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Abstract: The dynamic structure changes, including the unfolding, dimerization, and transition
from the compact to the open-bundle unfolding intermediate structure of Cyt c′, were detected by
a small-angle neutron scattering experiment (SANS). The structure of Cyt c′ was changed into an
unstructured random coil at pD = 1.7 (Rg = 25 Å for the Cyt c′ monomer). The four-α-helix bundle
structure of Cyt c′ at neutral pH was transitioned to an open-bundle structure (at pD ~13), which is
given by a numerical partial scattering function analysis as a joint-clubs model consisting of four clubs
(α-helices) connected by short loops. The compactly folded structure of Cyt c′ (radius of gyration,
Rg = 18 Å for the Cyt c′ dimer) at neutral or mildly alkaline pD transited to a remarkably larger
open-bundle structure at pD ~13 (Rg = 25 Å for the Cyt c′ monomer). The open-bundle structure was
also supported by ab initio modeling.

Keywords: protein unfolding; cytochrome c′; small-angle neutron scattering; open-bundle structure

1. Introduction

Protein molecule is folded into a distinctive structure to express the unique role in
biological systems. Anfinsen showed that most small proteins fold spontaneously into
their specific functional structure [1,2]. Many protein-folding/unfolding experiments have
been performed to date to reveal protein self-assembly mechanisms, and several general
mechanisms have been proposed. The “energy landscape” model is a widely accepted
hypothesis for describing protein folding pathways. This model proposes that the protein
folding reaction explores exothermic conformational arrangements of the polypeptide
along the potential energy surface, leading to the native protein structure. Many non-native
protein structures are trapped in local minima on the energy surface. The structurally
unidentifiable non-native state (molten globule) is presumed intermediate during the
folding/unfolding reaction [3–7]. Numerous kinetic studies have probed the structures
and properties of transient intermediate states [8,9] using far-UV CD, FT-IR, fluorescence,
and NMR spectroscopy, as well as small-angle X-ray/neutron scattering and dynamic light
scattering [7,10–16]. Englander et al. reported that the protein domains of cytochrome c
and RNase are sequentially stabilized and folded in an orderly manner [17–19].

Together with experimental studies, molecular dynamics (MD) simulation is a useful
technique to understand protein folding/unfolding mechanisms [20]. MD simulation of
the unfolding of lysozyme showed that unfolding is triggered by the loss of hydrophobic
contacts at the inter-domain surface of the enzyme [21]. Lindorff-Larsen et al. reported
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that protein folding first occurs locally, followed by stabilization of the local structural
elements accompanied by intermolecular interactions, which further promote the folding
process [22].

Structural characterization of the folding/unfolding intermediate species is key to
understanding the principles underlying protein structure formation. The application of
small-angle X-ray (SAXS) and neutron scattering (SANS) techniques to protein molecules
provides information on their flexibility, size, and structural morphology in solution [23,24].
The unfolding intermediate of lysozyme was previously characterized using SAXS [16].
The unfolding of lysozyme is triggered by extension of the β-domain, which preserves the
folding of the α-domain. Synchrotron radiation SAXS rapidly provides data compared
to SANS experiments. The combination of flow-cell experiments [25] and size exclusion
chromatography [26] with SAXS reduces radiation damage to and aggregate formation by
protein molecules.

SANS experiments are very useful for determining the solution structure of a protein
without radiation damage. The energy of the neutron beam used for SANS experiments is
on the order of meV, which is almost identical to the energy of the infrared region. Very
recent progress in the ab initio structure analysis of small angle scattering data has made
possible “low-resolution structure models” that represent the overall shape of the solution
protein structure [11,27,28].

