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While stretching of a polymer along a flat surface is hardly different from the classical Pincus
problem of pulling chain ends in free space, the role of curved geometry in conformational statistics
of the stretched chain is an exciting open question. Here by means of the scaling analyses and
computer simulations we examine stretching of a fractal polymer chain around a disc in 2D (or a
cylinder in 3D) of radius R. Surprisingly, we reveal that the typical excursions of the polymer away
from the surface scale as ∆ ∼ Rβ , with the Kardar-Parisi-Zhang (KPZ) growth exponent β = 1/3,
for any fractal dimension of the chain. Moreover, we find that the curvature-induced correlation
length of a fractal chain behaves as S∗ ∼ R1/z with the KPZ dynamic exponent z = 3/2, suggesting
that the crossover from flat to curved geometry of a stretched polymer corresponds to the crossover
from large to short time scales in the KPZ stochastic growth. Thus, we argue that curvature of
an underlying boundary furnishes universal KPZ-like statistics to the stretched fractal paths, which
further suggests numerous connections with several branches of mathematical physics.

I. INTRODUCTION

The phenomenon of stretching a polymer chain by
pulling on its ends is a standard subject in polymer
physics, with important applications in cell biology; as
a recent example see, e.g., [1] about chromatin stretch-
ing by optical tweezers. By analogy with macroscopic
examples (e.g., mooring line around a bollard), here we
examine another efficient way to stretch a polymer, when
it is tight around a curved obstacle. As a model, it is pro-
totypical for several biological contexts. As just one ex-
ample, we mention the recently documented (via imaging
[2, 3] and Hi-C experiments [4]) chromosomes morphol-
ogy in a certain algae (dinoflagelletes) that form cylindri-
cal rods with helically twisted bundles of wrapped DNA.
In addition, the model turns out to have surprisingly
rich connections with several other fields of theoretical
physics, first and foremost with KPZ statistics.

Winding of a Gaussian polymer around a topological
point-like obstacle in 2D is also a classical problem in
polymer physics, pioneered by S.F. Edwards [5], Prager
and Frisch [6] and Saito and Chen [7]. For a finite size
obstacle in 2D (or a cylinder in 3D), Green’s function of
a Gaussian polymer was considered by Comtet et al in [8]
and later formally expressed in terms of an infinite series
of linear combinations of Bessel functions [9]. Although
the latter result is exact, addressing the limit of strongly
stretched chain based on this expression remains a steep
challenge. A significant progress in this direction was
recently achieved by B.Meerson and N.Smith [10, 11],
some related problems were also examined by some of us
[12–14].

The model that we address in this paper is depicted
in Fig. 1, with panels (a,b) and (c) showing polymer
chain stretched along a flat and curved boundary, respec-
tively. We will be interested in the span of fluctuations

of the polymer away from the boundary, characterized
by the length scale ∆. Specifically, following a note by
one of us [15], we argue that ∆ in the curved boundary
case is determined by the non-local competition between
entropy loss when polymer is tightly confined in a nar-
row strip of width ∆ along the surface, and entropy loss
of its stretching beyond imposed necessity by making a
wider detour around the obstacle. Our analysis reveals
the universal scaling, ∆ ∼ Rβ , as a function of R with
the KPZ growth exponent β = 1/3, while the correla-
tion length S∗ at which the chain experiences curvature
of the disk scales as S∗ ∼ R1/z with the KPZ dynamic
exponent z = 3/2. Simulations of this system reveal that
the one-point distribution of typical fluctuations can be
well described by the squared Airy law, connecting our
polymer problem in 2D with the (1+1)D Ferrari-Spohn
universality class [10, 16].

Strikingly, we found that this KPZ-like behavior is
valid not only for a Gaussian polymer (which is like a
regular random walk), but for a polymer with an arbi-
trary fractal dimension Df = 1/ν, where ν is the usual
metric exponent of the mean-square end-to-end distance
against the number of monomers

〈
R2
〉
∼ b2N2ν , where

b is the (Kuhn) monomer length scale. The examples,
in addition to the usual Gaussian ν = 1/2, include self-
avoiding polymers in 2D, ν = 3/4 [17], in 3D (if the ring
is wound around a cylinder), ν ≈ 0.588 [18]; annealed
branched polymers, ν = 1/4 [19] without or ν ≈ 7/13
with excluded volume [20]; one ring in a 3D melt of other
unconcatenated rings, ν = 1/3 [21, 22]; polymers with
quadratic non-local Hamiltonian producing subdiffusive
fractal paths with arbitrary ν ≤ 1/2 [23, 24].
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Figure 1. Stretching of a polymer chain in a flat (left) or
curved (right) geometry. In each case, chain is represented as
a train of Pincus blobs. (a): the polymer is stretched above a
planar boundary and fluctuates at distance D in the perpen-
dicular direction; (b): the polymer is additionally confined
within distance ∆ � D above the surface, and Pincus blobs
are combined as “super-blobs” (grey ball). (c): the polymer is
stretched around a circular boundary of radius R. End-to-end
distance along the surface in all cases is fixed, S � bNν .

