
pubs.acs.org/Macromolecules Published on Web 02/23/2010 r 2010 American Chemical Society

3094 Macromolecules 2010, 43, 3094–3102

DOI: 10.1021/ma902715e

Standard Definitions of Persistence Length Do Not Describe the Local
“Intrinsic” Stiffness of Real Polymer Chains

Hsiao-Ping Hsu,*,† Wolfgang Paul,†,‡ and Kurt Binder†

†Institut f€ur Physik, Johannes Gutenberg-Universit€atMainz, StaudingerWeg 7, D-55099Mainz, Germany, and
‡Theoretische Physik,Martin Luther Universit€at Halle-Wittenberg, von Senckendorffplatz 1, 06120Halle, Germany

Received December 9, 2009; Revised Manuscript Received February 5, 2010

ABSTRACT: On the basis of extensiveMonte Carlo simulations of lattice models for linear chains under good
and Θ solvents conditions, and for bottle-brush polymers under good solvent conditions, different methods to
estimate the persistence lengths of these polymers are applied and compared to each other. While for chain
molecules at the Θ point standard textbook definitions of the persistence length yield consistent results, under
good solvent conditions the persistence length (according to its standard definitions) diverges when the chain
length of the macromolecules tends to infinity. Accurate simulation results for chain lengths up to Nb = 6400
allow us to verify the theoretically predicted power laws for the decay of the bond orientational correlation
function. For the case of bottle-brush polymers, this dependence of “the” persistence length on the
backbone chain length obscures the dependence on the side chain length, that is controversially discussed
in the literature. Alternative definitions of a persistence length that do not suffer from this problem, based
on the total linear dimension of the chain or on the scattering function via the so-called “Holtzer plateau”
are studied as well. We show that the backbone contour length of the bottle-brush needs to be very large
(about 100 persistence lengths in typical cases) to reach the asymptotic limit where the bottle-brush satisfies
the self-avoiding walk statistics, and where a well-defined persistence length can be extracted. An outlook
to pertinent experimental work is given.

1. Introduction

One of the most basic characteristics of macromolecules is the
flexibility of the polymer chains. As is emphasized in standard
textbooks (e.g., on p 3 of ref 1), “any long macromolecule is
flexible, but different polymers have different mechanisms of
flexibility”, and discussing various models obeying Gaussian
statistics one finds that (p 5 of ref 1) “the directional correlation
of two segments of a macromolecule diminishes exponentially
with the growth of the chain length separating them”. Thus,
the mean cosine between two segments separated by a distance
sl b along the chain can be written as (where s = |i - j| and l b =
| aBi| with aBi = rBi - rBi-1 where rBi is the position of the ith
monomer in space)

Æcos ΘðsÞæ ¼ ÆaBi 3 aBjæ=l b
2 ¼ expð-sl b=l pÞ ð1Þ

where1-3 the persistence length lp is taken as the basic char-
acteristics of polymer flexibility. For flexible chains, one
expects that lp is of the same order as lb, while for semiflexible
chains (e.g., described by the Kratky-Porod4 “worm-like
chain” model) lp . lb. For ideal chains Æcos Θ(s)æ = Æcos Θæs
(where ÆcosΘ(1)æ is abbreviated as ÆcosΘæ) and for large lp one
has Æcos Θæ � 1-1=2ÆΘ2æ and lp = 2lb/ÆΘ2æ. The mean square
end-to-end distance of such semiflexible ideal chains can be
written as (the number of bonds Nb . 1 henceforth is denoted
as “chain length”)

ÆRe
2æ ¼ Nbl b2

1þ Æcos Θæ
1-Æcos Θæ

¼ C¥l b2Nb � 4

ÆΘ2æ
l b2Nb ð2Þ

Defining a Kuhn step length1-3 lk via the equivalent freely
jointed chain (ÆRe

2æ = nlk
2, nlk = Nblb) one readily concludes

that the persistence length is equal to one-half theKuhn length,

l p ¼ 1

2
l k ¼ 2l b=ÆΘ2æ ð3Þ

Equations 1-3 are used routinely in experimental work,
although they hold only for “ideal chains” obeying Gaussian
statistics, and not necessarily for real polymer chains. But it is
known that for dilute solutions at the Θ point, where the
excluded volume repulsion is effectively canceled by solvent-
mediated attractive forces between the monomers, one still has

ÆRe
2æ � l b2Nb ð4Þ

when logarithmic corrections5,6 are disregarded. Hence, it was
believed that eqs 1, 3 still hold for chains at the Θ point. A
similar cancellation is believed to hold for chains in densemelts
(“Flory hypothesis”)7,8 as well.

However, the applicability of eqs 1 and 3 for chains in dense
melts and inΘ solutions has recently been called into question by
the finding that bond-orientational correlations show a power
law decay rather than an exponential decay, both for dense melts
9,10 and at the Θ point,11

ÆcosΘðsÞæ � s-3=2, s� < s, Nb ð5Þ
Shirvanyants et al.11 suggest that for s< s* eq 1 still can be used
and estimate that the crossover index s* � lp/lb; but clearly it
becomes difficult to disentangle where eq 1 would still be
applicable if lp is not much larger than lb.