Cytochrome c′ (Cyt c′) is a member of the c-type cytochrome family. Cyt c′ comprises
a four-α-helix bundle structure, in contrast to cytochrome c, with a heme prosthetic group
embedded in the C-terminal region (Figure 1). Cyt c′ undergoes a unique pH-dependent
spin state transition. The spin state between pH 3 and 7 is likely a quantum mechanical
admixture of an intermediate-spin (IS: S = 3/2) and a high-spin (HS) state. The spin state
transition into the HS state at alkaline conditions (8 < pH < 12) is triggered by breakage
of the inter-helix hydrogen-bonding linkage between helix C and helix D [29–32]. The
structure of Cyt c′ at pH ~13 was suggested to be a six-coordinated low-spin (LS) state with
imidazole (His120)/OH− or two OH− as the axial ligands, resulting in an “open-bundle”
structure at pH ~13, as reported previously [33].
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With these points in mind, we determined the SANS solution structures of Cyt c′

under different pD conditions to better understand the mechanism underlying the alkaline
structure transition of Cyt c′. This is the first report of the unfolding intermediate structure
of Cyt c′ at pD ~13. Determining the structures of Cyt c′ in solution at pD 6.4, pD 9.6, and
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pD ~13 provides a general explanation of protein folding/unfolding mechanisms and the
relevance of these mechanisms to the alkaline spin-state transition of Cyt c′.

2. Materials and Methods
2.1. Sample Preparation for the SANS Experiments

Cyt c′ was extracted from Alcaligenes xylosoxidans and purified by cation exchange
chromatography (CM-Sephadex C-50, GE Healthcare, Tokyo, Japan) and size-exclusion
chromatography (Hiload Superdex 200 pg, GE Healthcare), followed by re-crystallization
according to a previous method [33]. The purity of Cyt c′ was checked by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE, Figure S1).

Samples for SANS experiments were prepared at pD 6.4 and 9.6 with 20 mM phosphate
buffer. The sample solutions at pD 1.7 and ~13 were prepared by the addition of a small
amount of DCl and NaOD to the phosphate buffer, respectively. The hydrogen atoms in
potassium dihydrogen phosphate and dipotassium hydrogen phosphate were substituted
with deuterium by the repeated evaporation/addition of D2O to the solution. The buffer
solutions were prepared using D2O, KD2PO4, K2DPO4, DCl, and NaOD. A small amount
of concentrated Cyt c′ D2O solution was added to the D2O buffer solution at the target
pD (pD-jump method). The concentrations of Cyt c′ were 5.5 mg/mL at pD 1.7 and pD
6.4 and 5.3 mg/mL at pD 9.6 and pD ~13. The electronic absorption spectrum of Cyt c′

at each pD value was measured using a nanodrop-2000C spectrometer (Thermo Fisher,
Dreieich, Germany) to check the electronic state of the heme in Cyt c′ (Figure S2). The pD
values of the buffers and samples prepared in D2O were measured using a pH electrode
and corrected to pD by adding 0.4, based on an earlier report [34]. The details of the sample
are summarized in Table S1 in Supplementary Materials.

2.2. SANS Measurements

The SANS experiments were performed at the KWS-1 beam line at the Jülich Centre
for Neutron Science (JCNS) at the Research Neutron Source Heinz Maier-Leibnitz Zentrum
(FRM II) in Garching, Germany [35] using 2 mm path length quartz cells. The wavelength
(λ) of the incident neutron beam was 5 Å, selected using the velocity selector, with a spread
∆λ/λ = 10%.

The collimator and detector were configured symmetrically at 8 m and 4 m for the low-
Q region, respectively, and the configuration for the high-Q region was 4 m for collimation
and 1.5 m for detection. Background scattering from the buffer solutions and empty cell
were obtained in the same configurations and used to subtract unwanted background
scattering. A secondary calibration standard of Plexiglas was used to determine the
scattering intensity on an absolute scale and to correct detector sensitivity. The parameters
of SANS data collections were listed in Table S2 in the Supplementary Materials.

