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Preface

While books have been written on many topics of Polymer Science, no compre-
hensive treatise on long-chain branching has ever been composed. This series of
reviews in Volume 142 and 143 of Advances in Polymer Science tries to fill this
gap by highlighting active areas of research on branched polymers.
Long-chain branching is a phenomenon observed in synthetic polymers and in
some natural polysaccharides. It has long been recognized as a major molecular
parameter of macromolecules. Its presence was first surmised by H. Staudinger
and G. V. Schulz (Ber. 68, 2320, 1935). Interestingly, their method of identificati-
on by means of the abnormal relation between intrinsic viscosity and molecular
weight has survived to this day. Indeed, the most sophisticated method for ana-
lysis of long-chain branching uses size exclusion fractionation with the simulta-
neous recording of mass, molecular weight and intrinsic viscosity of the frac-
tions.

In the 1940s and 1950s, random branching in polymers and its effect on their
properties was studied by Stockmayer,Flory,Zimm and many others.Their work
remains a milestone on the subject to this day. Flory dedicated several chapters
of his “Principles of Polymer Chemistry” to non-linear polymers. Especially
important at that time was the view that randomly branched polymers are inter-
mediates to polymeric networks. Further developments in randomly branched
polymers came from the introduction of percolation theory. The modern aspec-
ts of this topic are elaborated here in the chapter by W. Burchard.

As polymer science developed, greater control over the architecture of poly-
mer molecules was obtained. In polyolefins synthesis, this was due to the intro-
duction of new catalysts.The development of anionic living polymerization with
the concomitant formation of narrow molecular weight distribution polymers
and an highly reactive functional end group opened the route not only to block
copolymers but also to branched polymers with highly controlled architectures
such as stars, combs and graft copolymers. The model polymers allowed us to
establish relations between the molecular architecture and the physical pro-
perties of the branched polymers. This development has been reviewed by
e.g.G.S. Grest et al. Adv. Chem. Phys. 94, 65 (1996).

One chapter in this series deals with the newer use of cationic polymerization
to form polymers and copolymers with controlled long-chain branched struc-
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tures. Another chapter deals with the use of anionic polymerization to prepare
asymmetric star polymers. The asymmetry is introduced when the arms of the
polymer differ in molecular weight, chemical composition or in their topologi-
cal placement. The synthesis of these polymers has led to new insights in micro-
separation processes of block copolymers. Anionic and cationic living polyme-
rization has also led to macromonomers. Highlights of recent developments in
poly(macromonomers) homo,comb and graft copolymers are reviewed by K.Ito.
The poly(macromonomers) with their multiple densely packed small linear sub-
chains often lead to monomolecular micelles.

Very recently, highly regular, highly controlled, dense branching has been
developed. The resulting “dendrimers” often have a spherical shape with special
interior and surface properties. The synthesis and properties of dendrimers has
been reviewed (see e.g. G.R. Newkome et al.“Dendritic Molecules”, VCH, 1996).
In this series, a chapter deals with the molecular dimensions of dendrimers and
with dendrimer-polymer hybrids. One possible development of such materials
may be in the fields of biochemistry and biomaterials. The less perfect “hyper-
branched polymers” synthesized from A2B-type monomers offer a real hope for
large scale commercialization. A review of the present status of research on
hyperbranched polymers is included.

The link between the long-chain branch structure and the properties of the
polymer has to be established experimentally by means of model branched poly-
mers. This link can also be derived theoretically or through computer modeling.
As a result, a large sub-field of study has emerged. The methods and results of
this theoretical work are systematically reviewed by J. Freire. Where available,
comparisons with experimental results are made.

The final chapter develops the most modern insights in the relation between
the rheological properties and the large scale architecture of polymers. Indeed,
the largest effects of branching are encountered in their melt relaxation pro-
perties. In the absence of reptation, which dominates relaxation processes in
linear polymers, a rich variety of other relaxation processes becomes apparent.
The control ot the melt properties of polymers by means of their long-chain
branch architecture will continue to lead to new industrial applications.

Ottawa, July 1998 J. Roovers
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Polymers obtained from the statistical polymerization of AxB monomers by means of con-
densation or addition procedures are referred to as hyperbranched polymers. The paper
aims to give a brief historical background and to give a survey of hyperbranched polymers
in the literature.

Polymerization of AxB monomers yields highly branched polymers, with a multitude of
end groups, which are less prone than linear polymers to form entanglements and undergo
crystallization. Hyperbranched polymers are phenomenologically different from linear
polymers; for example, the lack of entanglements results in lower viscosity than in linear
polymers of the same molecular weight. The thermal properties of hyperbranched poly-
mers have been shown to depend on the nature of the chain ends. The lower the polarity,
the lower the glass transition temperature since it is suggested that the glass transition of
hyperbranched polymers is due to translational motions.

Hyperbranched polymers are unique in that their properties are easily tailored by chang-
ing the nature of the end groups. For some areas, such as coating resins and tougheners in
epoxy-resins, hyperbranched polymers are foreseen to play an important role. Various ap-
plications have been suggested, even though only a few have been commercialized at this
time.
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List of Symbols and Abbreviations

ATRP atom transfer radical polymerization
AxB general structure of monomer with one B-functional group 

and x A-functional groups
bis-MPA 2,2-bis(methylol)propionic acid
By y-functional monomer
CMC critical micelle concentration
D dendritic units (fully branched AxB-units) in a hyperbranched 

polymer
DB degree of branching
DBTDL dibutyltin dilaureate
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DSC differential scanning calorimetry
f total number of functional groups on a monomer
Gic critical energy release rate
L linear units (at least one A-group is left unreacted after 

polymerization) in a hyperbranched polymer
LALLS low angle laser light scattering
LC liquid crystalline
Mc critical molecular weight for the formation of entanglements
Mn number-average molecular weight
Mw weight-average molecular weight
NMR nuclear magnetic resonance
p fractional conversion of monomer
Pa reacted fraction of A-groups
Pb reacted fraction of B-groups
pm V–1 picometer per volt
PVT pressure-volume-temperature
SCVP self condensing vinyl polymerization
SEC size exclusion chromatography
T terminal unit (all A-functional groups on an AxB-unit are left

unreacted)
TEMPO 2,2,6,6-tetramethyl-piperidinyl-1-oxy
Tg glass transition temperature
TGA thermogravimetrical or thermo-gravimetrical analysis
THF tetrahydrofuran
Xn number-average degree of polymerization
Xw mass-average degree of polymerization
z number of monomers

 

a branching coefficient
[

 

h] intrinsic viscosity

 

h* complex dynamic viscosity

1
Introduction

At the end of World War II, synthetic polymers started to be utilized for com-
mercial products. Ever since, materials engineers have been trying to improve
polymer properties by increasingly ingenious methods. The most common
techniques have been either simply to develop a new monomer and synthesize a
new polymer, or to modify an existing polymer by some chemical route: modi-
fications are often effected by changing a catalyst or using different co-mono-
mers. For example, short-chain and long-chain branching have been extensively
used to modify properties such as crystallinity and viscosity. Various grades of
branched polyethylenes play an important role as engineering polymers today.
Highly branched polymers have so far mainly been used as oligomers in ther-
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mosets for high solid coating binders, alkyds, and in resins for composites. The
most widely used of these is probably etherified hexamethylol melamine.

When Paul Flory wrote his famous book Principles of Polymer Chemistry in
1952, he indicated an alternative scheme for polymer synthesis [1]. He theorized
about synthesizing condensation polymers from multifunctional monomers.
These polymers were predicted to have a broad molecular weight distribution
and to be non-entangled and non-crystalline due to their highly branched struc-
ture. However, they were considered to be less interesting since they would pro-
vide materials with poor mechanical strength, and at that time Flory did not feel
it was worthwhile pursuing this line of research.

A little more than 30 years later, the first papers on synthesis of dendritic pol-
ymers emerged (dendron, Greek for “tree”) and revealed properties nobody
could have foreseen. Dendritic polymers synthesized from AxB-monomers com-
prise monodisperse dendrimers with exact branching and irregularly branched,
polydisperse, hyperbranched polymers (Fig. 1). The dendritic polymers turned
out to have a number of very unique and different properties compared to their
linear analogs; for instance, at high enough molecular weight they were found to

Fig. 1. Schematic description of dendritic polymers comprising dendrimers and hyper-
branched polymers
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be globular. In contrast to linear polymers, the dendritic macromolecules be-
haved more like molecular micelles [2].

Dendrimers, or arborols, or cascade, or cauliflower, or starburst polymers,
were first synthesized in the early 1980s [3, 4]. In 1985 Tomalia et al. [5]

 

 and
Newkome et al. [6] presented the first papers dealing with dendrimers. A multi-
tude of dendrimers have been presented in the literature ranging from polyami-
doamine [7, 8], poly(propylene imine) [9, 10], aromatic polyethers [11–13] and
polyesters [

 

14, 15], aliphatic polyethers [16] and polyesters [17], polyalkane
[

 

18–19], polyphenylene [

 

20], polysilane [

 

21] to phosphorus [

 

22] dendrimers.
Combinations of different monomers as well as architectural modifications have
also been presented. For example, chirality has been incorporated in dendrim-
ers [

 

23, 24]. Copolymers of linear blocks with dendrimer segments (dendrons)
[25–27] and block-copolymers of different dendrons have been described [28].

The initially published work on dendritic polymers focused on the prepara-
tion of perfect monodisperse dendrimers. These well-defined macromolecules
have very interesting material properties, but the synthesis is often time-con-
suming and elaborate. For use as engineering materials they are far too compli-
cated and costly to produce. This was soon realized by researchers at DuPont Ex-
perimental Station, from which several publications emerged in the early 1990s
[

 

29–31]. Kim and Webster were working on dendritic polymers as rheology con-
trol agents and as spherical multifunctional initiators. It was necessary to obtain
the material rapidly and in large quantities. This forced them to develop a route
for a one-step synthesis of dendritic polyphenylenes [30–32]. These polymers
were polydisperse, and had defects in the form of built-in linear segments but
they were highly branched dendritic molecules. Kim and Webster named them
Hyperbranched Polymers. Ever since, a wide variety of hyperbranched polymers
have been presented in the literature and some of them will be further described
in Sect. 3.

The synthesis of hyperbranched polymers can often be simplified compared
to that of dendrimers as it does not require the use of protection/deprotection
steps. This is due to the fact that hyperbranched polymers are allowed to contain
some linearly incorporated AxB monomers. The most common synthesis route
follows a one-pot procedure where AxB monomers are condensed in the pres-
ence of a catalyst. Another method using a core molecule and an AxB monomer
has also been described.

The lower cost of synthesizing hyperbranched polymers allows them to be
produced on a large scale, giving them an advantage over dendrimers in appli-
cations involving large amounts of material, although the properties of hyper-
branched polymers are intermediate between those of dendrimers and linear
polymers [33].

Dendritic polymers are most often reported to be amorphous, which can be
anticipated from their highly branched architecture. However, some exceptions
are presented in the literature. Percec et al.

 

 [34, 35] reported on liquid crystalline
(LC) hyperbranched polymers where the LC-phase was achieved by conforma-
tional isomerism. Various repeat units of A2B type have been used where a flex-
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ible spacer and a mesogenic unit are combined in the same monomer. Our lab-
oratory has recently reported results on various alkyl-terminated hyper-
branched aliphatic polyesters which were shown to be crystalline when analyzed
by differential scanning calorimetry and X-ray scattering [36]. Similar results
have also been observed for dendrimers with terminal alkyl chains [37].

We will focus on the variety of different hyperbranched polymers that have
been synthesized, on the specific properties that hyperbranched polymers ex-
hibit, and hopefully stimulate the reader to find new and unique areas where
these novel materials can find future applications.

2
General Concepts

A majority of the hyperbranched polymers reported in the literature are synthe-
sized via the one-pot condensation reactions of AxB monomers. Such one-step
polycondensations result in highly branched polymers even though they are not
as idealized as the generation-wise constructed dendrimers. The often very te-
dious synthetic procedures for dendrimers not only result in expensive poly-
mers but also limit their availability. Hyperbranched polymers, on the other
hand, are often easy to synthesize on a large scale and often at a reasonable cost,
which makes them very interesting for large-scale industrial applications.

2.1
Polycondensation of AxB Monomers

In nature, polycondensations of trifunctional monomers having two different
functional groups occur under enzymatic control, resulting in tree-shaped,
highly branched, but still soluble, macromolecules.

Flory showed great interest in polycondensation reactions and presented one
of the first mechanisms for polyesterification reactions [38, 39]. Stockmayer
[40–42] was a pioneer in exploring polycondensations leading to branched
products. He was closely followed by Flory who also described the condensation
reaction of AxB monomers from a theoretical point of view [1]. The calculations
were simplified by assuming that (i) the only allowed reaction is between an A
group and a B group, (ii) no intramolecular condensation reactions occur, and
(iii) the reactivity of a functional groups is independent of molecular size. Flory
predicted that such a polymer will have a highly branched structure and a mul-
titude of end groups (Fig. 2).

If z monomers are coupled together, the resulting molecule will contain only
a single B group and (fz–2z+1) A groups, where f is the total number of function-
al groups on the monomer. For simplicity, the following will concern an A f–1B
monomer with f=3. The probability that an arbitrarily chosen A group has react-
ed is Pa and equals the reacted fraction of A groups. The reacted fraction of B
groups, Pb, is pb(f–1) due to the structure of the monomer. A branching coeffi-
cient, 

 

a, is defined as the probability that a given functional group on a branch
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unit is connected to another branch unit. An expression for the branching coef-
ficient is obtained if pb is replaced with the conversion, p:

. (1)

It is possible to derive the number-average degree of polymerization, Xn, as

(2)

and also the weight-average degree of polymerization, Xw, as

(3)

From Eqs. (2) and (3) it is possible to calculate the molecular weight distribu-
tion, Xw/Xn, of the system:

(4)

From Eq. (4) it can be seen that as the conversion is driven towards comple-
tion, i.e., p is close to unity, the molecular weight distribution increases dramat-
ically. Theoretically, polycondensation of A2B monomers should form an infinite
molecule at extremely high conversions, though in practice this is seldom ob-
served. Flory concluded that condensation of AxB monomers would give ran-
domly branched molecules without network formation [1]. However, the occur-
rence of unwanted reactions (an A group reacts with an A group, for instance)
will eventually give rise to an infinite network. Therefore, side-reactions have to

Fig. 2. Principal formation of a condensation polymer based on an A2B monomer as pro-
posed by Flory
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be suppressed. Intramolecular reactions, on the other hand, reduce the molecu-
lar weight and molecular weight distribution.

Since the time of Flory, only a few papers have appeared in the literature in
which the kinetics of A2B condensation reactions are treated. A purely theoreti-
cal paper was recently published by Möller et al. where Flory´s theory of AnB
polycondensations was expanded to describe the distribution of molecules con-
taining arbitrary numbers of branching units [43]. In another paper, Hult and
Malmström studied the kinetics of a reacting system based on 2,2-bis(hy-
droxymethyl)propionic acid [44].

2.2
Synthetic Approaches

A wide variety of monomers, such as (3,5-dibromophenyl)boronic acid, 3,5-
bis(trimethylsiloxy)benzoyl chloride, 3,5-diacetoxybenzoic acid, and 2,2-
dimethylol propionic acid have been used for the synthesis of hyperbranched
polymers. A selection of these polymers are described in Sect. 3. The majority of
the polymers are synthesized via step-wise polymerizations where AxB mono-
mers are bulk-polymerized in the presence of a suitable catalyst, typically an
acid or a transesterification reagent. To accomplish a satisfactory conversion, the
low molecular weight condensation product formed during the reaction has to
be removed. This is most often achieved by a flow of argon or by reducing the
pressure in the reaction flask. The resulting polymer is usually used without any
purification or, in some cases, after precipitation of the dissolved reaction mix-
ture into a non-solvent.

When polymerizing A2B monomers there is a possibility of losing the unique
focal point due to intramolecular cyclization. The loss of the focal point in a hy-
perbranched polyester based on 4,4-(4´-hydroxyphenyl)pentanoic (Fig. 7) acid
was closely examined by Hawker et al. [45]. The study showed no significant oc-
currence of intramolecular cyclization. One disadvantage of polycondensation
polymers is that they are sensitive to hydrolysis, that is depolymerization, which
might restrict their use. Some hyperbranched polymers are synthesized via sub-
stitution reactions which provide less hydrolytically unstable polymers.

The “second generation” of hyperbranched polymers was introduced a few
years ago when Fréchet et al. reported the use of self-condensing vinyl polymer-
ization to prepare hyperbranched polymers by carbocationic systems (Fig. 3)
[46]. Similar procedures but adapted for radical polymerization were shortly
thereafter demonstrated by Hawker et al. [47] and Matyjaszewski et al. [48].

The solid-phase synthesis of dendritic polyamides was explored by Fréchet
et al. [49]. Inspired by the technique used by Merrifield for peptide synthesis,
the same strategy was used to build hyperbranched polyamides onto a poly-
meric support. The idea was to ensure the preservation of the focal point and
to ease the purification between successive steps. The resulting polymers were
cleaved from the solid support, allowing ordinary polymer characterization.
The reaction was found to be extremely sluggish beyond the fourth generation.
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The idea of using a solid support was further explored by Moore and Bharathi
[50].

The concept of constructing hyperbranched polymers (polystyrenes) by a
“graft-on-graft” technique was first described by Möller and Gauthier

 

 [51, 52]
when they performed several functionalization and anionic grafting steps on a
linear polystyrene. The concept of building dendritic polymers by sequential
growth of end-standing polymer chains (poly(e-caprolactone)) was further de-
veloped by Hedrick and Trollsås [53]. Brenner and Voit explored the use of azo-
functional hyperbranched structures as multi-functional initiators [54]. Free
radical “grafting from” reactions were carried out using various monomers. The
resulting graft copolymers, with a hyperbranched core and linear graft arms, ex-
hibited improved film-forming properties as compared to the ungrafted hyper-
branched polymer.

The field of hyperbranched polymers is still young and rapidly growing. The
availability of commercial AxB monomers, however, still limits their potential use.

2.3
Structural Variations

2.3.1
Degree of Branching

In a perfectly branched dendrimer, only one type of repeat unit can be distin-
guished, apart from the terminal units carrying the chain ends (Fig. 4). A more

Fig. 3. Schematic description of self-condensing vinyl polymerization used for the synthe-
sis of of hyperbranched polymers based on vinyl monomers as presented by Frechét [52] 
–( * represents a reactive site which can initiate polymerization)
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thorough investigation of a hyperbranched polymer (assuming high conversion
of B-groups) reveals three different types of repeat units as illustrated in Fig. 4.
The constituents are dendritic units (D), fully incorporated AxB-monomers, ter-
minal units (T) having the two A-groups unreacted, and linear units (L) having
one A-group unreacted. The linear segments are generally described as defects.
Fréchet et al. coined the term degree of branching (DB) in 1991 [55] and defined
it by:

DB=(SD+ST)/(SD+SL+ST) (5)

To date, two different techniques have been used to determine the degree of
branching. The first technique was presented by Fréchet et al. [55] and involves
the synthesis of low molecular weight model compounds resembling the repeat
units to be found in the hyperbranched skeleton. The model compounds are
characterized with 13C-NMR. From the spectra of the model compounds, the
different peaks in the spectra of the hyperbranched polymers can be assigned.
The degree of branching is calculated from the integrals of the corresponding
peaks in the spectrum of the polymer.

The second method, based on the degradation of the hyperbranched back-
bone, was presented by Hawker and Kambouris [56]. The chain ends are chem-
ically modified and the hyperbranched skeleton is fully degraded by hydrolysis.
The degradation products are identified using capillary chromatography. Two
chemical requirements have to be fulfilled to use this technique successfully.
First, degradation must not affect chain ends, and second, the conversion into
elementary subunits must be complete.

