high shear
band emerges near the inner cylinder, and this reduces the wall slip at the inner cylinder.
Finally, in quasi-steady flow, the wall slip both at the inner and outer cylinders reemerges.
Because the wall slip evolves similarly for both of these solutions during the initial transients,
the lack of transient flow reversal at higher micellar entanglement density is not related to
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FIG. 7. Summary of transient wall slip and flow evolution for selected fluid preparations. (a) Shear
stress evolution with shear strain. (b) Transient wall slip evolution with shear strain at the inner
cylinder (filled markers) and the outer cylinder (empty markers). For Z = 280, optical distortions
near the inner cylinder emerge around γ = 50, and quantification of wall slip at the inner cylinder
is impossible. (c-f) Velocity maps for selected fluid preparations. (c) Z = 57, E = 1.56× 105. (d)
Z = 160, E = 1.17× 105. (e) Z = 120, E = 1.57× 107. (f) Z = 280, E = 1.80× 107.
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FIG. 8. Quasi-steady wall slip for each selected fluid preparation at the inner (a) and outer (b)
cylinders, grouped by fluid elasticity E. Error bars marked with ∗ indicate the maximum observed
extent of slip velocity deviation from the mean, while those without error bars indicate the standard
deviation associated with the slip velocity, not exceeding relative slip velocities of 0 or 1.

the wall slip. A similar trend is observed for the fluids with high elasticities.

We also monitored the quasi-steady wall slip as a function of entanglement density for
all selected fluid preparations. Fig. 8 shows the quasi-steady wall slip at the inner and
outer cylinders as a function of micellar entanglement density. At the inner cylinder, the
quasi-steady wall slip changes in a non-monotonic fashion as the entanglement density and
fluid elasticity are increased. The wall slip measurements have high uncertainty due to
temporal fluctuations in the quasi-steady velocity profiles. However, at the outer cylinder,
entanglement density and elasticity affect the observed quasi-steady wall slip. For fluids
with the low and medium elasticity sets, the quasi-steady wall slip at the outer cylinder is
negligible at low entanglement density and increases as the entanglement density increases.
However, for the fluids with high elasticity, the quasi-steady wall slip at the outer cylinder
is negligible for the entire range of micellar entanglement densities.

Our earlier work26 suggested that transient flow reversals in these solutions may be
related to elastic instabilities that are known to arise in the flow of some shear banding
WLMs35. Fig. 9 shows the evolution of the flow stability in the same fluids as shown in
Fig. 8 subject to the same start-up steady shear flow. These fluids are prepared with mica
flakes as described previously to reveal any secondary flows or other instabilities that may
occur, which appear as variations in the imaged light intensity in the vorticity direction (x3).
For these fluids, visible indications of instabilities arise at around γ ≈ 500 to 2000, which
is well beyond the time scale where transient flow reversals are observed. This applies to
all fluids reported in this paper. The transient flow reversal occurs just beyond the stress
overshoot and around γ ≈ 5. Therefore, as discussed in our earlier work, it is unlikely that
the onset of flow instabilities is related to the occurrence of transient flow reversals.
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FIG. 9. Spatio-temporal evolution of the flow of WLMs subject to start-up of steady shear flow
visualized using mica flakes for selected fluid preparations: (a) Z = 57, E = 1.56×105. (b) Z = 160,
E = 1.17× 105. (c) Z = 120, E = 1.57× 107. (d) Z = 280, E = 1.80× 107. Here, x3 denotes the
position along the TC cell axis.

E. Modeling

In order to better understand the effects of micellar entanglement density on the kinet-
ics of shear banding flow formation, we performed time-resolved simulations of the VCM
model. The VCM model is a two-species breaking/reforming model that has been used
in prior published literature to study flows of WLMs31,32,42. Note that although the VCM
model captures some important physics of the flow of WLMs such as micellar breakage and
reformation, this model does not directly incorporate the effects of micellar entanglements
in its constitutive equations. However, it does predict the formation of a plateau in the
storage modulus and a minimum in loss modulus at high frequencies, the quantities that we
have used to estimate the micellar entanglement density in our experiments.