II. PATH STRETCHING IN EMPTY SPACE OR
ALONG A FLAT BOUNDARY

As a worm-up and for future reference, consider a
chain of M � 1 monomers with the fractal dimension
Df = 1/ν and let it be stretched along a flat bound-
ary, with end-to-end distance fixed at S � bMν . As
shown in Fig. 1(a), the chain looks like a train of blobs
of g monomers of size ξ each. Chain statistics is unaf-
fected inside the blob, i.e. ξ = bgν , and the train of
blobs is stretched, meaning that S = M

g ξ. Simple algebra

then gives g = (Mb/S)
1/(1−ν)

and ξ = b (Mb/S)
ν/(1−ν)

.
These blobs generalize the classical “Pincus blobs” [25]
for arbitrary ν, except our problem is not formulated in
terms of stretching force, but in terms of fixed end-to-end
distance, S � bMν .

Free energy of chain stretching, Fstr, is about kBT per
blob:

Fstr

kBT
∼ M

g
=

(
S

bMν

) 1
1−ν

. (1)

The statistics of chain of blobs in the direction perpen-
dicular to the surface is Gaussian (compare, e.g., with
the similar conclusion for self-avoiding polymers in [26,
Equation 1.50]), its spread is, therefore,

D =

(
M

g

)1/2

ξ = bMν

(
bMν

S

) 2ν−1
2(1−ν)

. (2)

If a chain is additionally confined within a layer of width
∆ � D as depicted in Fig. 1(b), then, considering
“super-blobs” of G Pincus blobs each (see Fig. 1(b)),
such that ξG1/2 = ∆, we can find the confinement free
energy as kBT per super-blob:

Fconf

kBT
=
M

gG
=
b2M2ν

∆2

(
bMν

S

) 2ν−1
1−ν

(3)

An interesting observation is that size D perpendic-
ular to stretching (see (2)) is a decreasing function of
elongation S only for ν > 1/2, while for ν < 1/2 it is
an increasing function. In other words, the “subdiffu-
sive” polymers with ν < 1/2 behave as a substances with
a negative Poisson ratio: upon stretching they swell in
perpendicular direction. Clearly, this is because fractal
polymers with ν < 1/2 have some negative correlations
between monomers. These correlations are destroyed by
stretching which leads to chain’s “releasing”.

III. PATH STRETCHING ALONG A CURVED
SURFACE: FREE ENERGY AND ELLIPTIC

BLOBS

Let us keep ends of a chain of N monomers at distance
S away along a surface of a cylinder of radius R – see Fig.
1(c). We assume the chain is stretched, i.e. S � aNν ,
however we do not impose any relation between S and R.
Clearly, S > 2πR means wrapping around the cylinder.
Free energy of such a chain consists of two contributions.
The first one describes chain stretching to the distance
S

2πR (R+ ∆); the corresponding free energy is given by
(1), by replacing M → N and S → S (1 + ∆/R). The
second term corresponds the polymer confining in a strip
of the width ∆, and it is given by (3), with similar re-
placement M → N . Overall, variational free energy be-
comes

Fcirc

kBT
∝
(

S

bNν

R+ ∆

R

) 1
1−ν

+
b2N2ν

∆2

(
bNν

S

) 2ν−1
1−ν

(4)

This free energy is the extension of Eq. (2) in the Com-
ment [15]. Assuming ∆ � R, we can linearize the first
term and then minimize this free energy to get

∆

bNν
=

(
R

bNν

) 1
3
(
bNν

S

) 2ν
3(1−ν)

(5)

It is instructive to re-derive (5) in a different way.
Given the chain is localized in a strip of width ∆, cur-
vature of the underlying surface becomes relevant only
at scales exceeding S∗ = (R∆)1/2 (see Fig. 1(c)).
We call chain section covering distance S∗ “an elliptic
blob”. To find the number of monomers in elliptic blob,
N∗, we can use the result (2), with the replacement
D → ∆ and S → S∗. The train of elliptic blobs is fully
stretched around the curved boundary, hence their num-
ber is N/N∗ ∼ S/S∗. A few lines of algebra based on this
relation yield the previously obtained answer (5). Simul-
taneously, we get the expressions for cross-over scale S∗

at the given R:

S∗/bNν = (R/bNν)
2(1−ν)
3−2ν . (6)

Our results (2) for effectively flat surface at S < S∗

and (5) for the curved one at S > S∗ are collected in Fig.