The expression in Eq. (5) has been used frequently to characterize hyper-
branched polymers. The definition leads to high DB values at low degrees of po-
lymerization. Recently, Frey et al. introduced another expression for the degree
of branching where the degree of polymerization is also taken into consideration
[57]. The same group also published findings from computer simulations of ide-
al experiments where the monomers are added one by one to a By-functional
core molecule, keeping the total number of molecules constant throughout the
reaction [58]. Increasing the functionality of the core resulted in decreased poly-

Fig. 4. Different segment types present in hyperbranched polymers
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dispersity for the final polymer. The degree of branching was found to have a
limiting value of 0.66 with slow monomer addition at a high degree of conver-
sion. Some experimental work was carried out in order to verify the simulated
results [59].

It is of vital importance to understand how the degree of branching affects the
properties of a hyperbranched polymer. One way to obtain polymers with higher
degrees of branching is to use preformed dendron-monomers. This concept was
used by Hawker and Chu [60] and it was found that the resulting polymers with
the highest degree of branching also exhibited the highest solubility in organic sol-
vents. Fréchet and Miravet have also studied this topic by investigating the hyper-
branched poly(siloxysilanes) obtained from A2B-, A4B-, and A6B monomers [61].

2.3.2
Copolymerization of AxB Monomers and By Functional Core Molecules

In agreement with Flory´s predictions, hyperbranched polymers based on AxB
monomers reported in the literature exhibit a broad molecular weight distribu-
tion (typically 2–5 or more). The polydispersity of a hyperbranched polymer is
due to the statistical growth process. A strategy to overcome this disadvantage is
to add a By-functional core molecule, or a chain terminator, which limits the
polydispersity and also provides a tool to control the molecular weight of the fi-
nal polymer. The concept of copolymerizing an A2B monomer with a B3 func-
tional core molecule was first introduced by Hult et al. [62] and more recently
also utilized by Feast and Stainton [63] and Moore and Bharathi [64].

2.3.3
End Groups

The influence of the end groups on the properties of a linear polymer is, at a suf-
ficiently high molecular weight, negligible. However, irrespective of what syn-
thetic procedure is used to obtain the hyperbranched polymers, the resulting
macromolecules have a large number of end groups. The end groups have been
demonstrated to be easily accessible for chemical modifications and the nature
of the end groups has been found to determine the thermal and physical prop-
erties of the hyperbranched polymers to a great extent. The chain end function-
alizations are mainly carried out in solution using reactive acid chlorides as
chain terminators.

3
Hyperbranched Polymers

The following aims to give a brief survey of hyperbranched polymers as present-
ed in the literature. However, this section can only be regarded as a selection of
the most important classes of hyperbranched polymers. No attempt has been
made to include all papers concerning hyperbranched polymers.



12 A. Hult, M. Johansson, E. Malmström

3.1
Polyphenylenes

One of the first hyperbranched polymers described in the literature was
polyphenylenes, which were presented by Kim et al. [30Ð32] who also coined the
term “hyperbranched”. The polyphenylenes were prepared via Pd(0) or Ni(II)
catalyzed coupling reactions of various dihalophenyl derivatives such as di-
bromophenylboronic acid. The polymers were highly branched polyphenylenes
with terminal bromine groups which could be further transformed into a variety
of structures such as methylol, lithiate, or carboxylate (Fig. 5).

Unlike linear polyphenylenes, the hyperbranched polyphenylenes were solu-
ble in various solvents such as THF with a solubility dependent on the end group.
The polyphenylenes even became water soluble when the bromine end groups
were transformed into carboxylate groups. Polyphenylenes with bromine end
groups exhibited a glass transition temperature (Tg), determined by DSC, of
238 ˚C which was independent of molecular weight in the examined range (2–
35 kg mol–1). The Tg shifted, however, when the end groups were altered – for in-
stance trimethylsilyl end groups gave a Tg of 152 ˚C. The bromo-functional
polyphenylenes were thermally stable up to 550 ˚C as measured by TGA.

The polyphenylenes were brittle and did not form self-standing films when
cast from solution. Therefore, they were considered poor materials. The use of
these polymers was instead investigated as additives in polystyrene to improve
processing and mechanical properties. A mixture of polystyrene and hyper-
branched polyphenylene (5%) was studied and the results showed that the melt
viscosity, especially at high temperatures and shear rates, was reduced by up to
80% as compared to pure polystyrene. Also, the thermal stability of polystyrene

Fig. 5. Example of hyperbranched polyphenylene synthesized by Kim and Webster [31]
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was improved and shear induced degradation was reduced. The mechanical
properties of the blends were not much affected except for an increase in initial
modulus which suggests that weak crosslinking occurred. The hyperbranched
polyphenylenes were also shown to be useful as multifunctional macroinitiators
for star polymers.

3.2
Polyesters

Polyesters are an important class of condensation polymers, and the availability
of a few commercial dihydroxy carboxylic acids has prompted several research
groups to look into hyperbranched polyesters in great detail. Several old patents
concerning highly branched and hyperbranched polyesters exist. One of the old-
est patents, from 1972, concerns the polymers obtained by condensation of pol-
yhydroxy monocarboxylic acids and their use in coatings [65]. The potential use
of hyperbranched polymers as rheology modifiers or for drug delivery purposes
was described in another patent in 1992 [29]. Two of the most recent patents con-
cern hyperbranched polymers obtained from polyols (chain terminator or core
molecule) and A2B-monomers and their use in coating applications [66, 67].

3.2.1
Aromatic Polyesters

Considerable attention has been paid to aromatic hyperbranched polyesters syn-
thesized from monomers derived from 3,5-dihydroxybenzoic acid (DBA). The
thermal stability of DBA is not good enough to allow direct esterification of DBA,
and therefore chemical modifications are necessary. Some aromatic monomers
used for the synthesis of hyperbranched aromatic polyesters are presented in Fig. 6.

Fréchet et al. conducted a systematic investigation of hyperbranched polyes-
ters derived from 3,5-bis(trimethylsiloxy)benzoyl chloride [55, 68–70]. The
monomers were condensed at 150–200 ˚C or by using low temperature esterifi-
cation procedures. The polymers were found to have a degree of branching close
to 0.55 and apparent molecular weights (Mn) in the range of 16–60 kDa as deter-
mined by GPC relative to linear polystyrene standards. Several functionaliza-
tions were performed on the phenolic end groups in order to investigate how the
nature of the end groups affected the glass transition temperature.

Turner et al. [71, 72] also report on hyperbranched polyesters derived from
3,5-bis(trimethylsiloxy)benzoyl chloride and from 3,5-diacetoxybenzoic acid,
which both yield phenolic polyesters after hydrolysis of the end groups. The
same group investigated the hyperbranched polyesters obtained in the melt con-
densation of 5-acetoxyisophthalic acid and 5-(2-hydroxy)-ethoxyisophthalic
acid respectively. The latter yields a soluble product while the former results in
an insoluble polymer due to formation of anhydride bridges.

Kricheldorf and Stöber [73] compared the polyesterification of silylated 5-ac-
etoxyisophthalic acid and of free 5-acetoxyisophthalic acid. The non-silylated
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monomer yielded insoluble products, indicating that crosslinked materials were
obtained. The degree of branching for these materials was found to be close to
0.6 and independent of reaction conditions. Kricheldorf et al. have also synthe-
sized star-shaped and hyperbranched polyesters by polycondensation of tri-
methylsilyl 3,5-diacetoxybenzoate [74]. The same authors reported on a number
of hyperbranched polymers based on the trimethylsilylester of b-(4-hydroxy-
phenyl)propionic acid [75]. This is an AB monomer and is strictly speaking not
the basis for a hyperbranched polymer.

Feast and Stainton [63] reported on the synthesis of aromatic hyperbranched
polyesters from 5-(2-hydroxyethoxy)isophthalate copolymerized with 1,3,5-
benzenetricarboxylate (core molecule) as a moderator of the molecular weight.
The degree of branching was found to be 0.60–0.67 as determined by 13C-NMR.
Apparent molecular weights (Mw) were found to be 5–36 kDa according to SEC
characterization using linear polystyrene standards.

Structural variations of hyperbranched polyesters have also been achieved by
copolymerizing an A2B-monomer with an AB-functional monomer, although
no properties were reported for these copolymers [71].

A variation of the aromatic polyester structure was utilized by Hawker et al.
when they described hyperbranched poly(ethylene glycol)s and investigated
their use as polyelectrolyte media [76]. The highly branched structure implies
that no crystallization can occur. Linear poly(ethylene) glycols usually crystal-
lize, which has a detrimental effect on their use as polyelectrolyte media.

Fig. 6. Examples of AxB monomers used for the preparation of hyperbranched aromatic
polyesters [55, 63, 68, 69, 71–73]
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3.2.2
Aliphatic Polyesters

The use of aliphatic monomers for hyperbranched polyesters has been debated
because aliphatic monomers are said to be prone to thermal degradation reac-
tions such as decarboxylation, cyclization, or dehydration [77]. The only com-
mercial hyperbranched polymer is a hydroxy-functional aliphatic polyester,
Boltorn, available from Perstorp AB, Sweden.

Essentially one monomer, 2,2-bis(methylol)propionic acid (bis-MPA), shown
in Fig. 7, has been used to prepare hyperbranched aliphatic polyesters. Hult et
al. described the co-condensation of bis-MPA and a four-functional polyol re-
sulting in hydroxy-functional hyperbranched polyesters [62]. The synthesis was
further elucidated, and subsequent papers deal with the materials obtained from
bis-MPA and trimethylolpropane [78]. The degree of branching was initially re-
ported to be close to 0.8 but was recently re-evaluated after it was shown that the
hydroxy-functional hyperbranched polyesters undergo facile acetal formation
during NMR analysis in acetone-d6. The acetal formation was catalyzed by resid-
ual trace amounts of acid remaining in the sample. After re-evaluation in
DMSO-d, the degree of branching was close to 0.45, which is in accordance with
most other hyperbranched polymers [79].

The hydroxy-functional polyesters had a glass transition temperature close to
35 ˚C but by end-capping the hydroxyl groups with various alkyl chains it was
possible to depress the glass transition to temperatures well below 0 ˚C. Interest-
ingly, a sufficiently long alkyl chain resulted in a semi-crystalline polymer exhib-
iting a first-order melt transition as determined by DSC, indicating that side-
chain crystallization occurred [36]. Dielectric spectroscopy has been used to in-
vestigate how the segmental mobility was affected by various end groups [80,
81]. The influence on various end groups was also investigated using dynamical
rheological analysis [36]. Resins for coating applications were obtained by end-
capping the hyperbranched skeleton with crosslinkable acrylate groups [82].

Hawker et al. report on the synthesis of a similar hyperbranched polyester
based on the corresponding AB4-monomer; that is, the preformed dendron of
the second generation was used in the condensation reaction [79].

Voit also carried out the melt condensation of bis-MPA using a slightly higher
reaction temperature, 200 ˚C, and acid catalysis [83].

Fig. 7. Examples of AxB monomers used for the preparation of hyperbranched aliphatic and
aromatic-aliphatic polyesters [56, 62, 78]
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A somewhat different approach was presented by Rannard and Davis where
they first reacted bis-MPA with carbonyl diimidazole, allowing a highly selective
base-catalyzed reaction to form a hyperbranched polyester. The resulting poly-
mers were hydroxy-functional and reported to be water-soluble [84].

3.3
Polyethers

Several hyperbranched polyethers have been presented in the literature. Fréchet
et al. [85, 86] have described the one-pot synthesis of hyperbranched benzylic
polyethers based on the self-condensation of 5-(bromomethyl)-1,3-dihydroxy-
benzene in solution. The effect of variation of reaction conditions such as mon-
omer concentration, time, and type of solvent was explored and it was conclud-
ed that an increased reaction time and polar solvents increased the molecular
weight while a change in monomer concentration had less effect. Polymers with
molecular weights up to 120 kg mol–1, as determined with LALLS, were obtained
under optimum conditions. The desired O-alkylation was accompanied by ap-
proximately 30% C-alkylation. Therefore, the degree of branching was difficult
to determine. It was also shown that the phenolic end groups could easily be
transformed into other moieties such as benzyl, silyl, or acetate end groups with
a subsequent change in Tg and solubility of the polymers. One main problem
which appeared was, however, that the monomer proved to be extremely aller-
genic, which limits the use of this structure.

Miller et al. [87, 88] have described the synthesis of hyperbranched aromatic
poly(ether-ketone)s based on monomers containing one phenolic group and
two fluorides which were activated towards nucleophilic substitution by neigh-
boring groups. The molecular weight and polydispersity of the formed po-
ly(ether-ketone)s could be controlled by reaction conditions such as monomer
concentration and temperature. The formed polymers had high solubility in
common solvents such as THF.

Hawker and Chu described the synthesis of hyperbranched poly(ether-ke-
tone)s based on A2B-monomers having either one phenolic and two fluoride
groups or two phenolic and one fluoride groups [60]. Polymerization of the two
different monomers yielded hyperbranched poly(ether-ketone)s with either
phenolic or fluoride end groups. The monomer having two fluoride end groups
produced a polymer with a significantly higher degree of branching due to dif-
ferences in reactivity. The degree of branching could be changed by using A3B
and A4B monomers with similar chemical structure and it was shown that prop-
erties such as Tg were unaffected by the DB. The Tg of the polymers could be
greatly varied by changing the structure of the end groups; for example, octoate
end groups gave a Tg of 97 ˚C while carboxylic acid end groups had a Tg of
290 ˚C. The solubility also changed dramatically with end-group structure rang-
ing from octoate end groups inducing solubility in hexane to carboxylic acid end
groups which made the polymers water-soluble. The polymers with carboxylic
acid end groups were shown to behave as unimolecular micelles; that is, the pol-
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ymer could solubilize hydrophobic compounds in water. The amount of soluble
hydrophobic substance was directly proportional to the polymer concentration
and no CMC was seen, suggesting the behavior of a unimolecular micelle.

3.4
Polyamides

Fréchet et al. reported on the solid-phase synthesis of dendritic polyamides in
1991 [49]. The intention was to grow dendritic segments from a solid support and
thereby enhance the ease of purification between successive steps (Sect. 2.2).

Kim reported on liquid crystalline properties observed for hyperbranched ar-
omatic amides obtained from 3,5-diaminobenzoic acid and derivatives thereof.
The resulting polymers exhibited nematic liquid crystalline phases [89].

3.5
Hyperbranched Vinyl Polymers

Recently, self-condensing vinyl polymerization (SCVP) of 3-(1-chloroethyl)-
ethenylbenzene was introduced by Fréchet and co-workers [46, 90] (Fig. 3). This
reaction involves a vinyl monomer of AB* type in which B* is a group capable of
initiating the polymerization of vinyl groups. The chain initiation is the addition
of an activated B* group to the vinyl group of another monomer forming a dimer
with two active sites and one double bond. Both the initiating center, B*, and the
newly created propagating center, * (Fig. 3), can react with the vinyl group of an-
other molecule (monomer or polymer) in the same way. The concept was fur-
ther developed by Hawker et al. [47], and applied to TEMPO-mediated “living”
free radical polymerization of hyperbranched polystyrenes. Matyjaszewski et al.
[48] developed ATRP-techniques to obtain hyperbranched polystyrenes. Since
then, a number of different approaches, based on vinyl monomers and various
initiating systems, have been explored to yield hyperbranched polymers such as
poly(4-acetylstyrene) [91], poly(vinyl ether) [92], polyacrylates [93], and
polymethacrylates [94].

3.6
Other Hyperbranched Polymers

3.6.1
Semi-Crystalline and Liquid Crystalline Polymers

Branching in polymers generally reduces the crystallization tendency for con-
ventional polymers. Therefore, hyperbranched polymers were first believed to
behave as amorphous polymers due to the highly branched backbone. Several
papers have, however, shown that both liquid crystalline and crystalline hyper-
branched polymers can be made from some special AxB monomers or by attach-
ment of crystallizable end groups.



18 A. Hult, M. Johansson, E. Malmström

Percec et al. have described the possibility of making hyperbranched pol-
ymers which exhibit liquid crystalline phases [34, 35]. They made hyper-
branched polyethers based on an AxB monomer having both a spacer and a

Fig. 8. Isotropic-nematic transformation of a hyperbranched polyether as described by Per-
cec et al. [34, 35]
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mesogenic unit incorporated into the monomer structure.The polyethers ex-
hibited a thermotropic nematic liquid crystalline (LC) behavior based on
conformational isomerism (Fig. 8). Kim described hyperbranched aromatic
polyamides [89, 95] which exhibited a lyotropic liquid crystalline behavior
with a nematic mesophase. He suggested that the hyperbranched polymer´s
propensity to form aggregates in solution was the reason for the LC-behav-
ior.

Hult et al. [36] have described semi-crystalline hyperbranched aliphatic pol-
yesters where the crystallinity was induced by attachment of long alkyl chains as
end groups. The crystallization was affected by several factors such as length of
the end groups and the molecular weight of the hyperbranched polyester. The
crystallization was proposed as being either intra- or intermolecular depending
on the size of the hyperbranched polyester onto which the alkyl chains were at-
tached.

3.6.2
Polyurethanes

Polyurethanes are useful in numerous applications such as reaction injection
molding, rigid and flexible foams, coatings and adhesives. However, due to the
high reactivity of the isocyanate group [96], yielding either dimers, via self-con-
densation or a carbamate via the reaction with an alcohol, the AxB-monomers
have to be produced in-situ in the reaction vessel.

Spindler and Fréchet used 3,5-bis((benzoxy-carbonyl)imino)benzyl alcohol
which decomposed thermally in THF solution containing DBTDL as a catalyst
[97]. The resulting polymer was found to be insoluble unless an end-capping al-
cohol was added from the beginning. The end-capping groups determined the
properties of the polymers such as glass transition temperature, thermal stabil-
ity, and solubility.

Kumar and Ramakrishnan synthesized hyperbranched polyurethanes via the
in-situ generation of 3,5-dihydroxyphenyl isocyanate from the corresponding
carbonyl azide [98]. The degree of branching was determined as being close to
0.6 using NMR spectroscopy. The hyperbranched polyurethane was completely
soluble in common organic solvents while the linear counterpart was completely
insoluble.

3.6.3
Polycarbonates

Wooley and Bolton recently published a paper concerning hyperbranched poly-
carbonates obtained by polymerization of a monomer derived from 1,1,1-
tris(4´-hydroxyphenyl)ethane [99]. A degradative technique was used to deter-
mine the degree of branching, which was found to be close to 0.53. Apparent mo-
lecular weights were in the range 16–82 kDa as determined by GPC relative to
linear polystyrene standards.
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3.6.4
Poly(ester-amide)s

Kricheldorf et al. have investigated several hyperbranched poly(ester-amide)s
derived from combinations of 3,5-diaminobenzoic acids and 3,5-dihydroxy-
benzoic acids and similar monomers [100–102]. The polymers exhibited values
of Tg ranging from 160 to 250 ˚C and were highly soluble in various solvents.
They employed diamines as “star centers” in order to control the molecular
weight.

Several other papers have appeared in the literature describing hyperbranched
poly(siloxysilane)s [103], poly(amine)s [104], poly(phenylene sulfide)s [105],
polycarbosilanes [106], phenol-formaldehyde resins [107], poly (aryl ether sul-
fone)s [108], poly(alkoxysilanes) [109], and poly(lactoside)s [110] but are not
further treated in this survey.

4
Properties

The urge of polymer scientists to develop new materials is driven by society's
wish to substitute conventional materials by plastics and thereby gain in per-
formance. One reason for the emerging interest in hyperbranched polymers and
other macromolecular architectures is their different properties compared to
conventional, linear polymers.