2.3. SANS Data Reduction and Analysis

Data reduction from raw SANS profile images to 1D SANS curves, including all
the above-mentioned corrections and calibrations, was conducted using qtiKWS. Radial
averaging converted the 2D data to 1D intensity profiles (I(Q)), with the scattering vector Q
being calibrated by the wavelength and scattering geometry. The data obtained for each
sample with different sample-to-detector distances were merged. The background was
removed by subtraction of the scattering intensity from individual buffer solutions.

The radius of gyration (Rg) of Cyt c′ at each pD condition was estimated from the
linear low-Q region of the Guinier plot and the pair distribution function, P(r), using
the PRIMUS program [36] in the ATSAS package. The gradual increase in the low Q
intensity at pD ~13 could be due to a minor contribution of weak aggregation. The region
corresponding to weak aggregation was not used for the Guinier and P(r) analyses. The data
ranges for Guinier analysis and the calculation of P(r) were 0.001 Å−2 < Q2 < 0.002 Å−2

and 0.05 Å−1 < Q < 0.25 Å−1, respectively. Rg at pD 1.7 was estimated from fitting the
SANS curve with the Debye function (D(Q)) corresponding to the scattering curve from a
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polymer in random walk conformation using a numerical model described previously [37].
The Rg values were also calculated from the crystal structures at pH 6.0 (PDB ID: 4WGZ)
and 11.4 (PDB ID: 4WGY) using CRYSON [38]. Further detailed analyses (joint-club model,
molecular weight estimation, bead modeling, and estimation of the aggregated particle
fraction) were described in the Appendices A–D and Figure S3. The software employed in
SANS data reduction, analysis, and interpretation are listed in Table S3.

3. Results

SANS experiments with Cyt c′ were performed at pD 1.7, 6.4, 9.6, and ~13. Figure 2
shows plots of the SANS intensity of Cyt c′ as a function of neutron scattering momentum,
Q. The SANS curves at pD 6.4 and 9.6 have almost identical profiles, with a shoulder band
at 0.2 Å−1, which is absent at pD 1.7 and ~13. The scattering intensities at pD 1.7 and ~13
were lower than at pD 6.4 and 9.6, likely due to dissociation of the dimer to the monomer.
Furthermore, the shoulder band at pD 6.4 and 9.6 observed at 0.2 Å−1 is reproduced in the
simulated SANS curve for the dimer structure (Figure 2B,C), and thus is characteristic of
the dimer structure of Cyt c′.
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Figure 2. SANS data for Cyt c’ at pD 1.7 (A, red), 6.4 (B, orange), 9.6 (C, green), and ~13 (D, blue).
The black solid lines represent the simulated SANS profiles for Cyt c’. Fitting of the Debye function
and joint-clubs model are shown with the SANS curves at pD 1.7 and ~13, respectively. The simulated
SANS curves obtained from the dimer (solid line) and monomer (broken line) crystal structures of
Cyt c’ at pH 6.0 and 10.4 are shown in panels (B,C), respectively. Schematic representation of the
random coil (A), folded dimer (B,C), and open-bundle (D) structures of Cyt c’ are provided under
the respective SANS curves.

The experimentally obtained radius of gyration (Rg) values of Cyt c′ at various pD
were evaluated from the Guinier plot and P(r) function (Figure 3) and are summarized in
Table 1 and Table S4. The experimental and calculated Rg values from the crystal structures
of Cyt c′ at pH 6.0 and 10.4 are summarized in Table 2. The experimental Rg values of Cyt c′

at pD 6.4 and 9.6 were 18–19 Å and 25–28 Å at pD 1.7. The larger Rg value at pD 1.7 is due to
the expansion or oligomerization of Cyt c′. The SANS profile at pD 1.7 was evaluated using
Debye function (Figure 2A) and was used to analyze disordered polymer structures [39,40].
The SANS profile at pD 1.7 was fit well using the Debye function and gave Rg = 25.7 Å,
and it clearly showed that the structure of Cyt c′ transitioned to the unfolded random
coil structure. The unfolded random coil structure of Cyt c′ at pD 1.7 indicated by the
SANS data is consistent with the structure previously proposed based on CD and ESI-MS
spectrometry data [33].
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Figure 3. Guinier analysis (top panels) and P(r) function (bottom panels) of Cyt c′ at pD 1.7 (A),
6.4 (B), 9.6 (C), and ~13 (D). The linear regions of the Guinier plots used in the analyses are shown as
red solid lines.