3

1

1

1/3

0

R

R

ж ц
з ч
и ш

0R

D

0

S

R

1/2

0

R

R

ж ц
з ч
и ш

2/3

0

R

R

ж ц
з ч
и ш

1

0

R

R

-
ж ц
з ч
и ш

1n ®

1/ 2n >

0n ®

1/ 2n <

1/ 2n =

0

S

R

 
 

IV

0

R

R

unrestricted
paths

1

1

I

II

(3
-2
n)
/(
2(
1-
n)
)

-n/(1-n)

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

a
z

n

n

z =3/2KPZ

a =1/2KPZ

g

g

0 1g< Ј

0 1g< Ј

III

Figure 2. (a): Polymer chain spread, ∆, away from a cylindrical surface as a function of curvilinear distance between chain
ends S, for a variety of ν values (or fractal dimensions Df = 1/ν). All distances measured relative to the unperturbed coil
size R0 = bNν . (b): Four regimes of fluctuations for various values of disc radius R and end-to-end distance S. Regime II
corresponds to effectively flat barrier, while regime IV is for an obstacle thinner than one Pincus blob. The most interesting
is regime III, it corresponds to the stretched polymer on the essentially curved barrier. The dashed line highlights winding
around the cylinder. (c): Exponents z (upper) and α (bottom) as the functions of ν < γ for different values of γ. The increase
of γ from γ = 0.1 (yellow) to γ = 0.9 (dark blue) is shown by arrows on both diagrams. Limiting KPZ values corresponding to
γ = 1 are marked by black dashed lines.

2(a). There, we plot ∆/bNν as a function of stretching
S/bNν > 1 for a variety of ν values, ν ∈ (0, 1). In partic-
ular, at ν < 1/2, the behavior ∆(S) is non-monotonic: ∆
increases at modest S, because stretching destroys neg-
ative correlations, while at larger S the curvature of the
underlying disc takes over and forces ∆ to decrease again.
Thus, for ”subdiffusive” paths the negative Poisson ra-
tio flips its sign to the positive at stretching S∗ when the
boundary becomes substantially curved. A curious fact is
that at the specific value ν = 1/3 (which corresponds to a
sort of a crumpled statistics) the non-monotonous depen-
dence ∆(S) comes back to the starting value ∆/bNν ∼ 1
exactly when S becomes of the order of disc radius, R,
i.e. when chain is forced to make about one full turn
around the disc.

Another way to summarize our results is given in the
Fig. 2(b) in terms of four distinct regimes in the space
of two dimensionless control parameters, namely, the
amount of stretching S and radius of the disc R, both
scaled by the unperturbed coil size, S/bNν and R/bNν :

∆

bNν
=


1, Regime I

(S/bNν)
− 2ν−1

2(1−ν) , Regime II

(R/bNν)
1
3 (S/bNν)

− 2ν
3(1−ν) , Regime III

(S/bNν)
− ν

1−ν , Regime IV

(7)

The first regime (I) deals with the free unrestricted
polymers with S < bNν ; for them, fixation of ends only
marginally affects the statistics, ∆ ∼ bNν . The second
(II) and the third (III) regimes correspond to stretched
polymers above effectively flat (2) and curved (5) bound-
aries, respectively. The most interesting regime, where

the span of fluctuations is R-dependent, is the regime
(III); remarkably, in this regime the dependence ∆(R) ∝
R1/3 turns out to be independent on ν.

When the cylinder radius becomes as small as the Pin-
cus blob size, R ∼ ξ, so does the elliptic blob, S∗ ∼ ξ, and
the crossover to regime IV occurs. Clearly, in this regime
every Pincus blob “hugs” around the entire cylinder and,
thus, ∆ = ξ ≥ R, 1. In terms of the winding number, n,

the regime IV corresponds to n > (S/bNν)
1/(1−ν) � 1.

In this regard, it is tempting to compare regime IV of
winding around a thin cylinder with winding around a
zero-width line topological obstacle studied earlier [5–9].
In that case, ∆ ∼ bNν , with only weak dependence on
winding number n (see formula (48) in the work [9], which
is exact for ν = 1/2). Since physical obstacle is always
not purely topological, but also geometrical with some
finite radius R, our present work allows to clarify the ap-
plicability conditions of the result of [9]: 2πRn� bNν .

Our results can be generalized for the chain stretched
around a smooth barrier of varying curvature, e.g.,
around an ellipse (see Fig. A1). Clearly, varying cur-
vature determines the local size of the elliptic blob, S∗,
while the Pincus blob size ξ and the number of monomers
therein, g, would be invariant. As a result, the spread in
the radial direction to the barrier at each point τ adopts
the following universal form (see Appendix A1 for deriva-

1 Note that (5) is not valid in this regime, since the Pincus blob ξ
exceeds the size of the elliptic blob S∗.
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Figure 3. Molecular dynamics simulations of a stretched
polymer of length N over a disc of radius R, in the units
of monomer size b. (a): Probability density distribution
P (h,N/2) of scaled variable h = (r − ∆)/σ(r), where σ(r)
is the standard deviation of radial excursions r of the me-
dian monomer N/2 above the disk of radius R = 10.
The collapse is shown for different polymer length N =
80, 100, 200, 300, 400, 500, 600, 700, 800, 1000, each coded by
individual color. The black thick line is the best fit by
the squared Airy function with the parameters a ≈ 0.7,
b ≈ −0.8, properly normalized. The inset shows the tail of
− logP (h,N/2). (b): Typical excursions as a function of N
at the fixed disk size, R = 10. (c): Typical excursions as a
function of R at the fixed polymer length, N = 1000.

tion details):

∆(τ) =
(
R(τ)ξ2

)1/3
(8)

where R(τ) describes the local radius of curvature at
point τ .