Already Flory predicted that the number of entanglements would be lower for
polymers based on AxB monomers, with subsequent reduction in mechanical
strength [1].

Changes in properties related to the architecture of hyperbranched polymers
rather than the chemical structure have to some extent been evaluated but a full
understanding is still lacking. Lately, research in this area has been focused on
two questions: why and to what extent the architecture affect the properties.

4.1
Solution Behavior

One of the first properties of hyperbranched polymers that was reported to dif-
fer from those of linear analogs was the high solubility induced by the branched
backbone. Kim and Webster [31] reported that hyperbranched polyphenylenes
had very good solubility in various solvents as compared to linear polyphen-
ylenes, which have very poor solubility. The solubility depended to a large extent
on the structure of the end groups, and thus highly polar end-groups such as
carboxylates would make the polyphenylenes even water-soluble.

Not only good solubility but also solution behavior differs for hyperbranched
polymers compared to linear polymers. For example, hyperbranched aromatic
polyesters, described by Turner et al. [71, 72], exhibit a very low a-value in the
Mark-Houwink-Sakurada equation and low intrinsic viscosities. This is consist-
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ent with highly branched and compact structures. Fréchet presented a compar-
ison between linear polymers, hyperbranched polymers, and dendrimers with
respect to intrinsic viscosities as a function of molecular weight, which clearly
shows the differences induced by variations in the backbone architecture (Fig. 9)
[33].

Another special feature of dendritic polymers is the possibility to combine an
interior structure with one polarity, with a shell (end groups) having another
polarity, for instance a hydrophobic inner structure and hydrophilic end
groups. For example, Kim and Webster [30] described their hyperbranched
polyphenylenes with carboxylate end groups as unimolecular micelles, where
the carboxylate end groups made the polymer water soluble and the hydropho-
bic interior could host a guest molecule. This has also been described by Hawker
and Chu [60] who could solubilize hydrophobic molecules in water by using hy-
perbranched aromatic poly(ether-ketone)s having acid end groups. They did
not observe a critical micelle concentration (CMC) but a steady increase in sol-
ubility of the hydrophobic compound with polymer concentration. From this
observation they concluded that a unimolecular micelle behavior applied. In a
recent review by Uhrich [111] the guest-host possibility is described for various
dendritic polymers considered suitable for medical applications such as drug
delivery.

The size of dendritic polymers in solution has been shown to be greatly af-
fected by solution parameters such as polarity and pH. Newkome et al., for ex-
ample, have shown that the size of dendrimers with carboxylic acid end groups
in water can be increased by as much as 50% on changing the pH [112].

The dilution properties of hyperbranched polymers also differ from those of
linear polymers. In a comparison between two alkyd resin systems, where one
was a conventional high solid alkyd and the other based on a hyperbranched
aliphatic polyester, the conventional high solid alkyd was seen to exhibit a high-
er viscosity [113]. A more rapid decrease in viscosity with solvent content was
noted for the hyperbranched alkyd when the polymers were diluted.

Fig. 9. Generalized description of the intrinsic viscosity as function of molar mass for linear
polymers, hyperbranched polymers and dendrimers as described by Fréchet [33]
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4.2
Bulk Properties

4.2.1
Thermal Properties

Some of the first questions that arise when looking at a new group of polymers
such as hyperbranched polymers concern the glass transition temperature –
what determines it, what molecular motions determine it, is there a difference in
Tg for different parts of the molecule? Since hyperbranched polymers are almost
exclusively amorphous materials, the glass transition temperature will be one of
the most important features.

The classical visualization of Tg is related to relatively large segmental mo-
tions in the polymer chain segments and the fact that the role of the end groups
diminishes above a certain molecular weight. This is more difficult to conceive
for hyperbranched polymers since segmental motions are affected by the
branching points and the presence of numerous end groups. It has instead been
proposed that the glass transition for hyperbranched polymers is a translational
movement of the entire molecule instead of a segmental movement [31, 32].
Chemical nature also affects the Tg; for example, an aliphatic polyester generally
has a much lower Tg than an aromatic one [4].

Tg is one of the properties that has been reported for most of the hyper-
branched polymers. The results have been based either on calorimetric or rheo-
logical measurements. Values of Tg for a series of hyperbranched aromatic pol-
yesters with different end groups have been presented in a review paper by Voit
[4]. Tg shifted as much as 100 ˚C (from 250 to 150 ˚C) on going from carboxylic
acid to acetate end groups. This and other reports [114] show the large impact
of end group structure on the Tg. The Tg for polyether dendrimers has been
found to follow a modified Flory equation where the number and structure of
end groups are accounted for [115]. However, no complete model to predict the
Tg for hyperbranched polymers exists since several other factors such as degree
of branching, steric interactions due to crowding, backbone rigidity and polari-
ty in combination also play an important role for the glass transition tempera-
ture. The glass temperature of dendritic polymers has been discussed in a paper
by Stutz [116].

The thermal stability of hyperbranched polymers is related to the chemical
structure in the same manner as for linear polymers; for example, aromatic es-
ters are more stable than aliphatic ones. In one case, the addition of a small
amount of a hyperbranched polyphenylene to polystyrene was found to improve
the thermal stability of the blend as compared to the pure polystyrene [31].

A study of the PVT properties of hyperbranched aliphatic polyesters by Hult
et al. [117] showed that these polyesters were dense structures with smaller ther-
mal expansion coefficients and lower compressibility compared to some linear
polymers.
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4.2.2
Mechanical and Rheological Properties

The correct mechanical and rheological behavior is essential when introducing
new materials onto the market. A material must possess both suitable material
and processing properties in order to find an appropriate use.

The rheological properties for hyperbranched polymers are characterized by
a Newtonian behavior in the molten state; i.e., no shear thinning or thickening
is observed [117], indicating a lack of entanglements for these polymers. The
non-entangled state imposes rather poor mechanical properties, resulting in
brittle polymers. This has limited the use of these polymers as thermoplastics to
applications where the mechanical strength is of minor importance. The large
amount of branching also makes most of these polymers amorphous although
exceptions exist. Hence, these polymers are mainly suitable as additives or as
thermosets when high mechanical strength is required for a certain application.

The melt behavior has been shown to be greatly affected by the structure of
the end-groups where an increase in the polarity of the end-groups can raise the
viscosity by several orders of magnitude [118] (Fig. 10). This is of great impor-
tance in applications where low viscosity is essential for the processing of the
material [119].

Fig. 10. Complex dynamic viscosity as function of temperature for three different aliphatic
hyperbranched polyesters based on bismethylol propionic acid and having different end-
group structure – (¡) propionate end-groups, (n) benzoate end-groups, (o) hydroxyl
end-groups [118]
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Another very special feature of these polymers is the relationship between
molecular weight and melt viscosity. For linear polymers, the increase in melt
viscosity with molecular weight is linear with a transition to a 3.4 power law
when the molecular weight reaches the critical mass for entanglements, Mc. For
hyperbranched polymers, the increase in viscosity follows a different curve: it is
less pronounced and levels off at higher molecular weights [117] (Fig. 11).

One application that has been suggested for hyperbranched polymers is as an
additive, where the hyperbranched polymers improve a property such as poly-
mer toughness [120–122]. This is possible since the polarity of the hyper-
branched polymer can be adjusted to make it either compatible or incompatible
with another polymer. Reaction-induced phase separation by adjusting the po-
larity of a hyperbranched aliphatic polyester relative to an epoxy/amine thermo-
set system has been demonstrated. The resulting thermoset polymer exhibited
a dramatic increase in toughness while retaining the high modulus of the origi-
nal thermoset. The use of hyperbranched polyphenylenes as a processing aid for
polystyrenes has been mentioned [31]. The melt viscosity of polystyrene was re-
duced without affecting the final properties to any large extent.

Hyperbranched polymers are often referred to as amorphous polymers since
the branching of the backbone reduces the ability to crystallize in the same man-
ner as linear polymers. Some exceptions have, however, been presented where
the polymers have been modified to induce liquid crystallinity [34, 35] or crys-
tallinity [36] (Sect. 3.6.1).

Fig. 11. Melt viscosity at 85 ˚C vs molar mass for hydroxy-functional hyperbranched
aliphatic polyesters based on bismethylol propionic acid. Theoretical molar mass based on
core: bis-MPA ratio (l) and Mn determined with SEC relative to linear polystyrene stand-
ards (¡) [117]
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4.2.3
Networks

One area where hyperbranched polymers may find use is in thermoset applica-
tions. The low melt viscosity can improve the processing properties while exten-
sive crosslinking can result in sufficient material strength. All or a fraction of the
end groups can be functionalized with reactive groups, resulting in a crosslink-
able polymer. The remaining non-functionalized end groups are accessible for
further modifications. This implies the possibility to tailor the properties of the
final network by two different routes, by changing either the crosslink density or
the chemical structure of the nonreactive end groups.

Amongst the first studies presenting the use of dendritic polymers for ther-
moset applications was the work of Hult et al. [62]. They modified hyper-
branched hydroxy functional polyesters with various ratios of maleate-allyl
ether/alkyl ester end groups. Dependent on this ratio, resins with different vis-

Fig. 12. Comparison between a conventional high solid alkyd coating (o) and an alkyd
based on a hyperbranched aliphatic polyester (n). Drying time as a function of molar mass
[123]
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cosities (before cure) and different curing rates were obtained. The resins were
crosslinked by a free radical mechanism, giving films with final hardnesses de-
pending on the fraction of crosslinkable end groups.

Pettersson and Sörensen have described a number of different thermoset res-
in structures based on hyperbranched aliphatic polyesters [123]. Their results
can best be exemplified by a study on hyperbranched alkyd coating resins. A
comparative study was performed between an alkyd resin based on a hyper-
branched aliphatic polyester and a conventional high solid alkyd, which is a less
branched structure. The hyperbranched resin had a substantially lower viscosity
than the conventional resin of comparable molecular weight, that is, less solvent
was needed to obtain a suitable application viscosity. The hyperbranched resin
also exhibited much shorter drying times than the conventional resin, although
the oil content was similar. These achievements would not have been possible
without a change in architecture of the backbone structure of the resins
(Figs. 12, 13).

Studies on acrylate resins [82, 124, 125] based on hyperbranched aliphatic
polyesters have shown that it is possible to vary both the polarity (wetting be-

Fig. 13. Comparison between a conventional high solid alkyd coating (o) and an alkyd
based on a hyperbranched aliphatic polyester (n). Viscosity as a function of molar mass
[123]
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havior) and Tg of the thermoset by changing either the end-group structure or
the crosslink density. These studies showed that it was possible to vary the Tg
within a wide range, 50–150 ˚C, by changing the number of reactive end groups
(crosslinkable groups) utilizing the same hyperbranched polyester as a base
structure. FT-Raman measurements of the residual unsaturation in these sys-
tems also showed that the acrylate functional end-groups are all accessible to
polymerization; in other words they are not trapped inside the hyperbranched
polyester structure. UV polymerization of the resins also proceeded at a high
rate compared to conventional acrylate resins. The structure of the non-reactive
end groups affected the Tg to some extent although the crosslink density had a
much larger impact on the Tg. The structure of the non-reactive end groups had
a much larger effect on other properties such as wetting behavior. Changing
these groups from carboxylic acid groups to propionate groups increased the
contact angle of water from 10 to 75˚.

Overall, it can be concluded that the thermoset properties can be greatly var-
ied within a wide range by changes in the functionality of the end groups while
retaining the same backbone structure.

5
Applications

Numerous applications have been suggested for hyperbranched polymers but
few or none have yet reached full commercial exploitation. Only a few papers
have been published that address certain applications of hyperbranched poly-
mers.

5.1
Surface Modification

Corrosion of metal surfaces is a serious problem worldwide. It has been demon-
strated that even rather thin organic layers can passivate and block electrochem-
ical reactions on metal surfaces [126]. Bergbreiter et al. have demonstrated that
hydrophobic, fluorinated, hyperbranched poly(acrylic acid) films can block
these unwanted electrochemical reactions [127–130]. Hyperbranched films con-
taining acrylic acid were synthesized on mercaptoundecanoic acid self-assem-
bling monolayers on gold via sequential grafting reactions, as shown in Fig. 14.
This technique proved to be useful for obtaining thick and homogeneous films.
The acid groups were accessible to modifications. Fluorination of these films
gave surfaces that were analyzed with cyclic voltametry and a.c.-impedance
measurements. These studies showed that the barrier to redox reactions was
greatly improved.
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5.2
Additives

The lack of mechanical strength for thermoplastic hyperbranched polymers
makes them more suitable as additives in thermoplast applications. Hyper-
branched polyphenylenes have been shown to act successfully as rheology mod-
ifiers when processing linear thermoplastics. A small amount added to polysty-
rene resulted in reduced melt viscosity [31]. (Sect> 3.1).

5.3
Tougheners for Epoxy-Based Composites

Another demonstrated application is the use of epoxidized hyperbranched pol-
yesters as toughening additives in composites [120–122].

Thermoset resins are widely used in composite materials due to their excel-
lent thermomechanical properties and good impregnation characteristics [121].
However, the toughness, affecting the impact resistance, fatigue behavior and
damage tolerance, often limits their applicability. Toughness properties can be
greatly improved with various additives. When adding these it is important that
the good thermomechanical properties of the thermosetting material are not af-
fected by the toughening system. Månson et al. have demonstrated that by using
an epoxy-modified hyperbranched polyester as toughener the critical energy re-
lease rate, G1c, of carbon fiber reinforced epoxy was improved from 1400 to

Fig. 14. Hyperbranched polymer grafts prepared on a mercaptoundecanoic acid (MUA)
self assembled monolayer confined to a gold substrate. PAAM-c-PAA represents a random
copolymer of poly(acrylamide) and poly(acrylic acid) prepared from the poly(acrylic acid)
carboxylic acid groups and an amine [129]
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2500 J m–2. This result was obtained by a reaction-driven phase separation. An
advantage of this system compared to the more conventional ones is that no fil-
tering of toughener during fiber-impregnation can take place. The phase separa-
tion is accomplished by carefully designing the reactivities of the different com-
ponents as well as the surface polarity of the hyperbranched resin [120–122].

5.4
Coating

The use of hyperbranched polymers as the base for various coating resins has
been described in the literature. Different resin types are obtained depending on
the reactive end-group structure which is attached to the hyperbranched poly-
mer.

A combination of enhanced reactivity and reduced viscosity for alkyd resins
has been achieved by using hyperbranched polyester structures as discussed in
Sect. 4.2.3 [123]. This study clearly showed the benefits of using highly branched
structures in coating applications to obtain improved properties.

Another type of hyperbranched resins which has been studied is unsaturated
polyesters as described in Sect. 4.2.3 [62].

Rånby and Shi also studied hyperbranched methacrylated polyesters and
their use in photopolymerizations of films and fiber-reinforced polymer com-
posites. The resins were found to have low viscosities and higher curing rates
than those of corresponding linear unsaturated polyesters [131–133].

5.5
Medicine

An important application of polymers in medicine is in advanced drug-delivery
systems. These materials control the drug concentration and delivery rate in the
body. Hyperbranched polyesters have been suggested for such systems [111].
However, most applications within this field, described in the literature, deal
with dendrimers and not with hyperbranched polymers.

An interesting study that was performed on dendrimers is also applicable to
hyperbranched polymers. Roberts et al. [134] studied the effect of the dendrim-
er size when used inside the human body. They found that large dendrimers (Mw
ca. 87,000) were passed into the urine and excreted within two days. Smaller
dendrimers (Mw ca. 5,000), on the other hand, accumulated mostly in the liver,
kidney and spleen with no urine excretion. Since most hyperbranched polymers
are polydisperse, this might create a problem for in vivo applications.

5.6
Non-Linear Optics (NLO)

During recent years a number of papers have been presented where a hyper-
branched polymer has been designed for a special application. One of the most
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recent applications of a hyperbranched polyester, containing 3,6-di-acceptor-
substituted carbazole chromophores, was suggested for use in NLO-applications
[119, 135]. Wada et al. prepared their hyperbranched polymer from 3,6-di-
formyl-9-(11-hydroxyundecyl)carbazole via Knoevenagel condensation in a
one-pot reaction. Films with good optical quality could be formed from the pol-
ymer by spin-coating. After electric corona poling at about 100 ˚C the films ex-
hibited a second harmonic coefficient (d33) of about 7 pm V–1. The same chem-
istry was utilized for the synthesis of a similar structure but with a smaller, less
stiff polar chromophore, and the second harmonic generation was monitored in
thin films. However, the d33 was only 2.8 pm V–1 [136].

6
Concluding Remarks

New routes, such as variation of the macromolecular architecture, have been in-
creasingly employed for the development of new macromolecular materials dur-
ing the last few decades. One area of concentration concerns dendritic macro-
molecules. Numerous polymers with highly branched backbone structures have
been synthesized and characterized. Dendritic polymers, comprising dendrim-
ers and hyperbranched polymers, are polymers based on AxB-monomers, in
other words, monomers having one B-functionality and 2 or more A-groups re-
sulting in polymers with a potential branching point in each repeat unit. The dif-
ference between dendrimers and hyperbranched polymers is that the former are
well defined, layerwise constructed polymers with a branching point in each re-
peat unit while the latter contain not fully reacted monomers in the polymer
backbone. Hyperbranched polymers, having less well-defined architecture than
dendrimers, still have properties that differ greatly from conventional linear or
moderately branched polymers. One main advantage of hyperbranched poly-
mers over dendrimers is that the synthesis is less tedious, making more material
available at a reasonable cost.

Hyperbranched polymers can be synthesized in several different ways, the
most commonly used being classical condensation reactions. These reactions
are made either in bulk or in solution where the AxB monomers are condensed
by themselves or in combination with a By core monomer. The use of a By core
monomer improves the control over the molecular weight and dispersity of the
hyperbranched polymer. Hyperbranched polymers can also be synthesized by
self-condensing vinyl polymerization using vinyl-functional monomers. The in-
troduction of this approach has greatly increased the number of possible mon-
omers that can be used for this type of polymer.

A wide variety of hyperbranched polymers have been described in the litera-
ture. Initially, these were mainly condensation polymers such as polyesters and
polyethers since the required monomers were the most readily available. A
number of hyperbranched polymers based on vinyl monomers have been de-
scribed lately after the introduction of self-condensing vinyl polymerization.
One structural variation which has been widely employed for hyperbranched
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polymers is modification of the end-group structure. Hyperbranched polymers
contain numerous end groups which have been varied from highly polar groups
such as carboxylic acids to non-polar end groups. The end groups can also be re-
active moieties such as acrylates, giving a crosslinkable hyperbranched polymer.

The properties of hyperbranched polymers have been shown to depend on
several parameters, the most important being the backbone and the end-group
structure in combination. The glass transition temperature, for example, can be
shifted 100 ˚C simply by changing the polarity of the end groups, while main-
taining the same backbone structure. Properties differing from linear polymers
are, for example, the solubility which is much higher for hyperbranched poly-
mers but not as high as for dendrimers. Hyperbranched polymers normally ex-
hibit an amorphous, non-entangled behavior, i.e., a Newtonian behavior in the
melt. The non-entangled state also makes hyperbranched polymers rather brit-
tle. Attachment of reactive end groups in various amounts leads to thermoset
structures where the Tg and crosslink density can be greatly varied for the same
hyperbranched polymer. Some examples of crystalline and liquid crystalline hy-
perbranched polymers have been described although most hyperbranched pol-
ymers are considered to be amorphous. The possibility of crystallinity further
expands the number of future applications for hyperbranched polymers.