Now, an alternative definition of the persistence length due to
Flory12,13 does not postulate a specific form for Æcos Θ(s)æ and*Corresponding author.
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actually allows to define a persistence length locally for any bond
along a chain,

l pðkÞ=l b ¼ ÆaBk 3RBe=jaBkj2æ, k ¼ 1, :::,Nb ð6Þ
One expects that lp(k) is reduced near the chain ends, but should
reach actually a flat plateau, essentially independent of k, in the
chain interior. If this happens, this plateau value resulting from
eq 6 actually is a useful measure for the intrinsic chain stiffness.

However, often polymers are studied under good solvent
conditions1-3,6-8 and then both eqs 1 and 6 are unsuitable to
characterize the local “intrinsic” stiffness of a chain. Using
renormalization group methods,3,6,8 Sch€afer et al.14 have shown
that to a very good approximation

l pðkÞ=l b � R½kðNb -kÞ=Nb�2ν-1 ð7Þ
where R is a (nonuniversal) constant and ν is the exponent
characterizing chain linear dimensions in good solvents,1-3,6-8

ÆRe
2æ �Nb

2ν, ν � 0:588: ð8Þ
From eq 7 we immediately recognize that lp(k) is not flat in the
chain interior, but rather shows a convex variation around the
maximum at k = Nb/2, with

l p,maxðkÞ � l bRðNb=4Þ2ν-1 f ¥ as Nb f ¥ ð9Þ
Similarly, in the good solvent regime, neither eq 1 nor eq 5 hold,
but rather14

ÆcosΘðsÞæ � s-β, s� < s, Nb, β ¼ 2-2ν � 0:824 ð10Þ
If, in view of the difficulty of understanding the decay law of Æcos
Θ(s)æ in the different regimes, one chooses an alternative “integral
definition”15

l p0 ¼ l b
XNb

s¼1

ÆcosΘðsÞæ � lb

Z Nb

0

ds Æcos ΘðsÞæ ð11Þ

one recovers lp0 = lp if eq 1 holds (and forNb. lp).A finite value of
lp0 (independent of Nb for large Nb) also results for Θ chains and
dense melts (where eq 5 holds), while in the good solvent case eqs
10, 11 lead to

l p0 �Nb
2ν-1 ð12Þ

consistent with eq 9. Interestingly, if one still applied the defini-
tion of the Kuhn step length also in the good solvent regime, one
would obtain a related scaling

l k ¼ sÆRe
2æ=ðNbl bÞ �Nb

2ν-1 ð13Þ
implying that we still would have lp,max (k) � lp0 � lk, although
neither of these lengths is useful as ameasure of the local intrinsic
stiffness of the chain. In view of this situation, Hsu et al.15,17

proposed to simply define a persistence length (lp0 0) via the mean
square end-to-end distance (or, alternatively, the mean square
radius of gyration ÆRg

2æ17

ÆRe
2æ ¼ 2l 00

pl bNb
2ν, Nb f ¥ ð14Þ

Note that for ideal chains (no excluded volume) νid = 1/2
and therefore we have for semiflexible ideal chains from

eqs 2 and 3

ÆRe
2æ ¼ 2l bl pNb

2νid , ÆRg
2æ ¼ 1

6
ÆRe

2æ ¼ 1

3
l pl bNb

2νid ð15Þ

Thus, lp0 0 also reduces to the standard persistence length lp if the
chains are ideal, but remains a finite length (asymptotically
independent of Nb for Nb f ¥) if we take eq 14 as a natural
generalization of eq 15 to the excluded volume casewhere ν> νid.

For all the definitions of persistence lengths discussed so far, it
is rather important that the limit of very long chains, Nb f ¥, is
considered. This is inconvenient, since (particularly in the good
solvent case) the approach to this limit can be rather slow; so in
practice “corrections to scaling”3,6 may need consideration when
one applies eq 14. In addition, often one is interested in rather
short relatively stiff chains, where the contour length L = Nblb
exceeds lp00 only by a factor of order unity, rendering eq 14
inapplicable. For ideal Kratky-Porod chains the corresponding
generalization of eq 15 is3,4

ÆRe
2æ ¼ 2l bl pNb 1-

l p
Nbl b

½1- expð-Nbl b=l pÞ�
� �

ð16Þ

leading to ÆRe
2æ≈ (Nblb)

2 = L2 in the limit lp . Nblb, as expected
for straight rods of length L. While this latter result also holds in
the excluded volume case, the crossover from eq 14 to ÆRe

2æ =
Nb

2lb
2 with increasing lp00 is not described by a simple formula such

as eq 16.
But an alternative approach to obtain persistence lengths,

useful also when chains are not very long, rests on the study of
the structure factor S(q), which is defined by (note that we have
Nb bonds and hence Nb þ 1 monomers in a chain)1-3

SðqÞ ¼ 1

ðNbþ1Þ2
XNb

j¼0

XNb

k¼0

exp½iqB 3 ðrBj -rBkÞ�
* +

ð17Þ

For small q, eq 17 always can be written as

Sðq f 0Þ ¼ 1-
1

3
q2ÆRg

2æþ -::: ð18Þ

For an ideal Porod-Kratky3,4 chain, S(q) can be calculated3,18 for
all q, but a simple result is only obtained in the limit Nblb/lp . 1
and large q,18 namely qlp g 3,