In order to validate the scaling results we have per-
formed molecular dynamics simulations of the chains
stretched around the disk (see Appendix A4 for details).
Namely, we have considered a situation, in which the ends
of an ideal chain are fixed at S = πR. According to (5),
theoretical predictions for that case are:

∆ =

N
2/3R−1/3b4/3 “stretched”, ∆ < R

N1/2b “unperturbed”, ∆ > R
(9)

As we see from Fig. 3(b) and (c) the span of fluctuations
in both sets of simulations perfectly agrees with the pre-
dictions (9). We further compute the distribution of the
scaled excursions for the stretched chain at various N ,
see Fig. 3(a). As one can infer from this plot, the dis-
tributions remarkably collapse on the squared Airy func-
tion, which also describes the one-point distribution of
fluctuation in the Ferrari-Spohn process, i.e. constrained
(1+1)D random paths above the semicircle [10, 14, 16].

IV. DISCUSSION

One of the most striking of our results is that the
dependence of the typical fluctuations in the curved
regime on the disc radius, R, can be written as ∆ =
Rβ f(S,N, b, ν) with β = 1/3 being the 1D KPZ growth
exponent. Thus, it is tempting to look for a mapping be-
tween our problem and KPZ and to interpret R as time,
t, in the associated stochastic growth problem. To see
how it works, let us set S = Nγb � Nνb, i.e. consider
ν < γ < 1. As (5) suggests, in the limit γ → 1 typical
fluctuations ∆ are controlled by R only

∆ = b(R/b)β , (10)

for R < R∗, where R∗ = b(S/b)z is the crossover radius,
below which a polymer with N = (S/b)1/γ monomers
experiences curvature of the disk, and z reads

z(γ, ν) =
3γ − 2νγ − ν

2γ(1− ν)
→ 3/2, γ → 1. (11)

The crossover, described by the 1D KPZ dynamic expo-
nent, z = 3/2, (11) corresponds to the boundary between
flat (II) and curved (III) regimes in Fig. 2(b). In the flat
regime (II), R > R∗, the typical fluctuations do not de-
pend on R and are described by the stretching S only,
∆ = b(S/b)α, where α reads

α(γ, ν) = 1− γ − ν
2γ(1− ν)

→ 1

2
, γ → 1, (12)

yielding the 1D KPZ roughness exponent α = 1/2. In
Fig. 2(c) we demonstrate the dependence of the expo-
nents z and α on ν at different values of γ. As an in-
trinsic property of the “full stretching” limit, the curves
z(ν), α(ν) become flat upon the increase of γ, approach-
ing their respective 1D KPZ values.

Importantly, the implications of the γ → 1 limit above
can be realized for any other γ, but the chain should
be renormalized to the Pincus blobs. Indeed, under the
changeN → N/g, b→ ξ a two-dimensional walk becomes
effectively (1+1)D and, therefore, it naturally inherits all
the scalings of the “full stretching” limit

∆curved = ξ(R/ξ)β , S > S∗

S∗ = ξ(R/ξ)1/z

∆flat = ξ(S/ξ)α, S < S∗

(13)

where ξ = ξ(N,S) plays a role of a new coarse-grained
monomer. Note that (13) holds for any fractal dimen-
sion of the polymer: upon stretching the correlations in-
duced by fractality are destroyed at scales larger than
the Pincus blob size, ξ. This effect is already observed
in the classical stretching in the flat regime (II). How-
ever, at scales larger than S∗ universal curvature-induced
correlations get developed, featuring the KPZ exponent
β = 1/3.
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From representation (13) it is evident that after proper
renormalization any fractal walk in two dimensions above
the disk can be self-consistently described by the set
of KPZ exponents. The curvature-induced correlation
length of the two-dimensional path S∗ ∼ R2/3 has the
physical meaning of the elliptic blob, i.e. the scale at
which the walk stays effectively flat. The flat regime of
the chain is characterized by insufficiently strong cur-
vature of the disk and, in turn, corresponds to large
time scales of the KPZ growth in a finite system. How-
ever, as our simulations suggest, the distribution of typ-
ical fluctuations in the polymer problem is given by
the squared Airy function, which is different from the
Tracy-Widom distribution of the KPZ process (though
the tails, ∼ exp(−ch3/2), are equivalent, see the inset
in 3(a)). In fact, this is a well-known consequence of
the impermeability of the boundary, playing a role of
the ”mean-field” for a more complex system of many
non-intersecting (”vicious”) (1+1)D Brownian walks, the
top of which is known to belong to the KPZ universality
class (see the flowchart Fig. A3 and further discussion
in Appendix A3). Replacing all such walks (but the top
one) with the circular boundary we arrive at the Ferrari-
Spohn model, for which the squared Airy behaviour for
the one-point distribution has been established. There-
fore, we conjecture that the (1+1)D representation (13)
of the two-dimensional stretched polymers belong to the
Ferrari-Spohn universality class.