Several applications have already been suggested, related to the special prop-
erties of hyperbranched polymers. Several thermoset resin materials have been
described where the hyperbranched polymer exhibits a low resin viscosity,
thereby reducing the need for solvents to reach the application viscosity. At the
same time, rapid curing (high reactivity) and good film properties (high molec-
ular weight of the resin) are obtained. Another successful application of hyper-
branched polymers is as toughening additives for composite applications. In
this case, the polarity of the hyperbranched polymer was adjusted to give a re-
action-induced phase separation in the system, resulting in a dramatic increase
in toughness but still retaining the overall good mechanical properties of the
system. Another proposed application is in the field of rheological additives
where hyperbranched polymers have proved to act successfully as processing
aids. Hyperbranched polymers for NLO applications and in medicine have also
been described.

Hyperbranched polymers is a young and rapidly growing area within the field
of macromolecules. The special properties of these polymers are now clearly de-
scribed and a number of interesting applications of the hyperbranched polymers
will bring them to the marketplace. The future looks bright for these materials.
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The prediction and interpretation of conformational properties of branched polymers is
difficult, due to the complexity and variety of these structures. Numerical simulations are,
consequently, very useful in the investigation of these systems. This review describes the ap-
plication of numerical simulation techniques to relevant theoretical problems concerning
branched polymer systems, taking also into account the related experimental data. Monte
Carlo, Molecular Dynamics and Brownian Dynamics methods are employed to simulate the
equilibrium and dynamic behavior, and also to reproduce hydrodynamic properties. The
simulations are performed on several polymer models. Thus, different Monte Carlo algo-
rithms have been devised for lattice and off-lattice models. Moreover, Molecular Dynamics
and Brownian Dynamics can be carried out for detailed atomic or coarse-grained chains. A
great amount of investigation has been engaged in the understanding of uniform homopol-
ymer stars as single chains, or in non-diluted solutions and melts, employing this variety of
techniques, models and properties. However, other important structures, such as stars with
different types of monomer units, combs, brushes, dendrimers and absorbed branched pol-
ymers have also been the subject of specific simulation studies.
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List of Symbols and Abbreviations

a proportionality constant in the exponent of the dependence of the
diffusion coefficient for branched chains (non-dilute conditions)

A mean asphericity
A connectivity matrix (Rouse theory)
A2 osmotic second virial coefficient (in units of volume.mol/mass2)
b bead statistical length
B2 molecular second virial coefficient (in units of volume)
BD Brownian Dynamics
c concentration
c* overlapping concentration
c** crossover concentration between semi-dilute and concentrate 

regimes
C(X,t) time-correlation function
C(t*) stress time-correlation function
d number of spacial dimensions
df number of dimensions of the tethering object
D translational diffusion coefficient
Dext diffusion coefficient of an external blob
Db diffusion coefficient of a tethered chain
DMC Dynamic Monte Carlo
Econf configurational energy
EV excluded volume
f number of arms
fA fraction of monomer A in a star copolymer
f t translational friction coefficient
F(Rb) end-to-end distance of a branch
F total frictional force on a chain



Conformational Properties of Branched Polymers: Theory and Simulations 37

Fi frictional force on unit i
Fix x component of force on unit i
g ratio of the quadratic radius of gyration of a branched chain to that

of a linear chain of the same molecular weight
gG ratio of the quadratic radius of gyration of a Gaussian branched

chain to that of a Gaussian linear chain of the same molecular
weight

gn number of generations in a dendrimer
g' ratio of the viscosity of a branched chain to that of a linear chain

of the same molecular weight
G' real or storage modulus
G" imaginary or loss modulus
h ratio of the translational friction coefficient of a branched chain to

that of a linear chain of the same molecular weight
h* hydrodynamic interaction parameter
H matrix of preaveraged hydrodynamic interactions
HI hydrodynamic interactions
I 3

 

´3 unit tensor
kB Boltzmann's constant
KR Kirkwood-Riseman
li bond vector i
LJ Lennard-Jones potential
M molecular weight
MC Monte Carlo
MD Molecular Dynamics
NVT canonical ensemble
NPT isothermal-isobaric ensemble
n-1 number of bonds between two units
nb number of beads in a blob
nbc number of bonds of a given unit
nc number of chains in a simulation box
next number of external blobs
nS number of units within a dendrimer spacer
N number of beads in a free chain
Nb number of beads in a tethered branch or chain
NL number of sites in a lattice
NA Avogadro's number
p pressure
P universal friction parameter
P(q) or P(x) scattering form factor
q modulus of the scattering vector
r distance to the tethering surface, line or point
rS lateral distance to the adsorption point in a plane
rZ perpendicular distance to the adsorption point in a plane
R end-to-end distance
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Rb center-to-end distance in a star
Rc radius of the star core
Rg mean size of a chain
Rg

b mean distance from the tethering point to the chain or branch end
Rh hydrodynamic radius
Ri position vector of unit i
Rij vector joining units i and j
RS radius of a rigid sphere
RG renormalization group
S radius of gyration
SANS small angle neutron scattering
SAW self-avoiding walk
SCF self-consistent field
t time
t0 time zero for correlation
t* reduced time
T temperature
T hydrodynamic interaction (Oseen) tensor
ui ith Rouse normal coordinate
U intramolecular potential
v center of masses velocity
vi velocity of unit i
vi

s velocity of solvent at unit i
V volume
vs

i0 bulk solvent velocity at unit i
Vw constant in experimental scattering data
wconf statistical weight of a configuration
x chain size-scaled scattering variable
xb ideal branch size-scaled scattering variable
X generic vector
y exponent in the brush osmotic pressure dependence
yi y coordinate of the i unit
y1 exponent in the empirical dependence of friction
y2 exponent in the empirical dependence of viscosity
z excluded volume parameter
z* reduced excluded volume parameter
ZK Zimm-Kilb

 

a expansion factor

 

b reduced bead-bead cluster integral

 

b0 reduced bead-bead cluster integral (athermal solvent)

 

e attractive energy (in a lattice or a potential well)

 

z friction coefficient of a bead
[

 

h] intrinsic viscosity
[

 

h(

 

w)] frequency-dependence complex intrinsic viscosity

 

h0 solvent viscosity
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q theta temperature

 

q(f) exponent in the dependence of the center-to-end distance 
distribution of a star branch

 

l(f) exponent for the distance distribution of adsorbed stars

 

n excluded volume mean size critical exponent

 

x blob size

 

PS osmotic pressure

 

r ratio of the radius of gyration to the hydrodynamic radius

 

rb bead density

 

rf density of tethered chains or branches

 

rf* overlapping density of tethered chains or branches

 

rS density of a rigid sphere

 

s repulsive distance parameter in an intramolecular potential

 

tb relaxation time of a tethered chain

 

te elastic relaxation time

 

tk relaxation time of the kth Rouse mode

 

tD rotational relaxation time

 

F universal viscosity parameter
Fp polymer volume fraction
c Flory-Huggins thermodynamic interaction parameter
Y* interpenetration factor
w angular velocity of oscillatory shear gradient
<> conformational average
<>0 conformational average in a Gaussian chain
» proportional

1
Introduction

Modern synthesis methods, fundamentally based on anionic polymerization [1]
have allowed for the preparation of a great variety of polymers with specific
branching structures (see Fig. 1) in addition to the random branching that oc-
curs in the polymerization of commercial polymers. Thus, there are architec-
tures with a single polyfunctional branching point containing arms of the same
chemical structure with the same or different chain lengths (uniform or non-
uniform star chains [2] ), and similar structures, but with the arms containing
monomers of different compositions (star copolymers and miktoarms). Also,
there are structures with a given number of branching points distributed, ran-
domly or uniformly along a backbone (comb chains). Moreover, polymer chains
can be grafted onto a surface giving rise to structures generally known as brush-
es [3, 4]. (Comb chains with branching points of functionality greater than 3 are
also sometimes called polymeric brushes [5]). Furthermore, it is possible to
build structures possessing regular “treelike” or “dendritic” branching with ra-
dial symmetry usually called starburst dendrimers [6, 7]. The multifunctional
groups at the ends can react to give a new generation containing an increasingly
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Fig. 1. a Star polymer. b Comb polymer. c Brush. d Miktoarm star copolymer. e Star copol-
ymer. f Star chain center-adsorbed in a plane. g Dendrimer
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higher number of monomer units. It can be understood that the properties of all
these structures can differ remarkably from those of linear polymers of similar
chemical composition and molecular weight [8].

Stars, combs with three-functional branching points along a locally rigid
backbone, and planar surface-brushes can also be considered as assemblies of
linear chains tethered to df-dimensional objects [9] (df=0, chains tethered to a
point, or stars, df=1, chains tethered to a line, combs, and df=2, chains tethered
to a surface, brushes). Excellent introductions and reviews on the molecular
properties of these different molecular architectures are contained in [2–4, 6–9].

The interpretation of the physical properties of polymers can be accom-
plished by means of theories based on molecular models [10]. Often, however,
these theories cannot incorporate the complexity necessary to describe
branched chains properly. Thus, the presence of a branching point may cause a
substantial increase in the density of monomeric units close to it in comparison
with other regions of the chain [11]. Some of the idealized polymer models com-
monly employed in the study of linear chains cannot properly describe this ef-
fect. Of course, the heterogeneity in the distribution of polymer units is more
important for high functionalities, e.g., the heterogeneity occurring in stars with
many branches allows one to distinguish a central region or core of large density
of polymer units. Consequently, one of the crucial problems in the study of
branched polymers is to formulate a consistent description of the bead density
in the different chain regions. The congestion of units close to the branching
points also causes difficulties in hydrodynamic and dynamic theoretical treat-
ments. Thus, the popular Rouse [12] and Rouse-Zimm [13] theories, usually em-
ployed to describe the dynamics of flexible polymers, makes use of assumptions
that can fail to give some of the characteristic features of branched chains. The
presence of branching points gives rise to slow relaxation processes that are not
described in the Rouse theory [2]. The characterization of different chain relax-
ations is also an important problem in the study of brushes. Furthermore, the
hydrodynamic properties commonly employed for routine polymer characteri-
zation depend strongly on the polymer architecture, and the description of these
properties by means of the Rouse-Zimm theory is particularly poor in some cas-
es, such as the viscosity of many-arm stars.

Simulation methods have been proved to be useful in the study of many dif-
ferent molecular systems, in particular in the case of flexible polymers chains
[14]. According to the variety of structures and the theoretical difficulties inher-
ent to branched structures, simulation work is a very powerful tool in the study
of this type of polymer, and can be applied to the general problems outlined
above. Sometimes, this utility is manifested even for behaviors which can be ex-
plained with simple theoretical treatments in the case of linear chains. Thus, the
description of the theta state of a star chain cannot be performed through the
use of the simple Gaussian model. The adequate simulation model and method
depend strongly on the particular problem investigated. Some cases require a
realistic representation of the atoms in the molecular models [10]. Other cases,
however, only require simplified coarse-grained models, where some real mon-
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omeric or repeating units are engulfed into a single ideal bead [15]. In some cas-
es these beads can be placed on the sites of geometrical lattices. These ideal
models allow for a considerable saving of computational time and are able to re-
produce the “long-range” or “low frequency” properties, i.e., global properties
that do not depend on the local behavior of the chain atoms [16]. There are sev-
eral types of simulation procedures [14, 17–19]. In the Monte Carlo (MC) meth-
ods, different new configurations, i.e., representations of the system, are sam-
pled either randomly (random MC) or after generating a stochastic change in
the previous configuration giving rise to a Markov process [18]. The properties
of interest (the macroscopic equilibrium conformational averages) are then de-
rived from the values obtained for different configurations in the sample. Some
of the Markov processes may actually represent realistic conformational chang-
es in local parts of the chains. With these types of algorithms, it is possible to
generate a “Dynamic Monte Carlo” (DMC) trajectory from which some global
dynamical properties can be calculated. DMC can even be applied to describe
the dynamics of discrete representations of the polymer chains in lattice models.
Other simulation algorithms, however, do not rely on stochastic changes, but
calculate dynamic trajectories by solving the system equations of motion [19].
Molecular Dynamics (MD) methods use the classical mechanics equations of
motions to obtain the positions and velocities of polymer units (and also of sol-
vent molecules if included in the system), while Brownian Dynamics (BD) meth-
ods solve the Langevin equation, in which a frictional continuous solvent is rep-
resented by a stochastic force acting on each one of the polymer units. MD and
BD simulations can be performed on realistic models and also on off-lattice but
coarse-grained polymer models.

In this article I review some of the simulation work addressed specifically to
branched polymers. The brushes will be described here in terms of their com-
mon characteristics with those of individual branched chains. Therefore, other
aspects that do not correlate easily with these characteristics will be omitted. Ex-
plicitly, there will be no mention of adsorption kinetics, absorbing or laterally
inhomogeneous surfaces, polyelectrolyte brushes, or brushes under the effect of
a shear. With the purpose of giving a comprehensive description of these appli-
cations, Sect. 2 includes a summary of the theoretical background, including the
approximations employed to treat the equilibrium structure of the chains as well
as their hydrodynamic behavior in dilute solution and their dynamics. In Sect. 3,
the different numerical simulation methods that are applicable to branched pol-
ymer systems are specified, in relation to the problems sketched in Sect. 2. Final-
ly, in Sect. 4, the applications of these methods to the different types of  branched
structures are given in detail.
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2
Theoretical Background

2.1
Structure

A basic theoretical model for flexible polymers is the Gaussian chain which as-
sumes N ideal beads with intramolecular distance between them following a
Gaussian distribution, so that the mean quadratic distance between two beads
separated by n-1 ideal and not correlated bonds is given by [15, 20]

(1)

where b is the statistical length of the beads and the subscript 0 indicates the un-
perturbed (ideal) character of the Gaussian chain. Therefore, the model predicts
that the mean square end-to-end distance of a linear chain can also be written as

(2)

and the same proportionally with N also holds for the Gaussian mean quadratic
radius of gyration of the chain, <S2>0. Then, the chain mean size can be estimat-
ed as

. (3)

The averaged global shape of the chain is represented by a coil with some de-
gree of asphericity. This model is adequate to describe the coarse-grained prop-
erties of ideal chains, i.e., chains without intramolecular long-range interaction
between units. Therefore, it can be applied in situations where the long-range
interactions are effectively canceled. According to Flory [20], this should be the
case of a polymer chain in the melt state where intramolecular and intermolecu-
lar interactions are indistinguishable, since the density of polymer units is ho-
mogeneous and no other types of monomer or solvent molecules are present.
Linear chains in dilute solution obey a pseudoideal behavior in the theta state of
relatively poor thermodynamic solvent quality, or at the theta (q) temperature
for a given polymer-solvent system [15, 16, 20], where long-range binary poly-
mer-polymer intramolecular interactions are exactly canceled by the polymer-
solvent interactions. Deviations from the ideal behavior in theta conditions can
be caused by the chain stiffness, in the case of partially rigid chains that are not
sufficiently long. The stiffness effects can be incorporated through theoretical
models such as the wormlike chain model in terms of a persistence length pa-
rameter [15].

For solvents of good thermodynamic quality, the polymer-solvent interac-
tions are preferred over the intramolecular interactions between beads which,
therefore, can be effectively considered as repulsive interactions that give rise to
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the excluded volume (EV) effects. Then it is possible to define a relevant EV pa-
rameter, z»bN1/2, that is proportional to the reduced bead-bead binary cluster
integral (relative to the bead volume), b. This integral is assumed to vary with
temperature as b=b0(1–q/T). For T>>q, the chains tend to expand by including
more solvent and form a swollen coil to avoid the repulsive bead-bead interac-
tions. A basic representation of EV is included in the models that consider self-
avoiding walk (SAW) chains where the N bonds are not correlated, similarly to
the Gaussian chain, but where two beads cannot be in the same position in a giv-
en conformation. The EV effect is a many-body type problem. It has been de-
scribed through two-parameter (b and b or z) perturbation theories [15, 16, 21]
that yield universal expressions for the expansion factor

(4)

However, the rigorous expressions obtained in this way are expansions valid
only for small values of z. In fact, the theory cannot reach the most interesting
limit of very long chains without the use of doubtful approximations, due to the
divergence of the EV theory perturbation series for z®¥. The more recent ap-
proach based in formal similarities between the behavior of polymer systems
and ferromagnetic materials, and the subsequent application by de Gennes and
others of the scaling and renormalization group (RG) theories have allowed for
an adequate resummation of the EV effects, which avoids the divergence prob-
lem [16]. Thus, it has been proved that the mean size of a long polymer chain of
N beads in an athermal (b=b0@1) solvent should be proportional to Nn, where n
is a critical exponent whose value is n=0.588@3/5. The same result with n=3/5 is
obtained from the mean-field Flory equation [20], which minimizes the free en-
ergy obtained as a competition between a cohesive (or entropic) contribution,
consistent with the Gaussian distribution of units, and a mean-field evaluation
of the monomer-monomer interaction in terms of parameter z. Domb and Bar-
rett [22] have proposed an interpolation formula that takes into account the two-
parameter theory expansion, valid for low z, and the EV power-law for high z to
describe intermediate values of z. The n exponent for EV conditions can be com-
pared with the value 1/2, found for the equivalent exponent for the ideal chain,
Eq. (3). The RG approach can be related with the two-parameter theory through
RG calculations for thermal solvents that yield [23]

(5)

valid for z>>1. On the other hand the chains tend to collapse into a compact
globule [24] when they are placed, conveniently diluted, in a very poor solvent
(sub-theta regime). Considering a uniform density inside the globule and as-
suming that the contraction of the chain with respect to the ideal dimensions
can be expressed as in Eq. (4), i.e., in terms of a coefficient a=f(z) (now smaller
than 1, and corresponding to negative values of b and the variable z) the scaling
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law R»N1/3|b|–1/3 is predicted. The transition from the expanded coil to the com-
pact globule can be approximately described by a generalization of the Flory
mean-field theory for EV, including a three-body term [24]. A further generali-
zation of this theory to stars has been accomplished by di Marzio and Guttman
[25].

It should also be noted that ternary and higher order polymer-polymer inter-
actions persist in the theta condition. In fact, the three-parameter theoretical
treatment of flexible chains in the theta state shows that in real polymers with
finite units, the theta point corresponds to the cancellation of effective binary in-
teractions which include both two body and fundamentally repulsive three body
terms [26]. This causes a shift of the theta point and an increase of the chain
mean size, with respect to Eq. (2). However, the power-law dependence, Eq. (3),
is still valid. The RG calculations in the theta (tricritical) state [26] show that size
effect deviations from this law are only manifested in linear chains through log-
arithmic corrections, in agreement with the previous arguments sketched by de
Gennes [16]. The presence of these corrections in the macroscopic properties of
experimental samples of linear chains is very difficult to detect.

Non-dilute solutions also allow for theoretical descriptions based on scaling
theory [16, 21]. When the number of polymer chains in the solution is high
enough, the different chains overlap. At the overlapping concentration c*, the
long-scale density of polymer beads becomes uniform over the solution. Conse-
quently c* can be evaluated as

(6)

where M is the polymer molecular weight (proportional to N) and NA is the
Avogadro number. Since Rg follows the scaling law given by Eq. (3) or Eq. (5) for
theta or EV conditions, c* decreases for longer chains and can actually be very
small for high molecular weight polymers. Semi-dilute solutions of linear chains
are defined as those with polymer concentrations beyond c* but still with a small
number of interactions between polymer units. Consequently there are no sig-
nificant high-order bead-bead interactions, implying correlated fluctuations in
the local polymer density.