Nbql bSðqÞ ¼ πþ 2

3

1

ðql pÞ ð19Þ

Equation 19 has been used by Lecommandoux et al.19 to ex-
tract persistence lengths of polymers with bottle-brush architec-
ture.20,21 This equation has a simple interpretation in terms of the
scattering from rigid rods of length L, which is described by22

Srodðq,LÞ ¼ 2

qL

Z qL

0

sin t

t

� �
dt- 4

sin2
1

2
qL

� �
ðqLÞ2

ð20Þ

For qLf ¥, eq 20 reduces simply to π/(qL), i.e. the first term on
the right-hand side of eq 19. This observation already suggests
that if a polymer over some length scales from lb to lp with lp . lb
behaves as a locally stiff object, one should expect to see in the
scattering function when multiplied with q a flat region from
about q ≈ lp

-1 to about q ≈ lb
-1. This so-called “Holtzer pla-

teau”23,24 hence can serve to extract the contour length L=Nblb
of the chain from the scattering, and the above argument suggests
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that this method should be valid also in the presence of excluded
volume interactions. The onset of this “Holtzer plateau” in
q-space then gives some (at least semiquantitative) information
on lp.

Finally, we mention an interesting attempt to construct S(q)
for semiflexible polymers numerically due to Pedersen and
Schurtenberger.25 Using a discrete representation of the worm-
like chain model, putting Nb spheres of radius R = 0.1b at
distance lb at a contour withL=Nblb and b= lb(1þ cosΘ)/(1-
cosΘ), whereΘ is the valence angle; thus, b plays the role of the
statistical segment length. Careful Monte Carlo simulations were
performed for a wide range of values for L/b, and the simulated
structure factors S(q) have been fitted to an empirical function of
the type

Sðq,L, bÞ ¼ f½1- χðq,L, bÞ�Schainðq,L, bÞ
þ χðq,L, bÞSrodðq,LÞgΓðq,L, bÞ ð21Þ

where Schain(q, L, b) describes the scattering from a flexible chain
(with excluded volume statistics), and χ(q, L, b) is another
function to describe the crossover between Schain(q, L, b) and
the rod-like scattering {eq 20}. The function Γ(q, L, b) was found
to be necessary to correct the behavior of S(q, L, b) in the
crossover region.Wedonot give the details of this approach here,
since it is rather complicated (the quoted functions were para-
metrized with up to 35 constants25), but emphasize that this
function did provide also very good fits to experimental data,
such as scattering data from atactic polystyrene dissolved in the
good solvent carbon disulfide, and the resulting fit parameters
(e.g., b=2.48 nm) seem to be consistent with other information.

This last approach25 to estimate a statistical segment length b
has become the method of choice for the analyses of scattering
data for bottle-brush polymers.24,26,27 This problem is of parti-
cular interest, since the structure is characterized by a multitude
of length scales (Figure 1), and varying the lengths of the side
chains the stiffness of the bottle-brush can be varied over a wide
range. However, the theoretical predictions about this varia-
tion28-39 are controversial, as well as the validity of the persis-
tence length estimates extracted from experiment.16,21,24,26,27 The
experiments identify the length b resulting from the fit with the
Kuhn step length lk and apply lp = lk/2 {eq 3} to identify a
persistence length, although this relation is only well-established

for ideal chains following Gaussian chain statistics. The prob-
lem that in the good solvent case several classical definitions of
persistence lengths {via the decay of Æcos Θ(s)æ, eq 1, or via
eq 6, respectively} diverge with Nb as Nb f ¥ and hence are
unsuitable for estimating the range of local intrinsic stiffness
is not considered by the theories that consider how lp scales
with the length of side chains.28,30-32 It is also not considered
by the many studies where persistence lengths for semiflexible
chains were estimated from simulations or experiments, e.g.
refs 33-43.

In view of this unsatisfactory situation, we present in this paper
a comparative study of several definitions of a persistence length
for bottle-brush polymers, for which the local intrinsic stiffness
can be widely varied via changing the lengthN of the side chains.
Since for short side chain length (suchasN=6) a crossover to the
behavior of ordinary flexible polymer chains sets in, we present
for comparison also a careful study of the ordinary self-avoiding
walk model (SAW)8,43 on the simple cubic lattice under good
solvent conditions (section 2). We also study the same model at
the Θ temperature (section 2). While both models have been
studied before,11,14 our work extends these studies considerably
since we study much longer chains and obtain also much better
statistical accuracy than was reached in previous simulations.
This is possible since our model can be studied very efficiently
with the pruned-enriched Rosenbluth method (PERM).45 Re-
lated work on bond orientational correlations in melts9,10 shows
that chain lengths Nb g 103 are crucial for a convincing test of
the theory. In section 3, we give a study of the bond fluctuation
model46-48 of bottle-brush polymers with flexible backbone,
extending previous work.15,16

The aim of our paper hence is to provide guidance to future
work (both experiment, simulation and analytical theory) that
addresses the issue of the length scale over which a semi flexible
macromolecule (ormacromolecular aggregate such as cylindrical
micelles, for instance) can be treated like a stiff object. Section 4
then summarizes our conclusions and addresses questions that
remain still open.