Another interesting connection of our problem is re-
vealed by looking at free energy (4) for the specific
case when ν = 1/2 and radius has specific value R =
S2/bN (indicated by a dashed blue line on Fig. S2).

Along this line, free energy reads Fcirc

kBT
∼ ∆

b + b2N
∆2 ,

which can be interpreted by noticing that W (N) =

max∆ exp
(
−∆
b −

b2N
∆2

)
is the probability for a random

walker with diffusivity b2/π2 to survive during time N
on the line with randomly Poisson positioned traps with
density 1/b2. This is classical Balagurov-Vaks problem

[27], and its solution W (N) ∼ e−constN1/3

is controlled
by the optimal interval between the traps, ∆. In the Ap-
pendix A2 we develop this connection in greater details
along with the review of several relations to other known
problems and models in statistical physics.
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APPENDIX

In this Appendix we first generalize our results about
stretching polymer around a circular disc and consider
stretching it around an ellipse or another convex bar-
rier. Then, we re-formulate our problem and establish
its connection to the problems of random walks in the
space with Poisson-distributed traps. Further, we spec-
ulate about other connections of our problem across the
fields. Finally, at the end, we describe technical details
of polymer simulations used in our work.

A1. STRETCHING OF A POLYMER AROUND
AN ELLIPTIC (OR ANOTHER CONVEX)

BARRIER

Let us return to Eq. (4) in the main text. We offer
here a slightly different view on it. Let us start from a
scaling derivation of Pincus blobs. Clearly, the quantity
ξ is a correlation length. Given that there is only one
macroscopic length scale for an unrestricted coil, RF =
bNν , correlation length in case when two ends stay at
distance S apart, must obey the scaling ξ = RFφ(S/RF ),
where the behavior of scaling function φ(x) is as follows:
φ(x) ∼ 1 when x � 1, while φ(x) ∼ xµ when x �
1 with some critical exponent µ. The latter must be
chosen such that for S → bN the blob size is reduced
to (Kuhn) monomer size b. The following equation with
µ = ν/(1− ν), provides the requested behavior:

ξ = RF

(
RF
S

) ν
1−ν

(A-1)

If the chain is stretched by force rather than by fixing
end-to-end distance, then ξ = kBT/f , so ξ can be viewed
as a proxy for the stretching force.

Now, we return to the equation (4) of the main text
and re-write it as follows:

Fcirc

kBT
∼
(

S

bNν

R+ ∆

R

) 1
1−ν

+
b2N2ν

∆2

(
bNν

S

) 2ν−1
1−ν

∼
(

S

bNν

) 1
1−ν ∆

R
+
b2N2ν

∆2

(
bNν

S

) 2ν−1
1−ν

∼ S

ξ

(
∆

R
+
ξ2

∆2

)
.

(A-2)

In the last transformation, we expressed free energy in
terms of blob size, ξ. Minimization of this free energy
with respect to ∆ yields the result

∆ ∼
(
Rξ2

)1/3
(A-3)

Of course, this result is entirely equivalent to our previ-
ous formula (5) in the main text for the curved surface.
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Quite remarkable fact is that this result does not involve
ν at all. In terms of ξ (or stretching force) there is no
dependence on ν.

The result (A-3) allows us to consider stretching
a polymer around a bumpy surface whose curvature
changes from place to place, for instance, around an el-
lipse or around other convex curve with slowly changing
curvature as shown in Fig. A1.

Dsmall

Dlarge

Figure A1. Polymer chain stretched around an ellipse.

Since tension force is the same everywhere along the
polymer, so is the blob size ξ. Therefore, if curvature ra-
dius is different in different places (while changing slowly,
over length scales much larger than ξ), the factor S/ξ in
(A-2), which signals additivity of the free energy on the
blob level, can be replaced by the integral along S with
“density” 1/ξ:

F

kBT
=

∫ S

0

dx

ξ

[
∆(x)

R(x)
+

ξ2

∆2(x)

]
, (A-4)

providing the result

∆(x) ∼
(
R(x)ξ2

)1/3
. (A-5)

These results apply of course only to the case of every-
where convex impermeable boundary, because if some
parts are concave, the stretched polymer will take a
straight shortcut.

A2. STRETCHING FREE ENERGY
MINIMIZATION FROM AN “OPTIMAL

FLUCTUATION” PERSPECTIVE

The purpose of this section is to establish the connec-
tion between our polymer stretching problem and clas-
sical Balagurov-Vaks (BV) problem of random walks on
the line with randomly distributed traps [27] (see also
later more detailed treatment by Donsker and Varadhan
[28]). To see the connection with the stretched polymers,
let us return again to formula (4) in the main text and re-
write it by assuming, as in the main text, S = bNγ , with
γ < 1. Power γ can be viewed as a proxy of the distance

S, characterizing the stretching degree. Furthermore, we
can also say S = Rθ, where θ is the corresponding an-
gle, θ < 2π (or θ > 2/π) correspond to less than one
(or more than one) full turns around the cylinder; in the
latter case, θ/2π is the winding number. In terms of γ
and θ, the two terms of free energy read

Fcirc

kBT
∼ ∆

R
N

γ−ν
1−ν +

b2

∆2
N1+

(1−γ)(2ν−1)
1−ν

= N
(1−γ)(2ν−1)

1−ν

[
θN−

(1−γ)(3ν−1)
1−ν

∆

b
+

b2

∆2
N

]
.