A semi-dilute solution has an entangled aspect similar to a network. An indi-
vidual chain can be envisioned as constituted by a series of blobs of size x, equal
to the transient network mesh size [16], which obviously decreases with increas-
ing concentration. For c@c*, x is similar to the chain mean size. For c>>c*, how-
ever, the mesh size is independent on the chain length. In a good solvent, accord-
ing to Eqs. (5) and (6), these conditions are satisfied by:

(7)

and, consequently, x is approximately proportional to c–3/4. Within each one of
the blobs the chain does not interact with other chains and, consequently, its be-
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havior correspond to the EV regime. The number of units in a blob is obtained
from Eq. (5) as

(8)

The whole system is a packed system of blobs, and the distribution of blobs in
a chain is similar to the ideal distribution of units in the melt state. For c>>c*, the
global size in a good solvent is obtained by considering Eqs. (2), (3), (7) and (8):

. (9)

If the polymer concentration increases so that the number of high order bead-
bead interactions is significant, c>>c**»b, (when c is expressed as the polymer
volume fraction, Fp), the fluctuations in the polymer density becomes small, the
system can be treated by mean-field theory, and the ideal model is applicable at
all distance ranges, independent of the solvent quality and concentration. These
systems are denoted as concentrated solutions. A similar description applies to
a theta solvent, but in this case, the chains within the blobs remain pseudoideal
so that nb»x2, x»N1/2(c/c*)–1 and Rg»N1/2, i.e., the global chain size is always in-
dependent of concentration.

The different regimes of solvent quality and concentration cannot be similar-
ly described in the case of branched chains, due to the higher local density of
polymer units around the branching points. Thus, an adequate scaling theory
has been applied for the case of a uniform star chain of high functionality (f
arms) by Daoud and Cotton [11]. According to this description, the central core
is a dense pack of polymer units, similar to that of a melt system, but with all the
units belonging to the same chain. Then the polymer core adopts the aspect of
globule with uniform density, i.e., with a mass proportional to its volume. Con-
sequently, if the chains are relatively small, the chain size should correspond to

(10)

(Nb=N/f is the number of beads per branch or arm). For larger chains, however,
the solvent can penetrate in outer regions of the star and the situation within
these regions is more like a concentrated solution or a semi-dilute solution.
These portions of the arms constitute a series of blobs, whose sizes increase in
the direction of the arm end. The surface of a sphere of radius r from the star
center is occupied by f blobs. Then the blob size x is proportional to rf–1/2. Most
internal blobs are placed in conditions similar to concentrated solutions and,
consequently, their squared size is proportional to the number of polymer units
inside them as in an ideal chain. This permits one to obtain the density of units
inside the blob, nb/x3, as a function of r:

. (11)

    nb » -x bn n n1 1 2/ ( )/

    
R N n N c N cg b» » »- - -( / ) ( / ) ( / )/ / ( )/ ( ) / /1 2 1 2 2 1 2 1 3 1 2 1 8x b bn n

    
R N N fg b» =1 3 1 3 1 3

    rb r r f( ) – /
= 1 1 2



Conformational Properties of Branched Polymers: Theory and Simulations 47

A three dimensional integration of this density over values of r ranging from
0 to the mean branch extension, Rg

b (which is also proportional to the global star
size Rg), i.e., over the overall chain volume, give the total number of units in the
star, N. In this manner the chain mean size is estimated as

. (12)

The exponents in Eqs. (10) and (12) agree in the crossover region which,
therefore, should correspond to Nb@f1/2. Consequently, the concentrated solu-
tion regime is reached for chains with Nb>>f1/2. In a good solvent when the arms
are long enough, however, the peripheral blobs behave as in a semi-dilute solu-
tion, and they are swollen, i.e., Eq. (8) holds. This new condition leads to

(13)

.  (14)

The simultaneous agreement of exponents in Eqs. (12) and (14) characterizes
the crossover condition. Then it is derived that the validity of Eq. (14) corre-
sponds to Nb>>f1/2b–2. This means that for an athermal solvent, where b@1, the
intermediate region governed by Eq. (12) disappears, while for a theta solvent
Eq. (14) is not applicable.

The distribution of the center-to-end distance, F(Rb), in a star can also be pre-
dicted from scaling theory. For EV chains, it is expected to be close to Gaussian
[26], except for small R. Applying scaling arguments and RG theory, Ohno and
Binder [27] obtained a power-law behavior for small R, F(Rb)»(Rb/<Rb>)q(f)

with the exponent value q(f)@1/2 for high f. They also considered the case of a
star center adsorbed on a planar surface, evaluating the bead density profiles
and the distribution of center-to-end distance in the directions perpendicular
and parallel to the surface in terms of similar power-laws.

The Daoud and Cotton scaling theory can be considered as a particular case
of the general scaling treatment for tethered chains [9]. Thus, combs with three-
functional branching points from a locally rigid backbone, and brushes are sim-
ilarly described by introducing the value of df  corresponding to the dimensional
object to which the chains are tethered. The scaling equations assume that the
density of branches (per unit length) or grafted chains (per unit surface), rf, is
above the critical overlapping values, rf*»N–n and rf*»N–2n for EV combs and
brushes. Below the overlapping branching or grafting density, the chains hardly
interact, they are not stretched, and the branch extension or the brush height
does not depends on this density. These conditions are denoted as the mush-
room regime. In the overlapping regime, the blob surface can be estimated by
assuming that the spherical/cylindrical/planar surface at distance r from the
tethering object is shared by the different crossing arms/branches/grafted
chains, accordingly to the value of rf (rf=f for stars). Then, the blob size can be
written as

    
R N fg b» 1 2 1 4/ /

    r b bn n n n n n
b r r f r f( ) ( )/ ( )/ ( )/ / / /» @- - - - -1 3 3 1 2 1 2 4 3 2 3 1 3

    
R S R N fg g

b
b=< > » » - -2 1 2 1 2 2 1/ ( )/ ( )n n nb



48 J. J. Freire

. (15)

The density of units as a function of r is given as

 (16)

in a good solvent. Figure 2 illustrates this behavior for the different cases. Inte-
grating the bead density over a df-dimensional r variable from zero to the mean
extension of the branch or grafted chain gives the number of beads (total
number in stars, or the number per unit length/surface for combs/brushes), N=
Nbrf. This way, the size of a branch or grafted chain is finally estimated as

(17)
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Fig. 2. Bead density profiles. Solid line Brushes, mean-field and scaling theory (step func-
tion); dashed-dotted line generalization of the Milner et al. theory for brushes in the theta
state; dashed-double dotted line Milner et al. theory for brushes (EV chains); dashed line EV
stars; dotted line EV combs. Variable r is scaled to give zero bead density for the smooth
curves of brushes at r=1. The brush curves are normalized to show equal areas (same
number of units). The comb and star densities are arbitrarily normalized to show similar
bead density per volume unit as the step function and EV curves for brushes at the value of
r where these curves intercept
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again in a good solvent. Equations (16) and (17) can, in fact, be considered as
general results applicable to the theta and sub-theta compact globule regimes,
provided that the critical exponent n is substituted by the adequate 1/2 and 1/3
exponents, and b is respectively ignored or substituted by its absolute value.

Interestingly, scaling theory predicts for brushes that the density of units is
independent from the distance to the surface and that the extension of the chain
(or the brush height) is proportional to its contour length as if the chains were
completely extended. Thus

(18)

in the EV regime. The same result was obtained by Alexander [28] who applied
a theory similar to the Flory treatment of free linear chains, in which the global
stretching of a chain, due to mean-field repulsive interactions, is opposed by an
entropic contribution. The brush height can be investigated through experimen-
tal force measurements between two brushes. The experiments of Auroy et al.
[29] confirm its proportionality with the chain length for poly(dimethylsi-
loxane) chains grafted onto porous silica. More recent experiments [30] have
demonstrated that grafted triblock polymer chains are stretched far beyond
their equilibrium extension. The collapse or sharp transition to the compact
form suffered by individual chains does not apply to brushes in the overlapping
regime. Instead, a “weak collapse” is expected, where the brush height decreases
but the chain still remain stretched, with its extension proportional to the chain
length [31].

An improvement of the approximate Flory approach is given by self-consist-
ent field (SCF) methods, in which the EV interactions are described by a poten-
tial field, depending on the segment distribution, which in turn influences this
distribution giving rise to a self-consistent procedure. Thus, the Daoud and Cot-
ton scaling prediction for the bead density function of stars has been verified
through SCF calculations [32, 33]. The SCF method has also been applied to
combs [32], showing that the scaling law gives the correct dependence on rf, but
the decay is somehow slower than the rb(r)»r(1–3n)/2n@r–2/3 prediction. Moreo-
ver, the SCF theory for brushes shows that the density of monomers is not uni-
form, but follows a parabolic decay from a maximum near the surface to zero at
the brush height [34]. This result is explained by Milner et al. [35] by assuming
that the most favorable configuration of a chain is found by minimizing the sum
of local stretching and repulsion terms, allowing that the chain ends are located
at any distance from the interface (in contradiction with the Flory-type ap-
proach which considers global interactions), and assuming that this configura-
tion is predominant in the long chain limit. Then the extension of the chain is
similar to the Alexander result, but a parabolic decay of the bead density is
found:

(19)
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(this decay is also included in Fig. 2). The same theory predicts that the density
of end units within the brush is not zero, unless rf is high. This disposition is dif-
ferent in stars, where the ends are preferentially disposed in the outer regions of
low bead density. Experimental techniques as neutron reflectivity and small an-
gle neutron scattering (SANS) [36] can probe the inner structure of brushes. The
SCF theory predicts [37, 38] that the bead density in the theta state follows an
elliptical decrease as a function of the scaled variable r/Nrf

1/2. This is compared
with the EV profile in Fig. 2.

Similar theoretical calculations have also been applied to dendrimer mole-
cules of different number of generations, gn, with a high number of units be-
tween functional points, nS, by de Gennes and Hervet [39], assuming a concen-
tric shell for each generation. The number of monomers in the dendrimer is pro-
portional to nS and grows exponentially with gn. Since the available volume
grows only as gn

3, a perfect dendrimer can be grown up to a given generation
number limit beyond which only imperfect growth is achieved. According to de
Gennes and Hervet, the bead density profile (within the limit generation
number) grows parabolically from the core reaching the asymptote value of one
at the outer regions. The size of the dendrimer is obtained to be Rg»N1/5. Recent
SCF calculations by Boris and Rubinstein [40] show, however, that the density
decreases with r and the ends are distributed in all regions. Biswas and Cherayil
[41] performed RG calculations for dendrimers in EV conditions. Their results
indicate that exponent n can also be employed to describe the mean size of star-
burst molecules.

Freed et al. [42, 43], among others [44, 45] have performed RG perturbation
calculations of conformational properties of star chains. The results are mainly
valid for low functionality stars. A general conclusion of these calculations is
that the EV dependence of the mean size can be expressed as the contribution of
two terms. One of them contains much of the chain length dependence but does
not depend on the polymer architecture. The other term changes with different
architectures but varies weakly with EV. Kosmas et al. [5] have also performed
similar perturbation calculations for combs with branching points of different
functionalities (that they denoted as brushes). Ohno and Binder [46] also em-
ployed RG calculations to evaluate the form of the bead density and center-to-
end distance distribution of stars in the bulk and adsorbed in a surface. These
calculations are consistent with their scaling theory [27].

The ratio of the squared radius of gyration of a branched polymer to that of
the linear polymer having the same molecular weight:

(20)

is usually employed to analyze the architectural dependence obtained from ex-
perimental data. The calculation of g with Gaussian chain model for a uniform
star chain, gG, was performed by Zimm and Stockmayer [47]. They obtained

. (21)
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This result is valid when the intramolecular interactions are canceled out, i.e.,
if the mean-field theory is applicable. For a high number of arms, g»f–1. The same
limit also applies to stars with randomly distributed units. Kurata and Fukatsu
[48] performed a more general calculation which also included other branched
structures as combs (with uniform or random distribution of units in the sub-
chains between branching points and in the branches) and randomly branched
chains, all of them with Gaussian statistics. They found that gstar<grandom<gcomb
and that the random distribution of units diminishes the contraction of chain
size (or increases g) with respect to a uniform chain with the same type of
branching. Quantitatively, their results for g can be applied to dilute solutions in
the theta state when only low functionality branching points are present, so that
core effects around these centers are not significant.

According to the RG calculations, valid for relatively low functionalities, the
mean contribution of EV in the numerator and denominator of Eq. (20) should
cancel for any branched structure in a good solvent. Therefore, ratio g for a star
in a good solvent should be very close to gG, Eq. (21). Different experimental
data included in [49] seem to support this conclusion. Croxton [50] carried out
iterative deconvolution theoretical calculations for uniform stars with up to six
arms of model lengths that yielded, g»f–1, a result that is not in agreement with
Eq. (21) for the considered range of low functionalities. On the other hand,
Eq. (14) shows that the Daoud and Cotton theory gives g»f(1–3n), or, approxi-
mately, g»f–4/5. A fit of available experimental data for stars in good solvents with
f=2–128 is consistent with this scaling law [2, 51].

Contrary to the case of linear chains, the ideal chain cannot generally pro-
vide a good representation of a branched chain in the theta state. Thus, the
presence of the core in a star chain induces important finite-size effects. These
effects are even manifested in the location of the theta point. Since a higher
number of branches induces more three-body terms, the compensation of the
effective binary interactions (including these three-body terms) is achieved at
lower temperatures. This effect is found experimentally for star chains of low
molecular weight [49]. Then the theta temperature increases with the molec-
ular weight for relatively short highly-branched chains. For longer chains,
however, the number of third-body interactions in the core is relatively small
and the theta temperature becomes independent of the chain architecture.
The same three-body effects cause an expansion of the branched chains at the
theta point with respect to the result expected for an ideal chain [42]. It must
be considered that, although the compact distribution of beads within the
core is similar to the melt state, the distribution of distances within an arm
corresponds, in fact, to an extended conformation. This effect increases re-
markably with the degree of branching. Therefore, it is expected from the RG
calculations that the values of g of highly branched stars in the theta state, gq,
are greater than those predicted by the ideal chain, Eq. (21), and, consequent-
ly, than those corresponding to the good solvent case. The variation of gq with
f can be obtained from the scaling theory, Eq. (12) as g»f–1/2. Fits of experi-
mental data for theta state stars in the range 2–128 presented in [2, 51] yield
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g»f–0.69 and g»f–0.64. It seems that the exponent depends to some extent on the
values of f included.

An increase of g in the theta state with respect to the ideal values is similarly
obtained by Ganazzoli et al. [52, 53] through the use of a theoretical approach
based on the self-consistent minimization of the intramolecular free energy.
Their results indicate a significant expansion of the star arms due to the core ef-
fects. The same type of calculations have later been used to describe the star con-
traction in the sub-theta regime [54]. Guenza et al. [55] described a star chain at
the q point as a semiflexible chain with partially stretched arms that take into ac-
count the star core effect. Their results are also consistent with experimental da-
ta.

A simple characterization of the chain shape is given by the asphericity, that
can be defined and calculated form the eigenvalues of the tensor of quadratic
components of the radius of gyration [56]. Branched structures should exhibit
clear deviations from the asphericity obtained for linear chains, approaching the
zero value corresponding to the sphere limit for very compact structures. The
asphericity of ideal uniform star polymers has been theoretically predicted with
the Gaussian model by Wei and Eichinger [57]. Wei [58] has also extended the
calculations to the case of non-uniform stars. He found a “maximum shape sym-
metry” effect for stars of two or three different arm lengths at intermediate val-
ues of f. This effect is characterized by values of the largest component of the ten-
sor and the prolateness parameter that are higher than for linear chains. More-
over, he has evaluated the asphericity of Gaussian combs with f branches, which
exhibit a minimum of asphericity for an intermediate values of f, recovering the
result of linear chains for f®¥. Some RG calculations have also been performed
to obtain the asphericity of linear chains with EV [59].

The form factor is an important property of individual chains. This property
is expressed as a function of x=q2<S2>, where q is the modulus of the scattering
vector depending of experimental factors (observed scattering angle and wave-
length of the scattering radiation). The form factor of an ideal linear chain is giv-
en by the monotonously decreasing Debye function [15]

. (22)

This function also gives an accurate description of the behavior of a linear
chain in a good solvent (the expansion of the chain size is scaled by the x varia-
ble) except for very high values of x, corresponding to short distances between
units. These short distances are dominated by the correlation hole effect due to
EV [16, 26].

The calculation of the form factor for an ideal uniform star chain was per-
formed by Benoit [60]. The result can be expressed as

 (23)
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where xb=(x/gG)/f. The shape of the form factors predicted by Eq. (23) differs
from the Debye function (Fig. 3). This effect is magnified by means of Kratky
plots, in which P(x)q2 is represented vs x. In these plots, the star chains show a
maximum which is amplified for higher numbers of arms, while the linear
chains exhibit a monotonous increase [61] (see inset at Fig. 3). The Benoit func-
tion gives a good description of small angle neutron scattering (SANS) data of
18-arm polyethylene (PE) star melts [62], and the resulting radius of gyration is
swollen with respect to the ideal chain prediction. The mean size data of PE stars
in the theta state obtained by Boothroyd et al. [63] follow essentially the same be-
havior, with some additional swelling.

The self-consistent free-energy minimization approach of Ganazzoli et al.
[64] yields results for the scattering of stars in the theta point. These functions
are compared with the Benoit function, showing some sharpening in the Kratky
peak. This feature is attributed to a more uniform density due to intramolecular
interactions and describes better experimental data [65] for 12-arm polystyrene
(PS), though both theoretical curves fail to give a qualitative description of the
high-q region. They also have computed the average angle between arms which
decreases from the ideal chain value. Based on these results, the authors have
proposed the existence of umbrella-like conformational shapes, though there is
no firm evidence of this feature.

Fig. 3. Form factors. Solid line Linear chain; dashed line f=6 star chain; dotted line f=12 star
chain. Inset: Kratky plots (same notation)
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The form factor of a star in a good solvent is better represented by a general-
ized Kratky plot P(x)q1/n vs x. The experimental data show a plateau for high val-
ues of q, i.e., at the short-range distance, which correlates with the blob size [11].
Croxton [50] performed calculations of the star form factors with his iterative
deconvolution method for relatively short chains that showed significant differ-
ences with the Benoit curve. An RG calculation of the form factor of uniform star
chains has been carried out by Alessandrini and Carignano [66]. They obtained
a complex closed-form expression that can be more simply written by means of
a fitted formula. The RG formula qualitatively reproduces the expected plateau,
though, like the Benoit curve, cannot be adequately fitted to reproduce the ex-
perimental data of an 18-arm polyisoprene (PI) star in a good solvent [67] for
high values of q (see Fig. 4).

The experimental data corresponding to one labeled arm in stars of f=12
(good solvent) [68] shows, as expected, Kratky plot ordinates that increase mo-
notonously with q. However, the plateau is only obtained with an apparent crit-
ical exponent of 2/3 (i.e., greater than the theoretical value, n»3/5). This seems
an indication of the arm stretching effect, though the scaling and RG theoretical
predictions describe this effect only in terms of a pre-exponential factor [11, 42].

In the case of finite star chains with very high functionality, the units are con-
centrated near and in the star core. Therefore, their theoretical behavior can ap-
proximately be described by a rigid sphere [2]. The form factor of a sphere
presents a series of oscillations. The experimental data of stars with 128 arms
[67] show a smooth function covering the first two oscillations of the sphere, fol-
lowed by a peak coincident with the third oscillation and the asymptotic behav-
ior for high q previously described for stars of lower functionalities. It seems
that the chain resembles a soft spherical core with a peripheral region of consid-
erably smaller density.