2. Persistence Lengths for the Standard Self-Avoiding Walk
(SAW) and for the Corresponding Model at the Θ Point

Simulations have been carried out for standard SAW’s on the
simple cubic lattice for chain lengths Nb up to Nb = 6400. Both
the case where only excluded volume interaction is present (very
good solvent conditions) and the case of chains under Θ condi-
tions (which occur when a nearest-neighbor attraction ε is
present, such that the parameter q � exp(ɛ/kBT) takes the value
qθ = 1.308745) are studied with the PERM algorithm.45 We use
the lattice spacing as the unit of length, and hence lb = 1 for this
model.

Figure 2 shows our results for ÆcosΘ(s)æ vs s in log-log form,
and the fits to the theoretical power laws {eq 10 in the good
solvent case and eq 5 in the Θ solvent case, respectively} are
shown as straight lines. As expected, there are systematic devia-
tions for small s, the power law should hold only for s. 1. On the
other hand, the power law is only seen for s about an order of
magnitude smaller than Nb: Thus, one sees that for Nb = 400
significant deviations from the power law already set in for about
s= 40. Thus, data11 for short chains withNb < 400 clearly can-
not be taken as a strong evidence for eq 5, because this is less than
a decade in s that can be expected to be described by the correct
power law. On the other hand, the present numerical data for
400 e Nb e 6400 already provide a rather convincing evidence
(for Nb = 6400, there are two decades in s compatible with the
power law). Similar observations have been reported byWittmer
et al.10 for the case of melts, using chain lengths up toNb =8192
in this case.

Figure 1. Multitude of length scales for molecular bottle-brush poly-
mers. A coarse-grained description depicts the object as a flexible
sphero-cylinder (upper part) with a cross-sectional radius Rcs and
contour length Lcc along the axis of the coarse-grained cylinder. The
end-to-end distance of the backbone is RBe,bb. Over a length scale lp
the cylinder is stiff while on larger length scales it bends. On a less
coarse-grained view (lower part) the backbone forms a self-avoiding
walk formed byNb bond vectors lBb. Side chains of lengthNs (with bond
vectors lBs) and end-to-enddistanceRBe are grafted (grafting density σ) at
the (effective) monomers of the backbone.
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Of course, for nonideal chains the product of two bond vectors
aBi, aBk does not only depend on s= k- i but on k as well, and so
the precise meaning of Æcos Θ(s)æ in Figure 2 is an average along
the chain,

Æcos ΘðsÞæ ¼
XNb

i¼1

ÆcosΘikæ=ðNb -sÞ, Æcos Θikæ ¼ ÆaBi 3 aBkæ=l b
2

ð22Þ
with s=| k- i|. If one would ignore the knowledge that eq 22 is
described by the power laws eqs 5, 10 and rather would try to
apply eq 1, a failure of eq 1 readily is apparent when one would
plot (not shown) logÆcos Θ(s)æ linearly vs s. Rather than obser-
ving a straight line (the slope of which would yield lb/lp), one finds
a rapidly decreasing strongly curved function. Only in the range
Nb/10 < s < Nb/2 (which corresponds to the range in Figure 2
where the data fall below the power law) could one fit straight
lines, but the resulting estimates for lp would be unreasonably
large (and of the order of Nb itself, which shows that such an
analysis clearly is invalid). This fact that one cannot extract any
meaningful estimate for the persistence length of the SAWmodel
is to be expected, of course, since orientational correlations arise
as a consequence of the excludedvolume interactions only, for the
simple random walk model we would have ÆaBi 3 aBjæ = lb

2δij and
hence lp = 0. However, the situation is different for semiflexible
polymers, such as bottle-brush polymers (section 3) where an
analysis in terms of eq 1 seems to work but nevertheless gives
misleading results (depending on Nb and diverging asNb f ¥, cf
eq 12).

In order to further test eq 7, Figure 3 gives a plot of lp(k) vs k;
for the good solvent case we fully confirm the conclusions of
Sch€afer and Elsner,14 showing with more extensive and precise
data than in14 that eq 7 indeed is a rather accurate approximation.

Thus, while in the Θ solvent case (Figure 3b) the persistence
length as defined from eq 6 is constant in the interior part of the
chain, and independent of Nb for large Nb, this is not the case
for good solvent conditions, where the maximum value (for k=
Nb/2) diverges for Nb f ¥, as proposed in eq 9. Since

l pðkÞ=l b ¼
XNb

i¼1

Æcos Θkiæ ð23Þ

one also finds for the average hhlp of lp(k) that

l p ¼ 1

Nb

XNb

k¼1

l pðkÞ ¼ l b
XNb

k¼l

XNb

i¼1

Æcos Θkiæ=Nb ð24Þ

which reduces to lp0 (eq 11) for Nb f ¥. Thus, there is no need to
separately discuss lp0 here - both lp0 and hhlp diverge according to
eq 12 in the good solvent case as Nb f ¥.