Table 1. Estimated Rg values from experimental SANS curves.

Conditions
Rg/Å

Guinier P(r) Debye

pD 1.7 23.02 ± 0.57 25.03 ± 0.19 25.65 ± 0.15
pD 6.4 18.93 ± 0.45 18.24 ± 0.08 n/a
pD 9.6 19.24 ± 0.49 18.10 ± 0.05 n/a
pD ~13 27.58 ± 0.59 25.54 ± 0.60 n/a

Table 2. Simulated Rg values calculated from the crystal structures at pH 6.0 (PDB 4WGZ) and 10.4
(PDB 4WGY).

Conditions
Rg/Å

Guinier P(r)

pH 6.0 Monomer 14.0 15.6
Dimer 17.5 19.1

pH 10.4 Monomer 13.6 15.5
Dimer 17.3 19.1

The crystallographic structure of Cyt c′ from Alcaligenes xylosoxidans was suggested to
be a dimer, but the association state in solution was unknown [41]. The Rg values for the
monomer and dimer structures of Cyt c′ were calculated using the crystal structures of Cyt
c′ at pH 6.0 (PDB: 4WGZ) and pH 10.4 (PDB: 4WGY) and were 17–19 Å (Table 2). Thus, the
calculated Rg values are in good agreement with the experimentally obtained Rg values
(Table 1), clearly demonstrating that the quaternary structure of Cyt c′ is a dimer in solution
at pD 6.4 and pD 9.6. The calculated SANS curves based on the crystal structure of dimeric
Cyt c′ at pH 6.0 and 10.4 are shown in Figure 2 and are quite similar to the experimental
SANS curves at pD 6.4 and 9.6, especially for the range of Q < 0.1 Å−1, which represents the
global structure of Cyt c′. The similarity in the calculated and experimental SANS profiles
strongly suggests that Cyt c′ is a dimer in solution.

Fetler et al. reported that differences between experimental and simulated SAXS
curves in the high-Q region of aspartate transcarbamoylase are due to quaternary structural
differences in the solution and crystal structures [42–44]. In the present study, the discrep-
ancy between the experimental and simulated curves of Cyt c′ in the higher-Q region might
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similarly be due to quaternary structural differences in the dimeric structure in solution and
in the crystal (Figure 2B,C). Kratky plot analysis of SANS profiles can distinguish flexible
and rigid structures [45], with typical highly rigid folded states giving a bell-shaped curve
in the low-Q region, a disordered flexible structure giving a plateau shape in the high-Q
region, and lacking a bell-shaped curve in the low-Q region [46,47].

The Kratky plot of Cyt c′ at pD 1.7 shows an intensified plateau region in the high-Q
region, without a bell-shaped profile in the low-Q region (Figure 4A), strongly suggesting
that Cyt c′ becomes a very flexible random coil structure, in good agreement with the Debye
function analysis and previous CD and ESI-MS experiments [33]. The Kratky plots of Cyt c′

at pD 6.4 and 9.6 (Figure 4B,C) are clearly bell-shaped profiles centered at Q = 0.1 Å−1 with
a plateau shape in the higher-Q region (Q > 0.2 Å−1), indicating a flexible moiety in the
protein structure. The Kratky plot at pD ~13 shows a weaker, broader bell-shaped pattern
in the low-Q region, suggesting a different size and/or shape of Cyt c′ compared to the
structure at lower pD values.
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In SANS curves, the extrapolated intercept intensity (I(0)) is proportional to the molec-
ular weight (MW) and the weight concentration (C) of the scattering molecules.