Fig. 4. Generalized Kratky plot of the experimental form factor of an 18-arm PI star
(points); solid line fit to the Benoit function, Eq. (23); dashed line fit to the RG curve de-
scribed in [66]. Reprinted with permission from [67]. Copyright (1994) American Chemical
Society
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The osmotic second virial coefficient A2 is another interesting solution prop-
erty, whose value should be zero at the theta point. It can be directly related with
the molecular second virial coefficient, expressed as B2=A2M2/NA (in volume
units). For an EV chain in a good solvent, the second virial coefficient should be
proportional to the chain volume and therefore scales proportionally to the cube
of the mean size [16]. It can, therefore, be expressed in terms of a dimensionless
interpenetration factor that is defined as

. (24)

RG calculations in the EV regime have been performed by Freed and Douglas for
linear and uniform star chains [69]. The results are expected to be valid only for
low functionality stars and, in fact, the comparison with existing experimental
data is only reasonable for small number of arms, while the theoretical results
for f³6 clearly exceed the experimental data [49].

Similarly to linear chains, the overlap concentration [16] defines the limit of
the semi-dilute regime, and c* has to coincide with the density within the
branched chain. However, according to the Daoud and Cotton theory [11], the
internal density in a star chain can follow three different regimes depending on
the star region. If f1/2>>N, the stars only contain their compact internal cores
and cannot overlap. In the remaining cases there are two different regions. In-
side a region defined by the radius Rc the interactions with other stars are not
allowed, and the structure is similar to that of a single star. This radius is ob-
tained by equaling the density within the blobs, rb(Rc), with the system concen-
tration. Then, according to Eq. (13), the result for sufficiently long branches in a
good solvent is

. (25)

For r>Rc, the mesh size of the transient network should be equal to the blob
size at distance Rc, i.e.,

(26)

and it coincides with the mesh size of linear chains, as it can be verified from
Eqs. (5)–(7) for c>>c*. The same coincidence is also shown for theta solvents.
Therefore, the semi-dilute solution of stars has the same aspect as a similar so-
lution of linear chains, but including regions of radius Rc from the chain centers
where the star behavior is preserved. The global mean size for c>>c*, is, there-
fore, given by the same expressions found for semi-dilute solutions of linear
chains in a good solvent, Eq. (9), or in theta conditions, Eq. (3).

Recently, Grayce and Schweizer [70] have proposed a liquid-state theory for
stars in the melt state, considering only repulsive interactions. They obtained
g»f–0.64 Nb

–0.04, i.e., the exponent of the f-dependence is bracketed by the scaling
theory and the Gaussian chain predictions for theta conditions (exponents –1/2
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and –1 respectively). It can be noted that this exponent is also similar to the em-
pirical result obtained from experimental data in theta solvents. The avoidance
of the arms by each other is intermediate between the Gaussian model (that ig-
nores this effect) and the scaling theory. This approach seems to be equally ap-
plicable in any range of values of f.

2.2
Hydrodynamic Properties

Hydrodynamic properties, such as the translational diffusion coefficient, or the
shear viscosity, are very useful in the conformational study of chain molecules,
and are routinely employed to characterize different types of polymers [15, 20,
21]. One can consider the translational friction coefficient, ft, related to a trans-
port property, the translational diffusion coefficient, D, through the Einstein
equation, applicable for infinitely dilute solutions:

(27)

(kB is Boltzmann's constant), or the intrinsic viscosity, [h], that is obtained by
extrapolating reduced shear viscosities to infinitely dilute conditions. As in the
case of the mean size, the experimental data for dilute solutions are expressed in
terms of ratios to the equivalent data for linear chains of the same molecular
weight. Then, h corresponds to the ratio between the chain friction coefficients

(28)

and g' corresponds to the ratio of intrinsic viscosities

. (29)

The theoretical prediction of these properties for branched molecules has to
take into account the peculiar aspects of these chains. It is possible to obtain
these properties as the low gradient limits of non-equilibrium averages, calcu-
lated from dynamic models. The basic approach to the dynamics of flexible
chains is given by the Rouse or the Rouse-Zimm theories [12, 13, 15, 21]. How-
ever, both the friction coefficient and the intrinsic viscosity can also be evaluated
from equilibrium averages that involve the forces acting on each one of the units.
This description is known as the Kirkwood-Riseman (KR) theory [15, 71]. Thus,
the translational friction coefficient, ft, relates the force applied to the center of
masses of the molecule and its velocity

(30)
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and F is obtained as a sum of the friction forces Fi exerted on the different units.
These forces can be obtained from

 (31)

where z is the friction coefficient of a unit, vi is the unit velocity, and vs
i is the

solvent velocity. This latter quantity differs from the bulk solvent velocity vs
i0 be-

cause of the presence of other polymer units. This effect is known as hydrody-
namic interactions (HI), and can be described through tensor T. As with the EV
effects, the HI between blobs are screened out in the semi-dilute regime [21]. For
dilute solutions, tensor T can be obtained as an approximate solution of the Na-
vier-Stokes equation for incompressible fluids. Its simpler form was derived by
Oseen [72] as

(32)

(h0 is the solvent viscosity). Vector Rij connects a pair of units and therefore de-
pends on the particular chain conformation. Furthermore, the HI fluctuate with
the fluctuations in the chain conformations. This problem is usually avoided by
adopting an orientational and conformational preaverage [15, 21, 71] of T:

. (33)

This leads to a system of N linear equations from which the unit forces can be
obtained. The final result can be expressed in the following general expression
derived by Horta and Fixman [73], which does not assume any specific form for
the distribution of distances between units, or chain model:

(34)

where H is a HI matrix defined as

 (35)

h* is the HI parameter [74], whose particular value is not relevant in the non-
draining limit, defined as h*N®¥, and applicable in many experimental situa-
tions. For the free-draining regime, i.e., without HI, h*=0, and

. (36)
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This result is applicable to semi-dilute and concentrated solutions [21], and is
also useful to check many simulations that do not include HI. For non-draining
chains, introducing Gaussian statistics in Eq. (35), and transforming the sum-
mations over a large number of units in Eq. (34) into integrals, the translational
friction coefficient can finally be written as [15]

(37)

where P is a universal parameter for long flexible non-draining linear chains, P=
5.21. Performing a series expansion for the HI tensor, and neglecting higher
terms, it is possible to avoid the preaveraging approximation. The result of this
approach is known as the double-sum Kirkwood formula [75]

(38)

which gives Eq. (37) for a long non-draining Gaussian linear chain but with P=
5.10.

A similar KR approach can be employed for the intrinsic viscosity. In this case
it is necessary to assume the presence of a small amount of shear rate, which can-
cels out in the calculations. Now, the linear equations are used to evaluate an av-
eraged crossed component of the stress tensor on unit i, <Fixyi>.The final result
for a long linear non-draining chain is

(39)

in terms of the other universal parameter for long ideal non-draining linear
chains, F=2.87´1023 mol–1 (consistent with expressing [h] in cm3/g and <S2>in
cm2).

Equations (3), (37), and (39) give the scaling laws ft»N1/2, [h]»N1/2 for long
non-draining linear chains with Gaussian statistics or at the theta point. It can
be assumed that the same power laws can also be applied to other types of non-
draining flexible chains in ideal conditions. Moreover, it can be argued that
Eqs. (37) and (39) can still be employed for other chain architectures in any type
of solvent conditions, but with different values of P and F as N-independent pa-
rameters. Indeed, one can consider a rigid sphere of radius RS as a limiting case,
roughly describing a chain of any architecture collapsed in the sub-theta region
[24], or a small star chain with many branches so that it only comprises the core
region [11]. The radius of gyration of this compact object is calculated as 

. (40)
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This result, together with two well-known hydrodynamic equations, the
Stokes law for friction

(41)

and the Einstein law for viscosity, expressed as

(42)

where rs is the uniform density inside the sphere, allow for the calculation of the
friction coefficient and the intrinsic viscosity as functions of the radius of gyra-
tion. The final results are Eqs. (37) and (39), but with P=9.93 and F=
9.23´1023 mol–1. Consequently, it can be assumed that the solvent penetrates in
the chain molecule for any other possible situations related with solvent condi-
tions or architecture; then the sphere becomes a coil with some degree of as-
phericity and with a smaller and non-constant density of polymer units inside
it. These changes affect the constants P and F, but not the validity of Eqs. (37)
and (39). It should also be noted that P is simply related with parameter r [76],
defined as the ratio of the root mean squared radius of gyration to the hydrody-
namic radius, Rh:

. (43)

The hydrodynamic radius is the equivalent spherical radius obtained from
the Stokes law for the chain friction coefficient, Eq. (41), with Rs substituted by
Rh. It is easily verified that

(44)

and that the KR value of P for a Gaussian linear chain yield r@1.48, while r@0.77
is obtained for a rigid sphere.

If EV effects are incorporated in the radius of gyration, Eqs. (5), (37), and (39)
yield ft»Nn and [h]»N3n–1@N4/5 for a flexible linear or star polymer in good sol-
vent conditions. Also, the density of polymer units decreases because of the
chain expansion. As a result, P and F should adopt smaller values than in the
ideal chain case (though both the friction coefficient and intrinsic viscosity in-
crease due to the larger chain size). Several approximate ways to introduce the
chain expansion according to the two-parameter description in the hydrody-
namic theory have been devised [15]. Although all of them describe the decrease
of F as a function of the EV parameter z, the predicted forms of this variation
are not coincident. Freed et al. [77] have performed RG calculations describing
the approach to asymptotic values for P and F in the long chain limit. The cross-
over from the theta state to the good solvent region is, however, very slow and
dependent on draining effects through the HI parameter h*. This can explain
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why many experimental data of hydrodynamic properties in marginal solvents
of moderately good quality maintain intermediate scaling law of the types ft»N1

y

and [h]»N2
y with exponent values 1/2<y1<3/5 and 1/2<y2<4/5, which are con-

stant over a broad range of relatively long chain lengths.
Another important problem is related with the validity of the preaveraging

treatment of HI, introduced in the KR theory. In the case of rigid objects, mod-
eled as assemblies of beads, it is possible to perform rigorous calculations fol-
lowing the KR approach, but avoiding the orientational preaveraging. According
to a numerical method established by García de la Torre and Bloomfield [78] this
can be done by solving linear systems of 3 N equations. The conformational
preaverage in flexible chains, however, can only be avoided by using approxi-
mate approaches. The values P@6.0 [79] and F@2.5´1023 mol–1 [80] are generally
accepted as the most accurate results from experimental data of long flexible lin-
ear chains in the theta state. The noticeable differences between these values and
the KR results for ideal linear chains suggest that the preaveraging approxima-
tion has a modest but noticeable influence in the accuracy of the KR predictions
for linear chains (together with possible effects of non-canceled three-body in-
teractions in the theta state).

The introduction of branching in the Kirkwood formula and the KR calcula-
tions can be accomplished in a relatively easy way if Gaussian statistics corre-
sponding to ideal chains are maintained. This description cannot, however, be
very accurate in molecules with centers of high functionality because of the
presence of cores with a high density of polymer units, which profoundly per-
turbs the internal distribution of distances. Stockmayer and Fixman [81] em-
ployed the Kirwood formula and Gaussian statistics to calculate h in the case of
uniform stars, obtaining an analytical formula. They also performed a KR eval-
uation of the viscosity and proposed that g' could be evaluated from the approx-
imation

. (45)

This approximation is equivalent to assuming that the differences in internal
densities and, consequently, in solvent draining, between a branched chain and
the homologous linear chain, when included in their corresponding mean sizes,
can describe both the friction coefficient and the viscosity. Besides these theo-
retical considerations, an empirical correlation in terms of a log-log fit of h vs f
was employed by Roovers et al. [51]. Kurata and Fukatsu [48] and Ptitsyn [82]
performed a more general Kirwood evaluation of the friction coefficient for dif-
ferent types of ideal branched molecules (uniform and randomly distributed
stars, combs and random-branched structures). Their results for different struc-
tures are included within the limits 1£h/g1/2£1.39.

The calculation of g' for Gaussian uniform star chains was carried out by
Zimm and Kilb (ZK) [83]. They used a modified version of the dynamic Rouse
theory including preaveraged HI (in the non-draining limit) that considers the
particular connectivity of units consistently with the star architecture. This ap-
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proach will be detailed later in the text. In the context of the present discussion
it is sufficient to state that this method is equivalent to preaveraged KR calcula-
tions, since both approaches give practically identical quantitative results for hy-
drodynamic properties of ideal chains [15]. Zimm and Kilb obtained numerical
results that, extrapolated to the long chain limit, were consistent with the ap-
proximation

. (46)

A similar numerical calculation with the KR preaveraged formula, Eq. (34)
for ideal uniform stars and combs was performed by Prats et al. [84]. For the star
chains, they discovered significant differences with respect to the results ob-
tained through the Kirkwood formula, Eq. (38). Thus, the KR values h/g1/2 of
highly branched stars clearly exceed the Kurata and Fukatsu upper limit. The ex-
trapolated numerical values of h for this type of stars are, however, in better
agreement with the experimental data in good solvent or EV conditions (sum-
marized in [49]) which, according to the RG theory arguments [43] should be
close to values of ideal chains as in the case of ratio g. Consequently, it seems that
employing the KR theory instead of the Kirkwood formula allows for a relatively
accurate description of the frictional properties of EV star chains, in spite of the
preaverage approximation. Nevertheless. the experimental data of h corre-
sponding to highly branched uniform stars in the theta state are always greater
than those obtained with the KR method and ideal statistics. Of course, the pres-
ence of the star core, where the arms are expanded in order to avoid repulsions
between their units, should be included to explain these differences, as in the
previously discussed case of ratio g.

Also, the results for g' from the KR or ZK methods are significantly smaller
than the theta solvent data described in [49]. This discrepancy could also be at-
tributed to the use of Gaussian statistics in the theoretical calculations. Never-
theless, the theoretical results are still remarkable higher than the data corre-
sponding to EV conditions (a quantitative analysis of all these results for h and
g', together with simulation data will be presented in Sect. 4). The use of preav-
eraged HI is seemingly responsible for these remaining differences. It is known
that the preaveraging treatment of HI gives poorer reproduction of some confor-
mational properties of assemblies or chains with compact distribution of beads.
This has been verified for viscosity in the case of rigid structures [85]. Moreover,
Burchard et al. [86] investigated the effect of considering preaveraged HI in the
calculation of the q-dependent first cumulant, or initial slope, of the dynamic
(time-dependant) scattering function for linear chains. They showed that the
relative error introduced by the preaveraging approximation becomes as large as
40% for highly branched stars (from 15% in linear chains).

Ganazzoli et al. [53] performed calculations for the hydrodynamic radius
(based on the Kirkwood formula), and also for the intrinsic viscosity [87] of uni-
form stars, using a generalized version of the ZK method that incorporates non-
Gaussian intramolecular distances. These distances were obtained according to
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their free-energy minimization scheme [52, 53]. They found that the ratios g and
h of the ideal chain were slightly smaller but similar to those obtained with EV
statistics, in qualitative agreement with the RG theory, and both ratios were sig-
nificantly smaller than the values obtained at the theta state. For g', however, the
EV results were smaller than for the ideal chain. Moreover, these theoretical ra-
tios differ considerably from the available experimental data for h and g'. The
approximate way to calculate intramolecular distances and the introduction of
preaveraged HI surely explains the deficiencies found in this theoretical descrip-
tion.

2.3
Dynamics

As previously indicated, the Rouse theory is usually employed to describe the
dynamics of an ideal chain [12, 15, 21]. Three different types of forces are incor-
porated. The frictional forces can be set without HI (basic Rouse theory) or with
preaveraged HI introduced through matrix H, as in the preaveraged KR method
(Rouse-Zimm theory [13]). The theory also includes stochastic forces that take
into account the random interactions with small solvent molecules (Brownian
motion). Finally, the Rouse theory considers intramolecular cohesive forces be-
tween units, by means of a system of harmonic springs. (It can be verified that a
harmonic spring potential is able to yield the equilibrium distribution corre-
sponding to the ideal chain Gaussian intramolecular distances.) The spring forc-
es are set through a connectivity matrix A with elements

(47a)

where nbc is the number of bonds in unit i. (1 for end units and 2 for inner units
in a linear chain),

(47b)

for bonded units i and j (|i-j|=1 for linear chains), and

(47c)

for non-bonded units. Diagonalization of the matrix A (or HA when HI are in-
cluded) yields a transformation matrix which describes the system N normal co-
ordinates uk, whose equilibrium and dynamic probabilities are obtained from
the Fokker-Planck equation of the chain [15, 21].

Many dynamic properties can be defined as time-correlation functions of a
quantity. For vector X(t), for instance, in the non-normalized form

(48)
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where the average extends over all the values of t0. The time-correlation function
of each normal coordinate, or Rouse mode, is shown to decay exponentially, giv-
ing a relaxation function tk. In the basic Rouse model for non-draining chains
[13, 21]

. (49)

Different equilibrium, hydrodynamic, and dynamic properties are subse-
quently obtained. Thus, the time-correlation function of the stress tensor (cor-
responding to any crossed-coordinates component of the stress tensor) is ob-
tained as a sum over all the exponential decays of the Rouse modes. Similarly,
M[h] is shown to be proportional to the sum of all the Rouse relaxation times.
In the ZK formulation [83], the connectivity matrix A is built to describe a uni-
form star chain. An (f-1)-fold degeneration is found in this case for the f-inde-
pendent odd modes. Viscosity results from the ZK method have been described
already in the present text.

The incorporation of non-Gaussian effects in the Rouse theory can only be ac-
complished in an approximate way . For instance, the optimized Rouse-Zimm
local dynamics approach has been applied by Guenza et al. [55] for linear and
star chains. They were able to obtain correlation times and results related to dy-
namic light scattering experiments as the dynamic structure factor and its first
cumulant [88]. A similar approach has also been applied by Ganazzoli et al. [87]
for viscosity calculations. They obtained the generalized ZK results for ratio g'
already discussed.

There is an alternative and very direct way to generalize the Rouse-Zimm
model for non-Gaussian chains. This approach takes advantage of the expres-
sion given by the original theory for the chain elastic potential energy in terms
of normal coordinates:

. (50)

The approximation consists of assuming that the same expression applies in
non-Gaussian chains [21, 89], using for the calculation of <uk

2>a general formu-
la in terms of the averages <Ri.Rj> (Ri is the position vector of unit i) and the
transformation matrix that diagonalizes HA. This approach is consistent with
the general relationship

(51)

that, according to Eqs. (5), (27), and (37), yields tk»N3n for non-draining chains.
Then the sum of relaxation times provides M[h]»N3n, which is consistent with
the non-draining KR result for the viscosity, Eq. (39). In fact, it has been shown
[89] that the proposed approximation leads to the formula derived from the KR
theory for the intrinsic viscosity in terms of averages of internal distances [90].
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It can also be verified that this formulation is entirely equivalent to the opti-
mized Rouse-Zimm local dynamics approach [55].

The complex viscosity, i.e., the viscosity observed in the presence of an oscil-
latory shear rate, is a dynamic property that can be straightforwardly obtained
from the Rouse, or Rouse-Zimm theory as the Fourier transform of the stress
time-correlation function. Thus, these theories give [15]

(52)

where w/2p is the oscillation frequency, so that w=0 reproduces the intrinsic vis-
cosity, and, in this particular case, Eq. (52) corresponds to the calculation of this
property as a sum of the relaxation times, previously mentioned. The imaginary
and real components of the complex viscosity are directly related with the exper-
imental real and imaginary (or storage and loss) parts of the complex modulus
G' and G". Of course, Eq. (52) is of limited validity for high frequencies unless the
theoretical scheme is modified to include realistic constraints that define practi-
cally fixed bond lengths, bond angles, and rotational angles. Sammler and
Schrag [91] used the Rouse theory to calculate the complex viscosity and oscil-
latory flow-birefringence (that can also be derived from the relaxation times) for
rings, cyclic and H-shaped combs, and stars. All these calculations were per-
formed with ideal statistics, and preaveraged HI. Ganazzoli [92] has recently in-
corporated non-Gaussian effects in stars using the same approach employed in
his previous calculations of intrinsic viscosities. The results show some special
features in the intermediate range of frequencies, due to the effect of the star
core. Improved RG descriptions of the HI and EV effects on the calculation of the
viscosity properties of a dilute chain undergoing shear flow have been intro-
duced by Öttinger [93] and Schaub [94], and they surely can also be applied to
branched structures.