Finally, we mention that we have not followed up on persis-
tence length definitions based on the structure factor for the
SAW: plotting qS(q) vs q one does not find a “Holtzer plateau”, a
regime of q with lp

-1 , q, lb
-1 does not exist at all here, due to

the high flexibility of the SAW.

3. Persistence Lengths for Bottle-Brush Polymers

Using the bond-fluctuation model on the simple cubic lattice,
bottle-brush polymers with backbone chain lengths Nb up to
Nb = 1027 (for side chain length N e 24) were studied for two
grafting densities (σ = 1/2 and σ = 1), as well as bottle-brush
polymers withNbe 259 only butN up toN=48 and σ=1. The
bond fluctuationmodel46-48 is more complicated than the simple
SAW model: each effective monomer blocks all eight corners of
an elementary cube of the lattice from further occupation; bond

Figure 2. Log-log plot of the bond vector correlation function Æcos Θ(s)æ versus the “chemical distance” s along the chain, for the standard SAW
model on the simple cubic lattice (a) and for the same model with a nearest-neighbor attraction ɛ = kBT ln qθ chosen such that the chain is at the
Θ-temperature. Chain lengths fromNb=400 toNb=6400 are included, as indicated. The straight lines included show simple power laws ÆcosΘ(s)æ=
0.16s-0.824 (a) and Æcos Θ(s)æ = 0.16s-1.5 (b).

Figure 3. Flory’s definition lp(k) for the local persistence length of a polymer chain (eq 6), plotted as a function of k/Nb forNb=400 toNb=6400, as
indicated in part a. Part a refers to the standard SAWmodel on the simple cubic lattice, and solid curves are best fits to eq 7, usingR=1.6888 and ν=
0.5876. Part b shows corresponding data for the same model at the Θ temperature (cf. Figure 2b).
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vectorsaBare taken fromthe set ((2,0,0), ((2,(1,0), ((2,(1,(1),
((2, ( 2, ( 1), ((3,0,0), ((3, ( 1,0), and all permutations
thereof (the lattice spacing still is the unit of length). The reason
for using this model is the existence of a very efficient simulation
algorithm:49 by combining the “L26 move”10 and “pivot
moves”44 dynamic Monte Carlo sampling is able to generate
statistically independent configurations of the bottle-brush poly-
mer relatively fast. The “L26”-move means that an effective
monomer is randomly chosen and considered for a jump by
a randomly chosen distance vector from the set ((,1,0,0) or
((1,( 1,0) [or permutations thereof] or ((1,( 1,( 1). Themove
is carried out only if both excluded volume and bond length
constraints are respected. The key point of this move is that it
allows for crossings of bonds during the move; no such simple
moves that allow bond crossing for the simple SAWmodel of the
previous sections are known. Without the possibility of bond
crossing, two side chains of the bottle-brush that happen to be
entangled with each other would relax this topological constraint
only extremely slowly.

Two types of “pivotmoves” are used: either a randomly chosen
monomer of a randomly chosen side chain is used to act as a pivot
point, fromwhich the remainder of the side chain (from the pivot
point to the free end) is rotated by a randomly chosen orientation

allowed by the lattice symmetry; or a randomly chosen monomer
of the backbone is used to carry out such a random orientation
change of the (smaller) part of the whole bottle-brush (see ref 49
for implementation details).

As an example of typical results, Figure 4 shows a plot of Æcos
Θ(s)æ of the backbone versus the “chemical distance” s (note that
lb ≈ 2.7 lattice spacings for the bond fluctuation model48), in
order to test for the applicability of eq 1. While for short side
chain lengths (N = 12) there is pronounced curvature on the
semilog plot, similar as in the case of the simple linear chain
(SAWmodel), for longer side chains (particularly forNb=259) a
fit to an exponential decay, for large s (but not too large s, s<Nb/
2) is feasible. But the resulting persistence lengths lp do depend
strongly on the backbone length (see Table 1). The same conclu-
sion results when eq 6 is used (Figure 5). Although the estimates lp
extracted from the plateau in Figure 5 and from the fit to an
effective exponential decay are always compatible with each
other, they are not meaningful estimates of the local intrinsic
stiffness of the chains, since they depend strongly onNb. Qualita-
tively, the behavior of lp(k) is always very similar to the simple
SAW model, although now the persistence lengths are much
larger, cf. Figure 3. When one compares the numbers for the
exponent ν resulting from the simple fitting procedure (Table 2),

Figure 4. Bond vector correlation function ÆcosΘ(s)æ of the backbone of the flexible bottle-brush polymers plotted against the “chemical distance” s
along the backbone forNb=131 (a) andNb=259 (b).Various values of side chain lengthN are shown, as indicated.Note the semilog scales of theplot,
implying that a law exp(-slb/lp) could be a simple straight line.