The MW was determined according to Equation (1):

MW = I(0)/C
MWst

I(0)st/Cst
(1)

where MWst, Cst, and I(0)st are the molecular weight, weight concentration, and extrap-
olated intensity of the standard sample, respectively [48]. The MW ratios at various pD
values were calculated based on the I(0) and C values at pD 1.7 (I(0)st, Cst) used as the
standard sample. The I(0) values were obtained by extrapolation of the SANS I(Q) curves
(Fourier transformation of P(r)) and the Guinier plot (Figure S4). The calculated MW ratios
of Cyt c′ are summarized in Table 2. The MW ratios evaluated from Guinier analysis and
P(r) at pD 6.4 and 9.6 were twice that of the ratio at pD 1.7. Thus, the MW ratios also
strongly support the dimer structure of Cyt c′ at pD 6.4 and 9.6. The I(0) value estimated at
pD ~13 is identical to the value at pD 1.7, further indicating that Cyt c′ exists as a monomeric
structure at pD 13.

Cyt c′ has a four α-helix bundle structure. The structure at pH > 12 was suggested to
be an “open-bundle” structure, which retains the α-helix structure [33]. The SANS curve at
pD ~13 was numerically analyzed using a “joint-clubs model”, designed to describe the
scattering patterns from four cylinder-shaped clubs connected by three short loops based
on the zig-zag chain model described in earlier reports [49,50]. The “joint-clubs model” for
analyzing the SANS curve at pD ~13 well reflected the “open-bundle” structure [33]. A
schematic image of the joint-clubs model is shown in Figure 2D. Each α-helix of Cyt c′ was
modeled as a rigid club. Fitting using this joint-clubs model indicated that the length (L)
of each club is 31.5 ± 3.1 Å. The Cyt c′ structure consists of four α-helices: A(Ala3-Lys31),
B(Asp37-Phe59), C(Ala76-Asp98), and D(Asp103-Arg124). The lengths of helices A, B, C,
and D along each helix axis are 42.6, 35.4, 32.4, and 32.7 Å, respectively, as determined from
the crystal structure (PDB ID: 4WGZ). The average length of the helices is 35.8 Å, which is
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in good agreement with the L value of 31.5 ± 3.1 Å calculated using the joint-clubs model.
The average diameter of the clubs (R) was determined as 10.6 ± 0.9 Å by the fitting, in
good agreement with an average diameter of the helices of ~10 Å in the crystal structure.
Therefore, the joint-clubs model strongly supports the previously speculated “open-bundle”
structure of Cyt c′ at pD ~13.

Ab initio analysis was conducted to clarify the low-resolution solution structure of
Cyt c′. Figure 5 shows the ab initio bead models drawn at the same scaling factor level
to compare the size of the protein at different pD conditions. The bead models at pD 6.4
(Figure 5A) and pD 9.6 (Figure 5B) gave essentially the same shape in the resolution of
ab initio analysis. The bead model obtained at pD ~13 (Figure 5C) showed an extended
structure. This elongation suggests two possibilities regarding the solution structure:
the oligomerization of Cyt c′ or the formation of the “open-bundle” structure. The first
possibility can be excluded immediately because the molecular weight ratio (Table 3)
reflects the monomeric state, as described above.
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Figure 5. The ab initio bead models generated by the program DENFERT [27,28], and fitting of the
crystal structure into each volumetric map (bottom panel) at pD 6.4 (A), 9.6 (B), and ~13 (C). The four
B helices were docked in the volumetric map for (C) using the program Situs [51]. All models are
drawn with the same scaling factor.

Table 3. Concentration (C) of Cyt c′, I(0) and estimated molecular weight ratio from experimental
SANS curves at each pD condition.