(A-6)

This result has a transparent connection with BV prob-
lem in two cases. First, if the chain is strongly stretched
such that γ → 1−, such that 1 − γ � 1/ lnN . In that
case,

Fcirc

kBT
∼ θ∆

b
+

b2

∆2
N . (A-7)

for arbitrary ν. Second, if ν = 1/2 and θ = N1−γ , in
that case

Fcirc

kBT
∼ ∆

b
+

b2

∆2
N ; (A-8)

this latter case corresponds to ν = 1/2 of the polymer.
In this case mapping to Balagurov-Vaks is realized along
the line R = bN2γ−1, which can be also presented as

R/R0 =
1√
N

(S/R0)
2
. (A-9)

The behavior (A-9) is illustrated by the dashed blue line
in the R−S diagram, Fig. A2. Interestingly, the slope of
this line coincides with the slope of the boundary between
flat (II) and curved (III) regimes in the particular case
of ν = 1/2. However, note that the coefficient in (A-9)
is N -dependent. Therefore, the mapping to BV in the
second case (A-8) might be realized only for particular
value of N , provided a pair of values (R/R0, S/R0) on
this diagram.

While in the first case (A-7) the BV mapping is realized
in the whole area of the curved regime III, in the second
case (A-8) it is not. Along the BV lines of constant N
in Fig. A2 the stretching parameter γ changes, and the
extremities of these lines provide respective bounds to
γ. As Fig. A2 suggests, the stretching must be strong
enough, γ > 2/3, otherwise one enters the regime IV of
weak fluctuations. On the other hand, it is evident that
as long as a BV polymer, being wrapped over cylinder
many times, is forced to make a single turn only, R/R0 →
S/R0, the stretching attains its asymptotic limit, γ →
1. This rhymes well with the behavior of the winding
number in the second case θ = N1−γ � 1 for γ < 1.
Thus, the region of less than one turn, i.e. between the
dashed black line and the boundary II-III, is forbidden
for the BV polymers, unless they are fully stretched (the
first case).
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Figure A2. The same diagram as Fig.2(b) in the main text
to demonstrate the place of Balagurov-Vaks problem (dashed
blue line) in the context of 2D stretched polymer chains. The
slopes between the regimes are computed for the particular
value of ν = 1/2. The arrows correspond to two values of the
stretching parameter, γ = 2/3 and γ = 1, between which the
mapping to Balagurov-Vaks can be realized for any N .

Let us remind the Balagurov-Vaks setting. Consider
an auxiliary 1D problem of random walks on the line
with Poisson-distributed absorbing traps. Let ntr be
the average density of traps on the line. Following Bal-
agurov and Vaks [27], we are interested in the proba-
bility W (N) for the walker to survive during “time” N
(assuming “diffusivity” is equal to b2/π2), i.e. with the
probability that until time N the walker does not en-
counter any trap. The probability to have an interval ∆
between nearest neighboring Poisson-distributed traps is
equal exp(−ntr∆). On the other hand, the probability
to survive for a “long time” N � ∆2/b2 between ab-
sorbing (Dirichlet) boundary conditions on both ends of
the interval ∆ is estimated as exp(−b2N/∆2). The total
survival probability is controlled by the Lifshitz’s “opti-
mal fluctuation” [29], i.e., by finding such an interval ∆
that maximizes the product of the two above mentioned
factors:

W (N) ∼ max
∆

[
e−ntr∆−b2N/∆2

]
. (A-10)

The connection with (A-7) is now obvious, and θ/b plays
the role of traps density, ntr = θ/b. Clearly, (A-8) (which
is restricted to ν = 1/2 and special value of R) corre-
sponds to trap density just ntr = 1/b. Note that the
derivation of the BV survival probability has relied on
the assumption Nb2 � ∆2, i.e. a the walk between the
neighboring traps is constrained. For the case of ν = 1/2
this is equivalent to R/R0 � (S/R0)2 in the polymer
problem, which forbids flat geometry. As can be seen
from Fig. A2, this condition is well satisfied.

Maximization of the expression (A-10) yields

W (N) ∼ exp
(
−const b2/3n

2/3
tr N1/3

)
, which is ex-

actly the Balagurov-Vaks answer [27] for the 1D survival
probability of the unbiased random walk of time N in
the Poissonian array of traps. Due to the analogy, we
can call the minus logarithm of the survival probability
the “trap free energy” 2 (dropping from now on the kBT
factor): − lnW (N) = Ftrap ∼ θ2/3N1/3. The minimal
value of the polymer free energy is given by the same
formula Fcirc ∼ θ2/3N1/3.