Figure 5. Local persistence length lp(k) plotted vs k forNb=131 (a) side chain lengthsN=6, 12, 24, 36, and 48 are shown (frombottom to top). In part
a, dotted horizontal curves (plateau) indicate estimates lp

(1) of the persistence length (Table 1) and solid curves are fits to lp(k)/lb=R[k(Nb- k)/Nb]
2ν-1,

cf. eq 7. The values of the parameters R and ν are listed in Table 2. Part b shows lp(k) plotted vs k/Nb for fixed side chain length N = 24 and several
choices of the backbone length, namely Nb = 131, 195, 259, 387, 515, 771, and 1027 from bottom to top. Part c shows a plot of R vs Nb when the
simulation data are fitted to eq 7 in the range 0.3 < k/Nb < 0.7.
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one notes however that ν forNbe 259 is systematically too large,
indicating that all data are still in a preasymptotic regime, much
longer Nb is necessary to see the asymptotic scaling behavior.
Figure 5b tests the variation of lp(k) with Nb for fixed side chain
length, N = 24. Fitting these data to the theoretical expressions
eq 7 and imposing ν = 0.588 we obtain the dependence of the
prefactor R onNb. The asymptotic region whereR is independent
of Nb is only reached for Nb > 400. (Figure 5c). Figure 6 now
shows a test of eq 14, including much larger values of Nb (but
smallerN) to ensure that the asymptotic scaling regime is reached.
Indeed it is found that the larger N the larger Nb must be to see
that the data settle down to straight line behavior, as is implied
when eq 14 is valid. The resulting estimates for lp0 0 are by
construction independent of Nb, and hence more serious candi-
dates for a measure of local intrinsic stiffness of the bottle-brush
than the estimates lp and lp,max(k) derived fromFigures 4 and 5, of
course. It is gratifying to note from Figures 5c and 6a that both
eqs 7 and 14 reach their asymptotic regime of validity in the same
range of values for Nb, namely Nb g 400 for N = 24. From the
estimates of the persistence length lp0 0 listed in Table 3 we can
conclude that bottle brushes under good solvent conditions
behave like standard self-avoiding walks if their contour length
Nblb is of the order of 100 persistence lengths.

Figures 7-9 test the idea to estimate persistence lengths from
the onset of the “Holtzer plateau”. One recognizes immediately
that the total scattering qS(q) from bottle-brush polymers under

good solvent conditions never exhibits a “Holtzer plateau”, irre-
spective of Nb and N. Also when the side chain length is too short
(N = 6, 12), the structure factors qSb(q), qS(q)/Scs(q), and qS(q)/
Scs
m(q) never become really horizontal over an extended regime.

HereSb(q) is the structure factor due to themonomers contained in
the actual backbone of the bottle-brush polymer, so this structure
factor is precisely defined without any ambiguity. It shows rather
well-defined horizontal regions, i.e. the “Holtzer plateau”, when the
side chain length is large enough,N=24 orN=48. This indicates
that the expected stiffening of the backbone due to the grafted side
chains indeed is visible for these side chain lengths.

While Sb(q) is straightforward to obtain in a simulation, it is
very difficult to obtain from experiment (one needs to carry out
small angle neutron scattering using polymers with deuterated
backbones but protonated side chains, to single out the coherent
scattering contribution from the backbone only). So in most
experiments one tries to estimate the backbone scattering indir-
ectly, by “dividing out” the scattering from the side chains from
the total structure factor. The side chain scattering is approxi-
mately described by the “cross-sectional structure factor” Scs(q),
which is related to the radial density profile F(r) in the plane
perpendicular to the (local) backbone direction. Now the pro-
blem to define the perpendicular direction for a undulating linear
object such as the backbone of a bottle-brush polymer is some-
what subtle,15 but if the backbone chains are sufficiently stiff due
to the side chains, one can obtain F(r) with reasonable accuracy. It
was found that F(r) for bottle-brush polymers with flexible
backbones is very similar to the density profile Fstiff(r) for
bottle-brushes with strictly rigid backbones, and well described
by a function h(r)16,50

FðrÞ � hðrÞ ¼ c

1þðr=r1Þx1 exp½-ðr=r2Þx2 � ð25Þ

with c a normalization constant, x1= (3ν- 1)/2ν, x1≈ 3, and r1,
r2 two characteristic lengths (see ref.16,50 for details). The cross-
sectional scattering then is defined by24-27

ScsðqÞ ¼ j R¥
0 r dr FðrÞJ0ðqrÞj2
j R¥

0 dr rFðrÞj2 ð26Þ

where J0(r) is the zeroth order Bessel function of the first kind.
Using the F(r) as actually observed in the simulation to compute

Table 1. Persistence Lengths l p
(1)Determined by the Values of Plateau

in Figure 5, and l 0p Calculated by Using Equation 11 (See Figure 4) for
Bottle-Brush Polymer of Backbone LengthNb and Side Chain Length