The VCMmodel consists of nonlinear differential equations for the number densities (nA,
nB) and the stress tensors (A,B) of each species A and B, respectively. The dimensionless
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equations are:

µ
DnA
Dt

= 2δA∇2nA − δA∇∇ : A+
1

2
cBn

2
B − cAnA (2a)

µ
DnB
Dt

= 2δB∇2nB − δB∇∇ : B− cBn2
B + 2cAnA (2b)

µA(1) +A− nAI− δA∇2A = cBnBB− cAA (2c)

εµB(1) +B− nB
2
I− εδB∇2B = −2εcBnBB+ 2εcAA. (2d)

The dimensionless breakage rate is cA = cA,eq+(µξ/3)(γ̇ : A/nA), and the dimensionless
reforming rate is cB = cB,eq in which cA,eq and cB,eq are the breakage and reforming rates at
equilibrium. Further details of the model nondimensionalization, the model parameters, and
the definitions of the notations can be found in prior literature17,32. To simulate inhomoge-
neous flow, the above constitutive equations are combined with the following conservation of
momentum equation to yield the solutions of number densities, stresses and velocity profiles:

E−1
∂v

∂t
= −∇ · (P I− βγ̇ + τ p). (3)

In the momentum equation, the elasticity number is defined as E = λeffη0/ρd
2, in which

λeff is the effective relaxation time of the mixture and corresponds to λ in experimental
measurements. No-flux boundary conditions are used for the number densities and stresses.
To obtain the linear viscoelastic model predictions, the model equations are linearized, and
the storage and loss moduli reduce to a two-mode Maxwell model plus a viscous solvent:

G′ = G0

{
(λeffω)

2

1 + (λeffω)2
+ n0

B

(λBω)
2

1 + (λBω)2

}
(4a)

G′′ = G0

{
λeffω

1 + (λeffω)2
+ n0

B

λBω

1 + (λBω)2

}
+ ηsω. (4b)

The first mode is determined by the system relaxation time. The second mode is determined
by the B species, in which n0

B and λB are the dimensionless equilibrium number density and
relaxation time of the B species, respectively.

The VCM model parameters are obtained by fitting model predictions to both the ex-
perimental SAOS data and the flow curve as follows. First, we use the SAOS data to fit
the linear viscoelastic VCM model predictions. Using Equations (4a) and (4b), the system
relaxation time (λeff ) is obtained by identifying the maximum of the loss modulus G′′ at
low frequencies and its cross-over with G′. The minimum of G′′ is related to the product
n0
BλB

42. Increasing n0
BλB at fixed G0 and λeff has two simultaneous and inseparable effects:

the local minimum value of G′′ increases, and the value of ω associated with this minimum
decreases (an example of such dependence is shown in Fig. S3 in the supplementary ma-
terials). Fig. 10(a) shows the results of SAOS data fitting for the five cases in the low E
group, and Fig. 10(c) shows the results for the medium E group. At high experimentally
determined entanglement densities, the VCM model predictions are in good agreement with
experimental data throughout the frequency range. However, at lower Z values, the mis-
match between the experimental data and the simulation results is more pronounced; in
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particular, the local minimum in the VCM loss modulus occurs at a much lower frequency
than that in the experimental loss modulus. As noted above, the linearized VCM model
consists of two Maxwell modes as reflected in the G′ and G′′ formulas, and the product
n0
BλB simultaneously affects both the value of G′′ at the local minimum and that of ω where

it occurs. Since the purpose of these simulations is to produce a similar Z to those esti-
mated for WLMs in experiments, we selected a value of the product n0

BλB that produces the
same value of G′′min as that of the experiment, which will usually result in an unavoidable
mismatch at the value of ω where this occurs.

The flow curves are used to fit the remaining parameters: n0
B and λB as resolved from

one another, µ = λA/λeff (ratio of the relaxation times of the long species A and the
effective relaxation time), and the partially extending strand parameter ξ which appears in
the breakage rate cA. From the homogeneous shear flow analysis42, the shear stress at high
shear rates is approximated by the relationship:

τp,rθ ∼
2λB + n0

BλB
λeff

γ̇ =
(2 + n0

B)λB
λeff

γ̇. (5)

Fitting the flow curve at high shear rates informs the value of λB (Note, n0
BλB is already

determined from SAOS data; however, n0
B and λB individually are not yet known.). The

values of ξ and µ are determined by the position of the plateau and by modeling constraints.
Knowing λB, µ = λA/λeff , and ξ allows us to compute the remaining VCM parameters42.
Fig. 10 (b,d) show the steady shear predictions of the VCM model along with flow curves
obtained in experiments. For low shear rates, the VCM model predicted flow curves agree
with the experimental data. At high shear rates, only the flow curves for the high Z fluid
preparations agree with the VCM flow curves. For lower Z, the VCM flow curves predict
the end of the stress plateau at lower shear rates than were measured in experiments. Using
the above parameter space, we can compute the transient evolution of shear flows within
the shear banding plateau for these cases.