Interestingly, the equivalent to (A-10) weight was max-
imized in [30] for computation of the correlation function
of a polymer chain confined in a gel matrix. In that case
the linear term was played by the confinement free energy
inside a mesh (generating the exponential distribution of
the chain segments lengths), while the quadratic term
corresponded to the Rouse relaxation time of each chain
segment within the mesh.

In both polymer and BV problem there is in general
also the leading extensive term, proportional to N . In
BV problem, it is due to a constant bias, c, superimposed
on the symmetric random walk. In polymer problem it
is a constant energy per every monomer (e.g., a bond
energy). In both cases, therefore,

Ftrap ∼ cN + (bntr)
2/3

N1/3 and

Fcirc ∼ cN + θ2/3N1/3 ,
(A-11)

free energies are given by identical expressions, albeit
with different physical interpretation of the parameters.

The Legendre transform from N to a conjugate vari-
able, λ, realized via the inverse Laplace transform of the
survival probability W (N) = exp (−Ftrap) or of the par-
tition sum for a polymer exp (−Fcirc), gives the spectral
density, ρ(λ) (see [31] for more detail):

ρ(λ) ∝ 1

2πi

ε+i∞∫
ε−i∞

e−cN−θ
2/3N1/3

eNλdN

∝ exp
[
−θ/
√
c− λ

]
.

(A-12)

A3. POLYMER STRETCHING ABOVE A DISC
IN A BROADER CONTEXT

Having established the connection of our polymer
problem with that of random walks between traps, we
now switch to even further connections to a range of
other problems and models. To facilitate the discussion,
we outline it in the flowchart of mutually related ideas
presented in Fig. A3.

2 To be specific, we stick to the first case of strong stretching,
γ → 1, (A-7)
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Figure A3. Flowchart of logical connections: place of our “2D polymer stretching above a curved boundary” problem in the
context of other models and systems in statistical physics. Central column – 2D polymer (top) and (1+1)D polymer (bottom)

are equivalent in the strong stretching regime, with free energy Fcirc ' cN + θ2/3N1/3. Right column – polymer problem in
the proper limit maps onto biased Brownian motion in an array of Poisson distributed traps (top), or, equivalently, related to
the spectrum of the off-diagonal random Bernoulli matrix (bottom). Left column – curved polymer stretching problem is a
mean field approximation for the top line in the system of (1+1)D vicious (mutually non-intersecting) walks (center), which is
in turn related to either directed polymer in Gaussian disorder (top) and to the maximal eigenvalue statistics in the spectrum

of random matrices (bottom). The common motif is the N1/3 scaling of the submeading correction term that controls relevant
physics in all cases.

The central rectangle in Fig. A3 shows our problem
and its limiting regime γ → 1− of strong stretching (as a
reminder, stretching of a polymer is characterized by the
curvilinear end-to-end distance which we write in terms
of γ as S = bNγ). Minimal value of polymer free energy,
as discussed before, is given by Fcirc ∼ cN + θ2/3N1/3,
where θ is the winding number, related to the radius of
the void, R = S/θ. The sublinear in N term of free
energy represents the curvature-induced finite-size cor-
rection.

The right rectangle in the same Fig. A3 depicts the
group of problems related to BV model of 1D random
walk in the array of Poisson distributed traps, as reviewed
in the previous section. In particular, the bottom panel of

the right rectangle schematically depicts the (biased) BV
model [27]. There, we show pictorially a set of randomly
positioned traps - thick lines parallel to the time axis.
Within each interval between traps, the walker moves
randomly under some constant bias c until it hits one
of the boundaries for the first time. The connectioon to
our polymer problem is highlighted by the “free energy”
expression (A-11), in which trap density is related to the
winding angle θ for the polymer.

In the upper panel on the right hand side we have
drawn the typical three-diagonal random matrix with
Bernoulli disorder. Its connection with BV model and,
therefore, its relation to our polymer-around-a-cylinder
problem can be understood by the following simple cal-
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culation. Let ρ(λ) be the spectral density of ensemble
of large tridiagonal symmetric matrices, AN , with the
bimodal (Bernoulli) distribution of sub-diagonal matrix
elements aj,j±1 = {0, 1} as shown below:

AN =



0 ε1 0 · · · 0

ε1 0 ε2

0 ε2 0

...

εN−1

0 εN−1 0


(A-13)

where

εx =

{
1 with probability p

0 with probability 1− p
(A-14)

The matrix AN at each εx = 0 splits into regular (gap-
less) three-diagonal “cage” of some random size D, each
can be viewed as a transition matrix of a discrete random
walk in the cage D. The probability to find such a cage
is Q(D) = pD. The spectral density ρ(λ) of ensemble of
matrices AN has been exhaustively analyzed in [32, 33]
and the tail of ρ(λ) near the spectral edge λ→ λmax = 2
reads:

ρ(λ) ∝ exp

[
− π ln p√
|2− λ|

]
(A-15)

Obviously, ρ(λ) in (A-15) is the same spectral density as
in (A-12) for properly adjusted drift c and trap density
ntr.