N, Where lb = 2.7

Nb N = 6 N = 12 N = 24 N = 36 N = 48

259 l p
(1)/lb 13.01 20.43 34.52 47.01 57.01

l p0 /lb 14.45 20.42 33.80 44.02 54.00
195 l p

(1)/lb 12.20 19.25 31.92 52.8
l p0 /lb 13.19 19.43 31.63 52.13

131 l p
(1)/lb 10.98 17.28 27.52 35.42 41.58

l p0 /lb 11.80 17.88 28.20 37.76 44.55
99 l p

(1)/lb 10.30 15.55 24.15 34.10
l p0 /lb 10.88 16.50 25.71 38.20

67 l p
(1)/lb 8.93 13.15 18.78 24.50

l p0 /lb 9.78 14.41 21.04 28.72

Table 2. Fitting Parameters r and ν of Equation 7 for Bottle-Brush
Polymer of Backbone Lengths Nb = 131 and Nb = 259 and Side

Chain Lengths N = 6, 12, 24, 36 and 48

Nb N = 6 N = 12 N = 24 N = 36 N = 48

131 R 3.340 4.474 6.672 9.198 11.090
ν 0.675 0.698 0.705 0.696 0.692

259 R 4.252 5.539 8.641 10.502 13.325
ν 0.637 0.660 0.672 0.682 0.676

Figure 6. Rescaledmean square end-to-end distanceRe,b
2/(2lbNb

2ν) plotted against backbone lengthNb for bottle-brush polymerswith grafting density
σ=1 (a) and σ=1/2 (b) Various values of side chain lengthN are shown (N=0means that no side chains are grafted at all). Horizontal straight lines
indicate estimates for lp0 0 (Table 3).

Table 3. Persistence Lengths lp0 0 (σ,N)Determined by Equation 14 and
15 for theGraftingDensitiesσ= 1 and

1
/2 and the SideChain Lengths

N = 0, 6, 12, 18, and 24 (see Figure 6)

N = 0 N = 6 N = 12 N = 18 N = 24

lp0 0 (σ = 1, N) 1.15 6.43 10.30 14.15 17.55
lp0 0 (σ = 1.2, N) 1.15 4.34 6.65 8.54 10.48
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Scs(q) no “Holtzer plateau” is observed, however. Only when we
“redefine” the side-chain scattering via

SssðqÞ � SðqÞ=SbðqÞ ð27Þ
and choose a function h(r) that fits {identifying Scs(q) = Sss(q)}
Sss(q) near the region where qS(q)/Sb(q) has its maximum are we

able to obtain a well-defined plateau again. This way of defining
an effective cross-sectional scattering is included in Figures 7, 8
(denoted as Scs

m(q)).
Table 4 collects the resulting estimates forLbb and l p* (note that

forN=6 andN=12we have definedLbb from the minimumof
qSb(q) vs q). One sees thatLbb is roughly independent ofN, which
is reasonable, and thatLbb<Nb l b, which is also reasonable, since

Figure 8. Same as Figure 7, but forNb=259.Note that the plateau values (π/Lbb) in Figures 7 and 8 determine the contour lengthLbb of the backbone
and the position q* where the plateau starts to develop yields another estimate of the persistence length l p* (q* = 3.5/l p*).

Figure 7. Rescaled normalized structure factors qS(q) of the total bottle-brush, qSb(q) of the backbone, qS(q)/Scs(q) where Scs(q) is the cross-sectional
structure factor, and qS(q)/Scs

m(q) whereScs
m(q) is themodified cross-sectional structure factor (see text). All data are forNb=131 and side chain lengths

N = 6 (a), N = 12 (b), N = 24 (c), and N = 48 (d).
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there are local fluctuations of the actual backbone with respect to
the coarse-grained backbone (Figure 1). Gratifyingly, there is not
much of a dependence of Lbb on side chain length. But also this
method yields estimates l p* strongly dependent on the backbone
length, as expected, since from Figures 5c and 6 we know that
much larger values of Nb are needed to reach the asymptotic
regime. Thus, Figure 9 focuses on the Holtzer plots for N = 24
but awide range ofNb (considering the backbone structure factor
Sb(q) only). In order to define a value q that unambiguously
marks the onset of theHoltzer plateau,we tried differentmethods
to extract the crossover point. The first method consists of fitting
two straight lines to qSb(q) (in a log-log plot) near the onset of
the Holtzer plateau and determining q* from the intersection
point (this is shown in Figure 9a). The second method consists of
fitting algebraic crossovers of the form aþ bq-1þ cq-2þ dq-3 or
simply aþ bq-1 þ cq-2 to the crossover regime. These functions
show a shallow minimum, and we identify the position of this
minimum as 1/q*. All methods yield different results, albeit with
the same trend: a slight decrease of q* at smallNb and a saturation
at large Nb. In Figure 9b we show the average q* value we
obtained and give error bars encompassing the variation between
the different methods to determine this value. The figure shows
that q* is independent of Nb for Nb > 600, and hence it does
measure an intrinsic property of bottle-brush polymers, for long
enough backbones. If one follows Lecommandoux et al.19 to
estimate the persistence length l p* from q* via l p* = 3.5/q*, one
would get l p* ≈ 60 from Figure 9b. On the other hand, using
ÆRe,b

2æ/(lbNb
2ν)= 2lp {cf. eqs 14 and 15} onewould extract lp≈ 18

fromFigure 6a; thus, it may be better to simply take l p*=1/q*, in
order to obtain mutually consistent definitions of an “intrinsic”
persistence length.