There are some dynamic features due specifically to branching. Thus, in a star
chain one can consider the relaxation of the global chain shape, te, obtained
from the time-correlation function of the center-to-arm distance. te is clearly
conditioned by the interactions in the star core [2, 9]. This relaxation time is dis-
tinguishable from the rotational relaxation, tD, which should be approximately
independent of core effects (tD defines the time required for the star to rotate or
to translate a distance similar to its size). te can be approximately obtained by
applying a relation similar to Eq. (51), but considering the mean size of the arm,
Rg

b, given by Eq. (14) and the diffusion of the next external blobs. Assuming that
most of the arm Nb units are concentrated in these blobs, each one contains
Nb/next units and their number can be evaluated as next»Rg

b/x(Rg
b), which is

proportional to f1/2. In the free-draining regime (consistent with most simula-
tions and prevailing for the semi-dilute conditions within the star), Eqs. (27) and
(36) give Dext»(Nb/next)

–1 and, finally

. (53)
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Consequently, this relaxation time is predicted to be nearly independent of
the number of arms. Dielectric relaxation experiments for stars up to 18 arms by
Boese et al. [95] show this behavior. The rotational relaxation time, however, can
be considered similar to longest internal modes, i.e., it depends on the overall
size and, assuming free draining

. (54)

There is no distinction between te and tD in the Rouse description of linear
chains. A third relaxation mechanism contemplates the disentangling of two or
more intertwined arms. This relaxation is considerably slower and strongly de-
pendent on f. Obviously, this feature cannot be described by the ideal chain
model.

The dynamics of a chain molecule in the entangled regime is a fundamental
problem in polymer physics. According to the de Gennes tube model [16, 21] a
long linear flexible chain moves by reptating along a tube of a given contour
length formed by the physical entanglements. This theory predicts relaxation
times of the Rouse modes according to tk»N3/k2. Then, considering Eq. (3) for
the chain mean size in the non-diluted regime, c>>c*, and Eq. (51), the transla-
tional diffusion coefficient should obey the scaling law D»N–2.

The contour length fluctuations are very important in the case of branched
polymers. Obviously, simple reptation cannot explain the dynamics of a star
chain. As two arms perform a reptation move along their contour in a tube, other
branches have to retract simultaneously from their contours to the branching
point and, then, to form new tubes [21, 96]. The time required for the arm mo-
tions can be estimated as a mean passage time through a configuration in which
the center-to-arm distance is close to zero. Assuming a Gaussian distribution of
distances, the activation theory predicts that this time should be exponentially
dependent on the arm length. As this process should occur for (f-2) arms simul-
taneously it is finally found that

. (55)

This law reproduces the dependence on the chain length of experimental data
of tracer diffusion of three-arm stars in a matrix of long linear polymers [97],
though some deviations, attributed to tube renewal effects, are observed for
high molecular weights. These results have also been explained with the alterna-
tive coupling model of relaxations, employing parameters obtained from viscoe-
lastic data [98]. The experimental variation with f is considerably weaker than in
Eq. (55), indicating an alternative mechanism where the star diffuses by retract-
ing just one arm. The experimental self-diffusion of three-arm chains [99] is
much faster than the tracer diffusion in the matrix of linear chains. The tube
constraint release is apparently much more efficient when the chain is surround-
ed by other stars of higher mobility.
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3
Simulation Models and Methods

Polymer systems can be investigated through numerical simulation procedures
[14]. In some cases, it is only necessary to obtain properties of a single isolated
chain. Therefore, the simulated configurations correspond to the chain confor-
mations. Exact enumeration techniques can be applied to obtain equilibrium
properties for chain models with a discrete number of conformations (which ob-
viously increases very rapidly with chain length), e.g., in the case of a single
chain on a lattice. These techniques are based on obtaining exact numerical av-
erages considering all the different conformations for short chains and extrapo-
lating the results to the long chain limit [15].

However, a more general case is the simulation of a many-chain system, for
instance a polymer solution. Then a finite volume of the system is defined as the
simulation box, and a change in the system configuration corresponds to con-
formational modifications affecting one or several chains. Usually, interactions
with the box walls are avoided by using periodic boundary conditions. Thus,
when some polymer units move outside the box, homologous images of these
units move inside the box from the opposite wall. Therefore, the size of the box
must be sufficiently large to avoid interactions between parts of a chain with its
images at the opposite side of the system.

MC techniques randomly sample the configurational equilibrium of a single
chain or many-chain system. BD and MD consider mechanical equations of mo-
tion and generate dynamic trajectories of positions (and velocities) vs time. The
trajectories also sample the system configurations and, therefore, both equilib-
rium and dynamic properties can be calculated from dynamic methods. The dy-
namic simulation algorithms only differ between them in the details included in
the physical models and in the numerical procedures used for solving differen-
tial equations. MC methods, however, must include previously defined rules to
change configurations and, therefore, they admit a great variety of algorithms.

3.1
Monte Carlo

Simple MC methods generate randomly chosen independent configurations,
and then obtain the required averages of properties by taking into account the
equilibrium statistical weights

(56)

depending on the configurational energies, Econf, in a canonical, or NVT statisti-
cal ensemble where the number of units and molecules, volume and temperature
are fixed. (The averages are evaluated as arithmetic means over the accepted con-
figurations, if the model only considers repulsions through the single-occupancy
condition, consistent with the hard-spheres potential, in the case of SAW chains.)
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These simple methods are, nevertheless, hardly applicable for most physical sys-
tems that exhibit a very heterogeneous configurational space, where only a rela-
tively small fraction of configurations are relevant. The enrichment algorithm
[100] consists roughly in generating different configurations of SAW chains of N
units (or Nb units per branch) by adding randomly a new bond to configurations
of N-1 (or Nb-1) units through an adequately chosen number of tries. If all these
tries are unsuccessful, further growth of the chain is not attempted, and a new
chain generation begins. The averages of properties are calculated over the dif-
ferent configurations generated by the procedure for each chain length.

Many MC algorithms generate Markov chains, in which a configuration is ob-
tained by introducing a randomly generated or stochastic change in the previ-
ous configuration. These stochastic processes only have to comply with the con-
ditions of microscopic reversibility and ergodicity along a Markov chain. There-
fore they are not required to describe real motions in the simulated system, as
far as only equilibrium averages are computed from the simulations. A configu-
ration is accepted or not according to the Metropolis rule [101] based on the con-
sideration of the statistical weights of the new and the previous (old) configura-
tion: It is directly accepted if

(57a)

If this condition is not met, a random number ranging from 0 and 1, xran, is
selected and the new configuration is only accepted if

. (57b)

Otherwise, the previous configuration is again accepted as new. It is easily
shown that the resulting configurations constitute an equilibrium ensemble in
the canonical ensemble. Other procedures have also been devised to sample the
configurational space in an efficient way. For instance, the configurational bias
method [102] re-grows a chain from a chosen unit to an end, by placing each one
of the successive units, taking into account the relative probabilities of the alter-
native possible locations. Once the new chain is completed, the Metropolis cri-
terion is employed to accept or not the new chain. In all these Markov methods,
the initial chain is built with a moderate energy, and a certain number of config-
urations is allowed before starting to obtain the system properties in order to al-
low for the system equilibration. Final results are then obtained as simple arith-
metic means over the generated configurations (or a representative sample of
them) after this equilibration period.

3.1.1
Lattice Algorithms

A basic polymer model is built by attaching successive units along the chain in
neighboring sites of a geometrical lattice, with random orientations of the re-

  
w wconf

new
conf
old>

    
w wconf

new
conf
old

ran/ > x



68 J. J. Freire

sulting chain bonds. In this way the simple and the non-reversal random walk
models are defined. With the limit of a high number of units these models repro-
duce the coarse-grained properties of a Gaussian chain, as any other flexible
molecule without intramolecular interactions. The lattice voids represent sol-
vent molecules, and all the lattice sites are assumed to represent the same vol-
ume. A certain number of polymer chains, nc, can be introduced in the system,
so that the polymer volume fraction is given by

(58)

where NL is the total number of sites in the lattice (or the lattice volume). This
basic representation is employed to formulate the mean-field Flory-Huggins
theory of polymer solutions [20], where the averaged balance of polymer-poly-
mer, polymer-solvent and solvent-solvent interactions is described by the pa-
rameter c. EV effects can be incorporated by setting the condition that two dif-
ferent units cannot share a common lattice site in a given chain conformation.
This restriction defines the SAW chain model on a lattice (Fig. 5). Different de-
grees of solvent quality can be incorporated by including a reduced attractive
parameter, e/kBT. Of course, this quantity can be directly related with the Flory-
Huggins parameter c, though this relation depends on the number of neighbor-
ing lattice sites, i.e., on the lattice geometry. A term –e/kBT is added to the total
energy for a given configuration each time that two non-bonded units, belong-
ing or not to the same polymer chain, are found in neighboring lattice sites. The
total configurational energy Econf is calculated from e/kBT and the total number
of non-bonded neighboring units. Most MC simulations on a lattice consider
SAW models with or without configurational energies (corresponding to ther-
mal or athermal solvents).

A variety of rules can be introduced to generate stochastic changes. Local
changes (or bead-jump moves) in a chain should include end moves, usually
bents of terminal bond, and inner moves [103]. Figure 6 contains illustrations of
these moves on a simple cubic lattice. Inner bents (in which a unit between two
perpendicular bonds moves to the empty opposite corner) should alternate with
crankshafts (moves involving two units and three bonds that take place when the

Fig. 5. SAW three-functional star on a squared lattice
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mentioned corner is not empty) to pratically comply with the ergodicity condi-
tion [104]. These bead-jump rules can actually mimic the chain dynamics. They
have to be modified in the case of branched chains to include the motion of the
branching points. (However, equilibrium simulations for single star chains can
consider the central point as a fixed reference.) Linear chains can use the more
efficient “reptation” algorithms in which a terminal bonds is removed and added
in a random orientation at the other side of the chain.

Other moves are specific for dilute solutions (or single chain simulations) and
very congested systems (as melts). Some complex rules involving different
chains have been developed for the equilibrium study of melts of linear chains,
such as the cooperative motion algorithm [105] where beads are moved cooper-

Fig. 6a–d. Scheme of bead-jump moves for a linear chain on a simple cubic lattice: a bent
(end move); b bent (inner move); c crankshaft (end move); d crankshaft (inner move). Solid
lines Initial bonds; broken lines final bonds (alternative possibilities included)
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atively along closed paths in the lattice. For EV single chains, the Pivot algorithm
has been shown to be particularly efficient [106]. This algorithm, easily imple-
mented for lattice and non-lattice models, chooses an inner unit and rotates the
rest of the chain up to its nearest end (or the branch end) around this pivoting
point.

The fluctuating bond model [107] has been developed as an alternative to
conventional lattice models, in which the bond lengths can adopt different val-
ues similar to the Gaussian segments of a coarse-grained flexible chain. To allow
such fluctuations each unit is set to occupy simultaneously a group of neighbor-
ing sites in the lattice in order to comply with the SAW condition. The unit is,
however, physically placed in one of these sites and, therefore, its distance to a
neighboring units is not constant (see Fig. 7). Configurational changes are per-
formed through single unit bead-jumps and, therefore, can also mimic the chain
dynamics.

3.1.2
Off-Lattice Models

The obvious advantage of lattice models is the simple location of beads in sites
which allows for the use of integral numbers in the simulations and also permits
a fast identification of interacting neighboring units. The lattice geometry, how-
ever, introduces severe constraints at the local level, which can only be smoothed
out by generating sufficiently long chains. In the case of branched chains, chang-
es in the branch points can only be included through complex rules. Moreover,
there are no simple ways to introduce some physical features such as HI in a lat-
tice model system. Consequently off-lattice models are preferable in many prac-
tical cases.

Off-lattice models consider chains composed of interacting units in the free
space. Single chains or simulation boxes containing many-chain systems can be
investigated. Usually the solvent is only considered according to its quality ef-
fects in thermal systems. Therefore it is assumed to fill the remaining space act-

Fig. 7. Fluctuating bond model for a three-functional SAW star on a squared lattice
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ing through a mean-field force. However, more complex, even atomic, represen-
tations of chains and solvent molecules are also feasible.

A basic off-lattice model is constituted by hard-sphere beads joined through
fixed lengths bonds of random orientations (Bead and Rod models, Fig. 8a). End
moves and inner crankshafts are employed in bead-jump algorithms for this
model [108]. Reptation moves or Pivot algorithms can also be considered. Ener-
getic interactions between non-bonded units can be introduced by means of dis-
tance-dependent potentials. These potentials should include a repulsive part (to
mimic the SAW single occupancy condition) and also an attractive well. Provid-
ed that these conditions are met, the specific form of the potential is not very im-
portant for coarse-grained models. For instance, a 6:12 Lennard-Jones (LJ) po-
tential can be employed. A distance cut-off is sometimes introduced to facilitate
the energy computation. The null-interaction distance parameter s only takes
care of the repulsive core of the units and can, therefore, be maintained fixed for
many systems. Then the reduced energy in the attractive well, e/kBT, is usually
the relevant parameter to describe the solvent conditions.

A simple modification of these models may include variable bond lengths,
with distribution of lengths usually consistent with those of springs (Bead and
Spring models, Fig. 8b). A natural choice is to use a non-perturbed Gaussian dis-
tribution of bond lengths [109] so that the model identifies with the ideal or
Gaussian chain when e/kBT tends to zero (or with the dynamic Rouse model for
ideal chains). In these models, inner single bead-jumps can be adequately per-
formed to maintain the intramolecular distance distributions of the bonds link-
ing the bead with its neighbors [110]. Reptations and Pivot algorithms can also
be used. A modification of the Pivot algorithm, useful for chains in theta solvent

Fig. 8a,b. Off-lattice representations of a three-functional star: a Bead and Rod model; b
Bead and Spring model
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conditions or for star chains, consists in adding a Gaussianly sampled new bond
to the pivoting unit and then simply connecting the rest of the chain up to its
end, without performing the prescribed rotation [109]. This procedure will be
denoted here as the translational Pivot algorithm.

3.1.3
Upper and Lower Bounds of Hydrodynamic Properties

The effect of preaveraging HI in the calculation of friction coefficients or viscos-
ities can be estimated through certain equilibrium MC simulations. Thus, Zimm
[90] proposed to estimate a property from its equilibrium average obtained rig-
orously (i.e., avoiding orientational preaveraging) for the different conforma-
tions within an MC sample. This rigid-body approach was shown later to consti-
tute an upper bound of the real value [111]. Following a variational method, Fix-
man [112] was able to obtain lower bounds both for the friction coefficient and
the viscosity. While a first approximation for the lower bound of the friction co-
efficient is simply given by the KR formula, Eq. (34), and further increases of this
limit value are only accomplished through complex and specific procedures
[113], a lower bound for the viscosity can be implemented in the form of a rela-
tively simple and general scheme [114] that makes use of certain equilibrium av-
erages. In fact, the calculation of the quantities involved in these averages (es-
sentially 3N´3N double-sum terms) requires a computational effort considera-
bly smaller than working with the rigorous KR equations (which include the in-
version of 3N´3N matrices [78]). Since complex computations are always re-
quired, the MC samples for these calculations are usually formed by a limited
fraction (about 1000 conformations) of the total number of generated conforma-
tions.

3.1.4
Dynamic Monte Carlo

As we have already mentioned, a stochastic MC sample can be identified with the
dynamic trajectory of the system if the rules used in the generation of new con-
formations somehow describe the perturbations suffered by local regions of a
chain. Consequently, it is possible to perform DMC simulations by employing a
simple bead-jump algorithm [14]. The unit time for a DMC trajectory is usually
defined as composed by the number of bead-jump motions (of any type) needed
to give a single chance to every unit to move as average, i.e., it includes ncN, or
FpNL move attempts. As other dynamic methods, the DMC simulations are em-
ployed to obtain different properties through time-correlation functions. Thus
DMC for SAW linear chains have been able to reproduce the expected chain
length dependence of the Rouse relaxation times in single chain [115] and
many-chain [116] systems, which is generally considered as an adequate confir-
mation of the method validity.
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3.2
Molecular Dynamics

Sometimes the required dynamic properties of a single chain or a polymeric sys-
tem can be investigated by solving the classical mechanics equations of motions
of the system. The MD algorithms consider a certain number of simulation steps
(with constant forces), obtaining new positions and velocities of the units after
each one of these steps [19]. Similar to the MC methods, the initial positions of
units are chosen to correspond to an ordered or disordered system configura-
tion of moderate energy. The velocities are sampled from the Maxwellian distri-
bution corresponding to a lower temperature (to avoid local regions of non-re-
laxing high energy). Then the temperature or the averaged kinetic energy (asso-
ciated with the mean bead velocities) is progressively raised to the required val-
ue (thermalization period). An equilibration period is subsequently observed.
Finally the rest of the trajectory is used to collect the observed quantities. Dif-
ferent numerical procedures to solve the differential equations can be employed,
differing in their accuracy and complexity, e.g., the simple Verlet or leap-frog al-
gorithms.

Usually, MD methods are applied to polymer systems in order to obtain
short-time properties corresponding to problems where the influence of solvent
molecules has to be explicitly included. Then the models are usually atomic rep-
resentations of both chain and solvent molecules. Realistic potentials for non-
bonded interactions between non-bonded atoms should be incorporated. Ap-
propriate methods can be employed to maintain constraints corresponding to
fixed bond lengths, bond angles and restricted torsional barriers in the mole-
cules [117]. For atomic models, the simulation time steps are typically of the or-
der of femtoseconds (10–15 s). However, some simulations have been performed
with idealized polymer representations [118], such as Bead and Spring or Bead
and Rod models whose units interact through parametric attractive-repulsive
potentials.

3.3
Brownian Dynamics

A useful variety of MD simulations permits one to extend considerably the range
of time intervals investigated by renouncing to include explicit solvent forces.
Then the solvent is considered as a continuous incompressible fluid that exerts
stochastic (Brownian) interactions on the frictional chain units. The equation of
motion must consider intramolecular forces (including the hard forces associat-
ed with constraints present in atomic or Bead and Rod models or the soft cohe-
sive forces corresponding to the Bead and Spring models), together with possi-
ble forces induced by external fields. Moreover, the frictional forces, depending
on the beads velocities (without or with fluctuating or preaveraged HI), are
present. Finally, a stochastic term is included in terms of random quadratic dis-
placements of units whose variance-covariance matrix has to be consistent with
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the chain diffusion. A first order algorithm with these specifications was estab-
lished by Ermak and McCammon [119] and can be applied to the different types
of polymer systems. The inclusion of hard potentials (as those consistent with
the EV forces or associated with non-bonded intramolecular or intermolecular
interactions) presents some difficulties due to the different time range associat-
ed with these interactions with respect to the slower motions due to frictional
and soft forces. This problem is significant when the simulations include com-
plex calculations, such as those involving fluctuating HI [120].