Title 1 C (mg/mL)
Guinier P(r)

I(0) MW Ratio I(0) MW Ratio

pD 1.7 5.5 0.078 1.0 0.080 1.0

pD 6.4 5.5 0.165 2.1 0.161 2.0

pD 9.6 5.3 0.141 1.9 0.139 1.8

pD ~13 5.3 0.088 1.2 0.080 1.0

We conducted docking simulation [51] of the helices to the elongated bead model
structure at pD ~13 to clarify the suitability of the bead model to reflect an “open-bundle”
structure of Cyt c′ (Figure 5C, bottom). The volumetric map generated from the bead
model at pD ~13 was fitted with four ideal helices. Docking with helices A, B, C, and
D did not converge in the given space of the volumetric map and thus we chose helix
B as a representative helix structure because its length is similar to the average length
of the four helices in Cyt c′. The loop structures connecting each helix were omitted.
Figure 5C shows a possible arrangement of the four helices in the “open-bundle” form
of Cyt c′ in the space of the volumetric map. This arrangement of the four helices is
consistent with the joint-clubs model. The volumetric map at pD ~13 was also fitted to a
monomer with the correlation coefficient 0.81 between the volumetric map and the volume
calculated from the model (Appendix C “Ab initio bead modeling and analysis of bead
model”). This volume is insufficient to accommodate the dimer structure. Therefore, the
bead model for pD ~13 (Figure 5C) can reasonably be concluded to be the structure of the
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monomeric “open-bundle” structure with four α-helices, in contrast to the oligomerization
of cytochrome c [52,53]. The orientation of helixes and conformation of linkers at pD ~13
were simulated by BUNCH program [54]. The BUNCH program gave the well fitting of
the SANS curve by the theoretical scattering curve from the rigid four helices (helix A, B, C,
D) connected by three linkers. Figure 6 and Figure S5 show the BUNCH models given by
the ten independent simulations. The inconsistency of the ten BUNCH structures suggests
that the “open-bundle” structure may have structural flexibility by the linker parts. The
bead model obtained by DENFERT would be an average structure for the most abundant
“open-bundle” structure.
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The oligomerization of cytochrome c is initiated by the displacement of the C-terminal
helix domain in the monomer to the corresponding position of the other monomer in the
dimeric structure [46]. The SANS experiment with Cyt c′ at pD ~13 clearly demonstrated the
monomeric “open-bundle” structure, and the fraction of aggregated particles was estimated
to be only ~0.2% from the low-Q intensity (Appendix D “Estimation of aggregated particle
fraction at pD ~13”). Therefore, Cyt c′ does not undergo the intermolecular structural
reassembly observed for cytochrome c [52].

4. Discussion

The pH-induced structural transition mechanisms of Cyt c′ were studied based
on SANS solution structure determinations and were determined to be (i) random coil
monomer at pD 1.7, (ii) folded dimer at pD 6.4, (iii) initial dimer dissociation at pD 9.6, and
(iv) monomeric “open-bundle” structure at pD ~13. The comprehensive SANS analysis
in the present study is consistent with previous spectroscopic studies (mass-spectrometry,
CD/MCD spectroscopy) and precise crystal structure analyses. The relation between
the pH-induced spin state and the structural transition of Cyt c′ was described previ-
ously [33,55]. The present SANS study showed that the unfolding intermediate at pD ~13
is key for elucidating the structural transition mechanism. The “open-bundle” structure at
pD ~13 is the first folding/unfolding intermediate structure obtained for Cyt c′ and has not
been determined by crystal structure analysis. The “open-bundle” structure of Cyt c′ as
the unfolding/folding intermediate could provide insights into the initial or last step in
the unfolding or folding process, respectively. Opening of the four α-helix bundle of Cyt c′