Thus, the close similarity between central and right
rectangles in the flowchart in Fig. A3 justifies our
claim that nontrivial stretched exponent 1/3 appearing
for the random walk or a stretched polymer near the
curved boundary points to the intimate connection with
stretched exponent for survival probability of (1+1)D
trapping problem in the Poissonian disorder.

The left rectangle highlights the known relation be-
tween the ground state free energy, Fdisord of (1+1)D di-
rected polymer in quenched Gaussian disorder [34] (up-
per panel) and the statistics of the top line in the en-
semble of (1+1)D “vicious” random walks [35] (central
panel). Let us note, that the last problem has also the

interpretation (after proper rescaling by
√
N) in terms

of the largest eigenvalue λmax of the Gaussian ensemble
of random matrices. Since the same scaling (subject to
numerical factors) is valid for both Gaussian Orthogonal
(GOE), and Gaussian Unitary (GUE) ensembles, we do
not specify here which particular ensemble is considered.
At the spectral edge λmax has the finite-size corrections
in N (N � 1): λmax ∼ 2

√
N + χN−1/6, where χ is N -

independent and is distributed according to the Tracy-
Widom law which takes slightly different forms for GOE
and GUE.

The arrow “Mean field” designates the mean-field ap-
proximation of the many-body system of vicious walks,
in which the influence of all trajectories lying below the
topmost one, are replaced by the impermeable circular
boundary, [16]. Note that finite-size corrections to the
free energies, Fdisord and Fupper, have the same scaling
as the one for Fcirc: in all cases the corresponding finite-
size sublinear in N terms are of order of N1/3.

We should emphasize that the above mentioned sim-
ilarity, however attractive, is not complete. Although
valid on averages, it cannot be extended on distribu-
tions: the partition functions of a polymer in quenched
Gaussian disorder and fluctuations of the topmost vicious
walks have the Tracy-Widom distribution, while the con-
strained random walk above the boundary is given by
squared Airy function [14, 16]. Here we report the equiv-
alent squared Airy PDF of fluctuations in the stretched
polymer problem at various degrees of stretching (Fig.
3(a) in the main text). Apparently, this difference in dis-
tribution is the consequence of the fact that we have re-
placed the true many-body system (such as vicious walks)
by its one-body mean-field analog.

To summarize, scaling analysis of a polymer strongly
stretched around a cylinder reveals an unusual behavior
of free energy Fcirc ∼ cN + θ2/3N1/3 that points to an
array of deep connections with a variety of problems in
equilibrium and non-equilibrium statistical physics and
random matrix theory, ranging from KPZ to Balagurov-
Vaks problem, Lifshitz tails, Andresen localization, vi-
cious random walks, etc. Although some of the argu-
ments in the last section have intentionally tentative, hy-
pothetical, and sometimes even speculative character, it
seems to us that together they paint an exciting picture.

A4. DETAILS OF POLYMER SIMULATIONS

Simulations of stretched trajectories are
done using polychrom module (available at
https://github.com/open2c/polychrom), a wrapper
around the open source GPU-assisted molecular dynam-
ics package OpenMM [36]. A chain with phantom beads
in simulations is supposed to model the ideal Gaussian
chain with the fractal dimension Df = 2. The chain is
equipped with harmonic bonds of the following energy

Ubond =
3

2a2

N−1∑
i=1

(ri,i+1 − lb)2
(A-16)

where a = 0.06 is the standard deviation of the monomer-
to-monomer distance, ri,i+1 = |ri+1−ri|; the equilibrium
bond length is lb = 1.

The cylindrical barrier for the chain is aligned along
the z-axis, having the infinite length and the radius R
in the x − y plane. In order to prohibit the chain en-
tering the area constrained by the cylinder, the following
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soft repulsive potential of strength kcyl = 5 is introduced
when the chain crosses the disk boundary

Ucyl = kcyl

N∑
i=1

H
[
R−

√
x2
i + y2

i

](
R−

√
x2
i + y2

i

)2

(A-17)
with H[.] being the Heaviside step function. This po-
tential has been further smoothed in simulations close to
the vicinity of the boundary by means of a small param-
eter inserted under the root. Also, in order to keep the
chain ends at the distance S = πR apart, we additionally
tether the end beads r1, rN at two points on the diame-

ter by springs of strength kth = 100 at a small distance
δ = 0.1 < ∆ from the disk surface.

The chain of length N is initialized with a random
walk configuration and equilibrated for a Rouse time τR
in the potentials above. Computation of the Rouse time
in simulations has been performed using the dynamics-
based estimate for the microscopic Rouse time τ0, then
τR = τ0N

2. This is done in separate short-time runs,
in which the transition time τ0 from the ballistic to
Rouse behaviour of the mean-squared displacement of
one monomer r2

0(t) is computed.
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