4. Conclusions

In the present work, computer simulations of models for
flexible and semiflexible macromolecules were presented, and
the questionwas considered towhat extent different definitions of
the persistence length yield information on the local “intrinsic”
stiffness of the polymer chains or reflect global conformational
properties. As an extreme case of a fully flexible macromolecule,
the self-avoiding walk on the simple cubic lattice was studied,

both in the athermal case (which means very good solvent
conditions) and underΘ conditions. As a model for semiflexible
polymers, bottle-brush polymers were considered; there the chain
stiffness of the backbone can be changed to a large extent by
varying the length of the side chains. The choice of this particular
polymer architecture was motivated by the fact that in the
experimental literature a controversial discussion about the
persistence lengths of bottle-brushes can be found. Only the
experimentally relevant case of good solvent conditions was
studied in this case.

Using the PERM algorithm, we have been able to obtain very
accurate results for the self-avoiding walk model on the simple
cubic lattice, for chain lengths up to N = 6400, both for the
athermal model, and at the Θ point. For the self-avoiding walk
(SAW) model under good solvent conditions, it was verified that
orientational correlations between bond vectors show a power law
decay, ÆcosΘ(s)æ � s-β with β= 2- 2ν, for 1, s,Nb, while at
the Θ point the decay law is faster, s-3/2 {eqs 5 and 10}. Since
deviations from the power law due to finite chain lengths occur
already for s ≈ Nb/10, availability of numerically accurate results
for very long chains, as presented here, has been crucial for these
conclusions. In both cases, the assumption of an exponential decay
{eq 1} is unsuitable: it can describe at best the decay at rather large
s, and the decay length is not related to the range of the intrinsic
stiffness of the chain (which is very small for this model). The
definition of the persistence length in terms of a projection of bond
vectors aBk on the end-to-end distance, in the good solvent case is
found to be well described by the prediction due to Sch€afer et al.,14

eq 7. This result implies a divergence of the persistence length as
N f ¥, eq 9, and hence is not at all related to the local intrinsic
stiffness of the chain. We show that this result can be carried over
to bottle-brush polymers: eq 7 provides a very good fit of lp(k) as
well; due to the local stiffness of bottle-brush polymers, caused by
dense grafting of side chains, the prefactor R in eq 7 is much larger
than for the simple SAW, and increases with increasing side chain
length N. We demonstrate (Figure 6) that bottle-brush polymers
for large enough backbone lengths Nb show standard scaling like
SAW’s, eq 14, but with a strongly enhanced prefactor, which can
be used as a reasonable measure to define a range of intrinsic
stiffness (lp0 0) that does not depend onNb, andwould reduce to the
ordinary definition of the persistence length for Gaussian chains.

We show that in typical cases the SAW scaling limit is reached
if the contour lengthNb l b of the bottle brush exceeds this intrinsic
persistence length lp0 0 by about a factor of 100. Note that although
with increasing side chain length N this intrinsic persistence
length lp0 0 increases strongly (Table 3), the excluded volume
interaction does not become irrelevant, since the cross-sectional
radius Rcs (Figure 1) also increases. We show also that a
persistence length extracted from the apparent exponential decay
of the orientational correlation function at intermediate values of
s (Figure 4) depends strongly on Nb and is not a characteristic of

Figure 9. (a) Log-log plot of qSb(q) vs q forN=24 and backbone chain lengthsNb= 131, ..., 1027, as indicated. Broken straight lines indicate fits to
estimate the onset value q* of the “Holtzer plateau”. (b) Plot of q* vs Nb.

Table 4. Contour Lengths Lbb and Persistence Lengths lp* = 1/q*
Determined by the Scattering Functions of BackboneSb(q) for Bottle-
Brush Polymers of Backbone Lengths Nb = 131 and Nb = 259 and
Side Chain Lengths N = 6, 12, 24, 36, and 48, Using the Same

Method As Shown in Figure 9a

Nb N = 6 N = 12 N = 24 N = 48

131 Lbb 266.24 258.56 267.37 281.76
lp* 7.18 11.07 18.59 27.58

259 Lbb 508.35 510.50 526.67 556.03
lp* 9.01 13.05 19.57 35.91
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the internal stiffness of the bottlebrush, unlike lp0 0. Of course, in
the context of analytical calculations one candefine an “intrinsic”
persistence length lp in terms of a bending modulus κ = kBTlp
that appears as a prefactor of a term in a suitable effective
Hamiltonian,30,51 but then the problem arises to relate κ to
quantities immediately observable in simulation or experiment.
As an alternative way to estimate the range of intrinsic stiffness,
we discuss the onset of the “Holtzer plateau” in the normalized
scattering due to the backbone of the bottle-brushes, qSb(q)
{Figures 7-9}. We show that the wavenumber q* characterizing
this onset for large enough Nb becomes independent of Nb, and
hence one can conclude that l p*� 1/q* also is a useful measure for
the range of the intrinsic chain stiffness. We expect that these
considerations will help the interpretation of corresponding
experiments, where so far the problem that (depending on the
method of data analysis and the conditions of the experiment) the
persistence length is not an intrinsic property of the respective
polymer often has not been recognized.
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