into the intermediate “open-bundle” structure could be induced by the disappearance of
inter-helix hydrogen-bonds at alkaline pH, reported previously [33]. The Kratky plot at pD
~13 indicated the partial flexibility of the “open-bundle” structure. The previous ESI-MS
study [33] also supports the rigidness of the “open-bundle” structure by the constant charge
states. Thus, the ab initio analysis at pD ~13 was applied, and the obtained bead model was
reasonable to explain the four helices of monomeric Cyt c′, whereas the linkers between
each helix were not investigated in this study. Further investigations are required to know
the structure and flexibility of the linkers by nuclear magnetic resonance spectroscopy,
quasi-elastic neutron scattering experiment, and/or molecular dynamics simulation.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom12010095/s1, Figure S1: SDS-PAGE of purified Cyt c′ on a 12.5% gel. Figure S2: Electronic
absorption spectra of Cyt c’ at pD 1.7, 6.4, 9.6, and ~13. The spectral patterns are annotated by
charge-transfer 3 (CT3), Soret, CT2, Q, and CT 1 at short wavelengths. The samples were prepared by
diluting the samples following SANS experiments. Figure S3: Curves obtained by ab initio analyses
(red lines) and data points used for each condition (squares: pD 6.4, circles: pD 9.6, triangles: pD ~13).
Figure S4: The estimation of I(0) values by extrapolation of the I(Q) SANS curves (top panels) and
Guinier plots (bottom panels) at pD 1.7 (A, red), 6.4 (B, orange), 9.6 (C, green), and ~13 (D, blue). The
black solid lines in the top panels are fitted I(Q) SANS curves by Fourier transformation of P(r) at each
pD value, and the black dashed lines in the bottom panels were obtained from linear Guinier fitting.
The I(0) point at each pD value is marked by a diamond on the vertical axis. Figure S5: Fitting of
BUNCH simulations (red line) versus the experimental SANS curve at pD ~13 (blue circle). Table S1:
Details of sample used in SANS experiment. Table S2: SANS data collection parameters. Table S3:
Software employed for SANS data reduction, analysis, and interpretation. Table S4: Structural
parameters determined from SANS curves.
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Appendix A. Joint-Clubs Model

The SANS curve at pD ~13 was analyzed using a numerical “joint-clubs” model, where
the length of a club rod (L) and its diameter (R) correspond to the length and diameter
of the α-helix, respectively. The other parameter, r, represents the radius of the blob
scattering of the polymeric linkers within the Debye function D(Q). The following functions
(Equations (A1)–(A5)) are involved in the model:

Λ(Q) =
Si(QL)

QL
(A1)

Γn(Q) =
sin(QL/n)

QL
n

(A2)

B(Q) = 2
J1(QR)

QR
(A3)

https://www.mdpi.com/article/10.3390/biom12010095/s1
https://www.mdpi.com/article/10.3390/biom12010095/s1
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D(Q) =
2

(Q2r2)
2

(
exp
(
−Q2r2

)
− 1 + Q2r2

)
(A4)

I(Q) = I0

[(
1
4
(2Λ(Q)− Γ2

2(Q)

)
+

2
16

Λ2(Q)

1− Γ1(Q)

(
4−

1− Γ4
1(Q)

1− Γ1(Q)

)]
B2(Q) + I1D(Q) (A5)

Here, Si(x) is the sine integral and J1(x) is the Bessel function of the first order. The
pre-factors I0 and I1 determine the scattering powers of all the helices and the linkers,
respectively. In equation (Equation (A5)), the function in the large square brackets de-
scribes the zig-zag line scattering, while B2(Q) describes the spherical cross-section of the
cylinder [49,50]. The total scattering intensity is given by the product of the single-particle
scattering, I(Q), and a simple structure factor [56], S(Q) (Equation (A6)) emerging from
single particles and aggregates, respectively:

S(Q) =

(
1 +

Sagg(0)
1 + ξ2Q2

)
(A6)

where Sagg(0) is the dimensionless amplitude of the aggregates and ξ is a correlation length
in the sense of van Hove [57], which represents the size of an aggregated particle. The
contribution to scattering from aggregates was estimated to be ~0.2%.