Fig. 11 (a,b) show the VCM predicted maximum magnitude of the transient negative
velocities within the gap of the Taylor-Couette cell as a function of imposed shear rate for
each Z value in (a) the low E set and (b) the medium E set. Fig. S4 in the supplementary
materials shows the process of obtaining this maximum negative velocity for each imposed
Weissenberg number. At low fluid elasticity, increasing Z in the range from 38 to 160 leads
to stronger transient flow reversal across a wide range of imposed Weissenberg numbers.
However, beyond a critical threshold of Z > 160, the flow reversal becomes smaller. For Z =
200, the magnitude of the maximum negative velocity during the flow reversal is smallest.
Although the VCM simulations show the transient flow reversal for all five preparations,
these trends in the strength of the flow reversal are consistent with the experimental results.
A similar behavior is predicted for medium elasticity fluids with respect to the micellar
entanglement density (see Fig. 11 (b)). Note that at high fluid elasticity, the simulations of
VCM model are currently not tractable and therefore are not discussed.

In summary, both experiments and simulations revealed a non-monotonic trend in the
strength of the transient flow reversal with respect to the micellar entanglement density. As
the micelles become more entangled, the strength of the transient flow reversal increases,
but beyond a critical threshold of micellar entanglement density, the flow reversal weakens.
Interestingly, there exists a correlation between the micellar entanglement density, the width
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FIG. 10. Rheometry data and fitted VCM model predictions for (a,b) the low E set of fluid
preparations and (c,d) the medium E set. (a,c) Experimentally obtained SAOS data (symbols)
and linear viscoelastic predictions of the VCM model (lines). (b,d) Experimentally measured flow
curves (symbols) and VCM model predicted flow curves for steady-state nonuniform flow (lines).

of the stress plateau, and the strength of the transient flow reversal both in experiments
and simulations of the VCM model. Fig. 11(c) shows the greatest extent of the transient
negative velocity as a function of the width of the stress plateau for both VCM simulations
and experiments. As the width of the stress plateau increases, the transient flow reversal
becomes stronger both in experiments and simulations.

The connection between the transient flow response and the width of the stress plateau
can be rationalized as follows. Previous studies on shear banding WLMs27,30 have shown
that upon imposition of the startup shear flow within the shear banding regime, the flow
inside the gap of the TC cell undergoes a series of transitions. First, a linear velocity profile
develops across the gap. Then, a high shear band forms near the rotating inner cylinder. A
kink in the velocity profile forms at the juncture of the high and low shear rate bands. In
time the velocity at the kink may overshoot to negative velocity values (see Figs. 4(d) and
5(b,c)) before settling to the steady state value. This overshoot behavior is known as elastic
recoil. Systems with a wider stress plateau shear band with a larger shear rate, slope in the
velocity, close to the inner cylinder (see a schematic shown in Fig. S5 of the supplementary
materials). As the slope of the velocity near the inner cylinder increases, the likelihood
of a strong elastic recoil, thus the velocity reaching negative values during transient flow
evolution, also increases.

Further investigation of the VCM model simulations shows a correlation between the
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FIG. 11. (a,b) Fastest transient negative fluid velocities in start-up flow predicted by the VCM
model for the parameter sets corresponding to (a) the low E set of fluid preparations; (b) the
medium E set, over the ranges of shear rates where flow reversals are observed. (c) Maximum
negative fluid velocities for Wi = 20 observed in experiments (blue circles) and predicted by the
VCM model (orange diamonds), plotted as a function of stress plateau width for (lightest, empty
symbols) the low E set of fluid preparations, (medium-tone, half-filled symbols) the medium E set,
and (darkest, filled symbols, reported for experiments only) the high E set.

width of the stress plateau and the entanglement density Z. In the VCM model, the stress
plateau width can be related to model parameters by rearranging Eq. (5) to obtain an
expression for the slope of the flow curve in the high shear rate limit as:

τp,rθ/γ̇h ∼
2λB + n0

BλB
λeff

= (2 + n0
B)

λB
λeff

=
2n0′

A + n0′
B

n0′
A

λB
λeff

(6)

in which the prime terms are dimensional number densities of A and B species in equilibrium,
respectively. The high shear rate limit of the shear banding plateau (γ̇h) and correspondingly
the width of the stress plateau are related to the inverse of (2 + n0

B)λB/λeff . Using this
simple scaling analysis, two regimes for the effect of n0

B on the stress plateau are expected.
For n0

B � 2 (which refers to a system containing many A species but very few B species
in equilibrium), τp,rθ/γ̇h is dominated by the term 2λB/λeff , therefore the width of the
stress plateau is mainly controlled by 2λB term. Conversely, for n0

B � 2 (which refers to a
system containing few A species but many B species in equilibrium), τp,rθ/γ̇h is dominated
by the term n0

BλB/λeff , and the width of the stress plateau is mainly controlled by the value
of n0

BλB. To assess the above scaling analysis, we have provided a summary of the VCM
parameters for the two fluid sets and various micellar entanglement densities in Table II. For
the low E set and Z = 38, 46, 57, the width of the plateau is determined by n0

BλB, and as Z
increases, n0

BλB decreases so the plateau width increases. This trend continues until at even
higher Z values when the dominant term switches to 2λB. Increasing Z in this range, from
160 to 200, leads to an increase in 2λB thus a decrease in the stress plateau. Therefore in the
low elasticity set, as Z increases from 38 to 200, the width of the plateau first increases then
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decreases, and this non monotonic trend is consistent with the magnitude of the transient
flow reversal observed in the experiment.

As mentioned in the introduction, the DRP model predicted the correlation between
the transient flow reversal and the entanglement density33. The simulations of the transient
flow of the DRP model also suggest that a stronger transient flow reversal is expected for
wider stress plateaus as those of the VCM model, however, unlike the prediction of the VCM
model, as the micellar entanglement density Z increases, the DRP model shows that the
width of the plateau keeps widening monotonically which is different from the observation
of the experimental data.

Z n0BλB 2λB τp,rθ/γ̇

Low E

38 2.4× 10−2 4.8× 10−3 2.8× 10−2

46 1.2× 10−2 2.4× 10−3 1.4× 10−2

57 9.1× 10−3 1.8× 10−3 1.1× 10−2

160 1.0× 10−3 5.2× 10−3 6.2× 10−3

200 8.8× 10−4 2.0× 10−2 2.0× 10−2

Medium E

64 3.5× 10−2 7.0× 10−3 4.2× 10−2

83 1.4× 10−2 2.9× 10−3 1.7× 10−2

98 1.2× 10−2 2.4× 10−3 1.4× 10−2

270 1.4× 10−3 1.9× 10−2 2.1× 10−2

TABLE II. VCM model parameter expressions n0BλB and 2λB associated with the shear stress
plateau width, and the slope of the flow curve in the high shear rate limit predicted by Equation 5.

IV. CONCLUSIONS

In summary, we have studied the impact of the micellar entanglement density on the
kinetics of shear banding flow formation in a range of shear banding wormlike micellar solu-
tions both through experiments and through corresponding simulations of the VCM model.
Our experiments show two critical transitions. First, as entanglement density increases for a
fluid set with a fixed elasticity number, we observe the emergence of a transient flow reversal
during the shear stress decay. This is consistent with our prior observations26 and with DRP
model predictions reported in the prior literature33. Surprisingly, beyond a second critical
transition, the flow ceases to exhibit this transient flow reversal. The corresponding VCM
simulations show a weak flow reversal for the lowest entanglement number that initially
strengthens as the entanglement number is increased. The extent of flow reversal then goes
through a maximum, beyond which it decreases with continued increase in the entangle-
ment number. Therefore, the observed extent of transient flow reversal in shear banding
flow formation depends on the entanglement density in a nontrivial manner.

To better understand the connection between the fluid entanglement density and the
transient flow evolution, we compared extent of the flow reversal in experiments and in
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simulations with the width of the shear stress plateau and identified a correlation: the
extent of the transient flow reversal increases as the width of the stress plateau increases.
However, the nature of connection between the micellar entanglement density and the width
of the stress plateau remains to be understood.
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