Appendix B. Molecular Weight Estimation

The estimated I(0) values and the concentrations of Cyt c′ were used to determine the
ratio of the molecular weight, MW, to the molecular weight at pD 1.7 using Equation (A7):

Ratio =
MW

MWpD 1.7
=

I(0)/C
I(0)pD 1.7/CpD 1.7

(A7)

where C is the weight concentration. The I(0) values at Q = 0 Å−1 were estimated by
extrapolation of the intercept intensities on the Guinier plots and P(r) functions.

Appendix C. Ab Initio Bead Modeling and Analysis of the Bead Model

An indirect transform using the program GNOM [58] was performed to obtain the
regularized scattering curves for the data where the protein retains its secondary structure
(pD 6.4, 9.6, and ~13). The regularized data were used as input to the program DENFERT
v.2 [27,28], which restores the low-resolution shape of the protein by considering the
contribution of the hydration layer to the measured scattering. A 10% higher scattering
length density for the hydration layer was applied. The protein scattering length density
was set to 3.1× 10−6 Å−2, and the buffer scattering length density was set to 6.4 × 10−6 Å−2.
Ten independent runs for each pD condition were performed and compared using the
program DAMAVER [59]. Those with the lowest normalized discrepancy (NSD; a measure
of quantitative similarity among sets of three-dimensional points) were chosen as the
typical model. The average NSD in all cases was in the range of 0.6–0.7, indicating solution
stability, consistent with the experimental data. Figure S3 shows the curves resulting from
the ab initio analyses for pD 6.4 and 9.6 and the joint-clubs model for pD ~13 with the
experimental SANS curves. The square root values of the reduced χ2 were 1.8, 2.9, and 1.9
for pD 6.4, 9.6, and ~13, respectively. The bead radius in the ab initio analysis was set to 2 Å.
The model constructed for the pD ~13 condition was further converted to volumetric maps
using the pdb2vol program, and the maps were used for docking analyses. The docking of
models in map was performed using Powell’s optimization program Collage in the Situs
v.2.8 package [51]. The docking analysis at pH ~13 was carried out with four identical
helices (Helix B), and the correlation coefficient for full multi-body docking was 0.81.
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Appendix D. Estimation of the Aggregated Particle Fraction at pD ~13

Forward scattering, S(0), is generally expressed by Equation (A8):

S(Q→ 0) = (∆$)2·φ·V (A8)

where (∆ρ)2 is the contrast of the scattering particle, φ is the volume fraction of the particles,
and V is the volume of the particle. The ratio of forward scattering of the aggregate and a
joint-club, Sagg(0)/Sjc(0), is described by the volume fraction of Cyt c′ in the beam, φ Cyt c’,
the fraction of aggregated particles, ε, the volume of aggregated particles, Vagg, and the
volume of the joint-clubs structure, Vjc (Equation (A9)).

Sagg(0)
Sjc(0)

=
(∆$)2·φCyt c′·ε·Vagg

(∆$)2·φCyt c′·(1− ε)·Vjc
(A9)

The structure factor, S(Q), is described by Equation (A6) [56] The experimental data at
pD ' 13 were fitted to the equation of the product of S(Q) and the scattering function of
the joint-clubs model defined by Equations (A1)–(A5). Curve-fitting in Figure 2D gave the
parameters Sagg(0)/Sjc(0) = 9.2 and ξ = 432 ± 64 Å. The ratio of the volume between the
joint-clubs structure and aggregated particles, Vjc/Vagg (Equation (A10)), was estimated:

Vjc

Vagg
≈
(

Rg

ξ

)3
(A10)

where Rg is the radius of gyration at pD ' 13 (ca. 25–28 Å, Table 1). The fraction of
aggregated particles, ε, was estimated as ~0.2% by Equation (A9).
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