4
Applications

4.1
Stars

4.1.1
Global Size and Shape

The first simulations on the mean size of single branched chains were MC calcu-
lations performed on lattice models. Mazur and McCrackin [121, 122] used the
SAW model with attraction between non-bonded neighbors in a simple cubic
lattice and obtained ratio g, defined in Eq. (20), for uniform star chains (with up
to 12 arms) and combs. They estimated the theta conditions by fitting the re-
duced attraction parameter (inversely proportional to temperature) to repro-
duce the Gaussian mean size proportionality with the square root of the chain
length, Eq. (3). For stars, they found values of g in the theta conditions [122]
greater than the results predicted by Zimm and Stockmayer for Gaussian chains,
Eq. (21). A similar conclusion was obtained by Kolinski and Sikorski on an in-
vestigation into tetrahedral lattices [123], and by Freire et al. [109], who used an
off-lattice model of Gaussian beads interacting through a long-range LJ poten-
tial without cut-off. In the latter simulation, the translational Pivot algorithm
was used. The theta region was estimated by fitting the attractive LJ parameter
so that the mean size data of linear chains follow a dependence with the chain
length consistent with Eq. (3). This simulation studied chains up to 18 arms, but
with only a few beads per arm. The different MC data for g are in reasonable
agreement, and they are also close to the available experimental data, summa-
rized in [49]. Batoulis and Kremer [124] have extended the MC calculations to
longer chains. They used a biased sampling to study uniform stars with up to 12
arms in an fcc lattice. Their results seems to show that an f-independent value of
the reduced temperature at the theta point can be determined by extrapolating
to the infinite chain length MC results obtained for sufficiently long chains. De-
viations of the mean size with respect to the ideal chain prediction are explained
by the effects of three-body interactions in inner regions of the stars. The differ-
ences found in the MC (and in the experimental values) for g with respect to the
theory predictions, however, are too large to describe the variation of g vs f in
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terms of the theoretical scaling law. In fact, the log-log plots of simulation data
show slopes bracketed by –0.75 and the scaling theory prediction, –0.5. Batoulis
and Kremer proposed the relationship g»(f–3)–1/2 which is consistent with their
data (and those of [109]) and most experimental results for f>6.

Results for g in EV star chains were also reported by the same groups [121,
123, 125] and also by Zimm [126], who performed MC simulations on a lattice
for wormlike stars up to six arms. In the case of the off-lattice model [109] the LJ
potential was chosen to reproduce adequately the scaling law for the mean size
of linear chains vs chain length, according to Eq. (5). Whittington et al. [127]
employed exact enumeration and MC calculations for uniform stars on a cubic
lattice. They obtained g and also the mean size of arms, showing a similar scaling
law as the global size, but with higher pre-exponential factors. The ratios of these
factors to that of a linear chain have been predicted in the RG calculation of Mi-
yake and Freed [42] and the simulation data are in good agreement with these
estimates. Barrett and Tremain [128] generated uniform stars with up to 24
arms, employing high coordination lattice walks, while Zifferer [129] used a Piv-
ot algorithm to simulate EV stars with up to 12 arms on the tetrahedral lattice.
All these investigations revealed that g in the EV is very well described by the
Zimm and Stockmayer prediction for ideal chains. Again, the MC data are in
agreement with most experimental data reported in [49]. This feature confirms
the prediction of the RG calculations [43, 49].

The MC results for stars of different numbers of arms in the EV regime can-
not, however, make an accurate distinction between the ideal chain prediction
g»f–1 and the Daoud and Cotton scaling law g»f–4/5. The verification of the pow-
er-law for the dependence of the star mean extension on N, according to Eq. (14)
and in terms of the EV critical exponent n is also difficult for star chains, due to
the finite size influence of the star inner regions, which is manifested by residual
curvatures in the log-log<S2>vs N plots. More noticeable curvatures and lower
apparent fitted exponents for similar chain length ranges are obtained as the
number of arms is increased. Ohno used the enrichment algorithm to generate
many-arm star chains with 50 beads per arm [130]. Plots of their data for Rgb

and the mean bead-center distance divided by N3/5 vs f reproduce the scaling
theory f–2/5-dependence, consistent with Eqs. (14) or (17) and Nb=N/b.

The distribution of the center-to-end distance has been investigated by Grest
[131] through a BD simulation of stars with different solvent qualities. The form
of this distribution is close to Gaussian, though some deviations for stars with
few arms and poorer solvents are observed (Fig. 9). This is in agreement with
SCF calculations for polymers attached to the surface of a highly curved sphere
[33]. The width of the distribution decreases for higher f, which is consistent
with the reduction of the mean size predicted by the scaling theory. Ohno and
Binder [132] used an MC enrichment algorithm to investigate the short distance
behavior of this distribution function for EV stars in two dimensions expressed
as a power-law dependence on r. Compared to the exponents predicted by the
scaling theory [27, 46], the MC results are too low for the different functionalities
included in this study.
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The asphericity of uniform stars should decrease with increasing number of
arms from the results corresponding to linear chain coils. Highly branched stars
present small asphericity values that characterize configurations close to the

Fig. 9a–c. Scaled distribution function for the center-to-end distances of stars of f=3, 10 and 50
arms (s is the repulsive distance range of the intramolecular potential): T=4e/kB corresponds
to a good solvent; T=3e/kB corresponds to a theta solvent; T=2e/kB (lower temperatures cor-
respond to the curves on the left). Solid curves Simulation data; dashed lines Gaussian func-
tions. Reprinted with permission from [131]. Copyright (1994) American Chemical Society
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spherical shape. These results depend on the solvent conditions: EV chains show
a greater asphericity than ideal chains in the case of linear architectures. Batoulis
and Kremer [133] used a dimerization technique to study stars with up to six
arms on an fcc lattice, obtaining accurate estimations of this quantity in the EV
regime. Bishop and Clarke [134] obtained the asphericity of f=3 uniform stars in
different regimes employing BD simulations with a Bead and Spring model and
beads interacting through an LJ potential. The asphericity of stars at the theta
point is slightly smaller than the result obtained with the Gaussian model. In a
later study Bishop et al. used an off-lattice bead model with rigid springs (BD
simulation [135]) and with Gaussian springs (MC method with Pivot algorithm
[136]) to investigate the EV regime. It is shown that the asphericity of EV stars
is always smaller than for ideal (Gaussian) stars (contrary to the result obtained
with linear chains). Zifferer [137] obtained asphericities through MC simula-
tions on the tetrahedral lattice. In a similar study [138] with the same model, but
with a nearest neighbor attraction term that mimics the theta state, he also
found that the asphericities are slightly smaller than for ideal stars. However, the
ideal results are practically identical to those obtained with non-reversal ran-
dom walk chains on the same lattice. He has also carried out an exhaustive sim-
ulation with an off-lattice model for random walk stars with up to 96 arms [139].

Fig. 10. Dependence of asphericities of stars of 12 arms on chain length corresponding to
random walk (RW), q and good solvent (GS) cases. Reprinted with permission from [140].
Copyright (1997) American Chemical Society
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According to the results, it is determined that the asphericities can be described
in terms of polynomials in f–1/2. Forni et al. [140] also used an off-lattice model
and an MC Pivot algorithm to determine the star asphericity for ideal, theta, and
EV 12-arm star chains. They also found that the EV stars chains are more spher-
ical than the ideal and theta star chains. In these simulations the theta chains ex-
hibit a remarkable variation of shape with arm length, so that short chains
(where core effects are dominant for all chains with intramolecular interactions)
have asphericities closer to those to those found with EV, while longer chains as-
ymptotically approach the ideal chain value(see Fig. 10).

Simulation models with a repulsive-attractive potential can describe the tran-
sition from the good solvent (expanded coil) to the collapse of the chain into a
compact globule when placed in a very poor solvent [24, 25] (sub-theta regime).
This transition has been investigated for star chains in some of the previously
mentioned simulations [121, 123, 134] and also by Kajiwara and Burchard [141]
(MC calculations on a cubic lattice). Mattice [142] has plotted the expansion
curves (above the theta point) obtained for the rotational isomeric state (RIS)
model representations of tri-and tetrafunctional polymethylene chains, whose
monomers interact through hard spheres. Rey et al. used the bead model with
Gaussian springs to perform an off-lattice simulation of the compact state [110]
and also of the transition curve [143]. The obvious expected features due to
branching correspond to less abrupt transitions, due to the necessarily more
compact disposition of units in the star coil. Also, the ratio g should exhibit val-
ues closer to 1 for highly branched stars in the sub-theta regime, since both lin-
ear and star chains adopt very similar compact conformations. Some simula-
tions [141, 143] have reproduced the approach to the theoretical asymptotic de-
pendence of the mean size with temperature. This dependence can be formulat-
ed according to the application of Eq. (14) to the collapse regime, i.e.,

. (59)

The approach is slow for stars with higher number of arms, as shown in
Fig. 11.

Osmotic second virial coefficients can be obtained through simulation proce-
dures by computing the intermolecular energy between two interacting chains
at different conformations, orientations, and distances. Bruns and Carl [144]
used the simple cubic lattice model (SAW model with an attractive energy) and
determined the values of the reduced attractive energy parameter for which the
second virial coefficient vanishes for different chain lengths. Extrapolation of
these values to the long chain limit gives the theta point for a particular type of
chain. They obtained slightly different extrapolations for stars of different num-
bers of arms (see Fig. 12) in rough agreement with the conclusion of a single the-
ta point for all the functionalities established from the mean size study of Ba-
toulis and Kremer [124]. Calculations in the EV regime seem easier, since they
can be obtained simply by computing the number of intersecting configurations
when performed on a lattice. However, this study has only be carried out very
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recently. Ohno et al. [145] used an enrichment algorithm with simple MC sam-
pling to study stars with up to six arms on a cubic lattice. Also for the EV regime,
Rubio and Freire [146] employed the off-lattice Gaussian bead model and the
Pivot algorithm to calculate results for stars up to 18 arms. The values of the in-
terpenetration function, defined in Eq. (24), can be compared to the RG data
and experimental data. In Table 1 we give a summary of these data. They should
also be compared with Y*@0.25, best estimation of the interpenetration factor
for linear chains, according to RG theory, numerical simulations, and experi-
mental data [49]. It is observed that the RG theoretical predictions cannot repro-
duce the simulations for moderately branched stars so that the simulation values
constitute the only reliable predictions for chains with more than six arms. The
simulation data are in fair accordance with most of the experimental data, sum-
marized in [49], though the different data of highly branched stars exhibit a sig-
nificant dispersion. It can be noted that the interpenetration factor of 18-arm
stars is still very different from the rigid sphere limit, Y*@1.62. The MC simula-

Fig. 11. A log-log plot of the expansion factor, a2, vs reduced excluded volume, |z*|, for MC
data of 12-arms stars with N=25–109 units: triangles N=25; crosses N=49; asterisks N=85;
squares N=109. The top and bottom solid lines and figures represent slopes corresponding
to the predicted asymptotic behaviors for the EV and sub-theta regimes, respectively. Re-
printed with permission from [143]. Copyright (1992) American Chemical Society
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tion values of Y* for f=4 also agree with recent experimental data of PS in the
good solvent benzene [147], while the experimental results in the theta solvent
cyclohexane are described through a crossover interpolation formula inspired
by the Domb-Barrett approach [22].

Second virial coefficients represent the first approximation to the system
equation of state. Yethiraj and Hall [148] obtained the compressibility factor, i.e.,
pV/kBTnc, for small stars. They found no significant differences with respect to
the linear chains in the pressure vs volume behavior. Escobedo and de Pablo
[149] performed simulations in the NPT ensemble (constant pressure) with an
extended continuum configurational bias algorithm to determine volumetric
properties of small branched chains with a squared-well attractive potential

Fig. 12. Inverse of the reduced theta temperature for which the second virial coefficient van-
ishes from MC calculations on a cubic lattice for linear chains (squares) and f=6 stars (cir-
clelike); broken lines (no symbols) stars with f=4 and 5. Reprinted with permission from
[144]. Copyright (1991) American Chemical Society
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(three branches of two beads along a main chain of ten beads). Although the
compressibility factors are again similar to those of linear chains, it is observed
that the vapor phase density is larger and the liquid density is lower for branched
chains. The free energy of mixing of linear and branched chains with solvent was
investigated through MC simulation in a cubic lattice by Falsafi and Madden
[150]. The branched chain data of this excess thermodynamic quantity are
slightly above those of the linear chains and the behavior of the branched chains
is closer to the predictions of the lattice cluster theory [151].

Studies of conformational properties through many-chains simulations of
star molecules are particularly scarce, since these systems require long equili-
bration processes without the help of the efficient reptation moves used for lin-
ear chains. Moreover, the MC simulations on a lattice must include specific rules
to change the star center position. Su and Kovac [152] studied the case of three-
arm and four-arm single stars immersed in a bath of linear chains. They used the
bond fluctuation model. The increase of concentration causes a decrease of the
star mean size. This feature shows the EV screening due to increasing intermo-
lecular bead interactions. This effect is also found in linear chains, though for
the stars is less significant, since the star chains suffer a smaller expansion in EV
conditions. The Su and Kovac simulation also shows that the asphericity increas-
es slightly for higher concentrations. This is caused by a decrease of the smallest

Table 1. Comparison of theoretical, simulation and experimental values of factor Y*

Y*

Method f=4 f=6 f=12 f=18

RGa 0.52 0.79 1.35
Lattice MCb 0.43 0.63
Off-lattice MCc 0.44 0.62 1.00 1.21
Experimentald 0.46–0.52 0.65–0.67 1.10 1.10–1.26
a [23, 49, 69]
b [145]
c [146]
d Range of data within the mean squared deviation among those reviewed in [49]

Table 2. Variation of ratio g of EV chains with concentration

g

Fpa

0 0.1 0.2 0.3 Gaussianb q chainsc

f=3 0.75 0.76 0.77 0.78 0.78 0.81–0.83
f=4 0.61 0.61 0.63 0.62 0.62 0.66–0.68
a MC, [154]
b Eq. (21)
c MC, [122, 123]
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eigenvalue of the radius of gyration tensor, which means that the molecules tend
to be more plate-like as the excluded volume is relieved. Smit et al. [153] per-
formed an MD simulation for a single small three-arm star and varying num-
bers of solvent (monomer) molecules and found the opposite shape effects.

A many-chain simulation of three- and four-arm stars with up to 400 beads
(for the smallest concentrations) on the cubic lattice has recently been carried
out [154]. The preliminary analysis of results indicates very small differences for
the mean size ratio g of EV star chains corresponding to different concentra-
tions. The values of this ratio are, therefore, always smaller than for the corre-
sponding theta chains, as can be observed in Table 2. This confirms the theoret-
ical argument that EV effects are practically canceled out in this ratio and
screened out in concentrated solutions. The swelling of stars in theta conditions
with respect to the bulk, revealed by the analysis of scattering data [2, 63], also
indicates that g in the melt should be smaller than in the theta state. Higher func-
tionalities would be needed to confirm the intermediate scaling in the bulk pre-
dicted by the recent liquid-state theory [70]. According to the simulation, the ap-
parent value of critical exponent n diminishes from the 3/5 for dilute solutions
to values closer to 1/2, the mean-field result. The expected decrease with concen-
tration for chains with a given chain length is found. According to the theoretical
scaling arguments, Eq. (9) should apply to describe this variation. The fitted
slopes of log-log plots of <S2> vs the volume fraction Fp in the range 0–0.5 yield
apparent exponents of –0.24 and –0.21 for the three and four-arm chains of 97
beads, close to the –0.25 value that corresponds to the theoretical prediction.
Similar features indicating the EV screening with concentration were previously
observed with the same model and similar algorithm for linear chains.

Pakula et al. [155] have used the cooperative motion algorithm to study melts
of stars with up to 64 units. They studied the internal bead profiles and the cor-
relations of the star centers of mass. They observed an ordering of the systems
of stars with high functionalities.

4.1.2
Internal Structure and Scattering Form Factor

The static scattering form factor of stars has also been obtained from simulation.
Batoulis and Kremer [133] computed this function from their MC results for lin-
ear chains and stars up to six arms in terms of the Kratky plots [61]. The star
chains show the expected peaks in the crossover between the regimes governed
by distances involving the whole star and distances inside the blobs. This peak
increases with f. Croxton [50] has performed a similar MC calculation for the
whole scattering of off-lattice star chains with up to six arms with non-overlap-
ping beads, but with a very short number of chain beads, showing significant de-
viations from the ideal chain prediction due to EV effects. Huber et al. [156] used
an RIS model for polymethylene stars without long-range intramolecular poten-
tial, but considering adequately restricted bond angles according to the star
number of arms. Their MC results were able to reproduce the deviations from
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the Benoit behavior, Eq. (23), apparent in the Kratky plots of their SANS exper-
imental data for PS in the theta state [65]. A qualitative description of this effect
is also achieved taking into account the stiffness effects within the arms.

The internal distribution of beads in a uniform star predicted by the Daoud
and Cotton scaling theory [11] can be tested by computing bead density profiles.
These profiles can be compared with the scaling predictions for the density
within EV blobs, Eq. (16), that can be explicitly written for EV stars as

. (60)

Croxton [50] found some differences with respect to the scaling pictures with
discontinuities in the bead density at the central core. These results are in agree-
ment with his theoretical calculations with the iterative convolution technique,
also for short chains. However, the main features of the scaling theory prediction
for the blobs density has been satisfactorily verified by Grest et al. [157] who per-
formed a BD simulation of stars interacting through an LJ potential. The scaling

Fig. 13a,b. Scaled bead profiles for star chains of different values of f=4, 10, 20, 50 (higher f,
more extended profile): a good solvent; b theta solvent. According to Eqs. (11) and (13), the
profiles should correspond to universal straight lines with slopes –4/3 (case a) and –1 (case
b). Reprinted with permission from [131]. Copyright (1994) American Chemical Society
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region extends to very small distances, which indicates a small influence of the
core region for sufficiently long chains. These data have been confirmed by the
BD simulation carried out by Grest [131] for solvents of varying qualities. The
agreement with the scaling theory is good for EV chains except for the outer re-
gion of the stars (see Fig. 13a). The corresponding scaling for the theta state
rb»r–1f1/2 was similarly verified, though the agreement extended to a narrower
range of relatively small values of r, as can also be observed in Fig. 13b. Forni et
al. [158] have employed an off-lattice model of 12-arm EV chains, carrying out
a detailed analysis of correlations between pairs of units in different regions of
the star. Their results emphasize the loss of correlation among beads belonging
to different arms, see Fig. 14 and Fig. 15.

The BD simulations by Grest et al. [131, 157] include stars with up to 50 arms.
These simulations were also consistent with the f-dependence of ratio g predict-
ed by the scaling theory. However, for the q state, the simulated data show expo-
nents higher than the theory and in better agreement with experimental data in
the range f=2–128, as detailed in [2]. Then it seems that the scaling theory gives
a poor description of stars in the theta region, at least in the range of moderately

Fig. 14. Normalized averaged intramolecular distances plotted as a function of the position
of bead j for a star with 12 arms with a total of 472 bonds. The beads are labeled as negative
from –Nb to 0 (the central atom) on the first arm and as positive up to Nb on the second arm.
The three locations of the first bead i corresponds to i=–Nb, at the free end of the first arm
(circles); i=-Nb/2, at the midpoint of the first arm (squares); and i=0, at the central branch
point (triangles). Reprinted with permission from [158]. Copyright (1997) American
Chemical Society
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long chains for which simulations (as well as experimental data) are currently
available.

For high f, it is possible to observe in the Kratky plots a sharp transition from
the global to the blob regime with some oscillations when the star structure ap-
proaches that of a hard sphere. The simulation curves of Grest et al. have been
fitted to describe satisfactorily SANS data [2]. Moreover, the same simulations
have been used to obtain the partial scattering function of the core and the shell
(outer portion of the star) and the corresponding curves have been compared
with experimental data obtained for PI stars with a deuterated core [68]. The
comparison is satisfactory from the qualitative point of view, since the simula-
tions exhibit the essential features of the experimental data, though some quan-
titative differences are apparent. At high values of q, the core partial scattering
function shows a different scaling law to that of the global chain, indicating the
different distribution of intramolecular distances in the star core.

The scattering function can be expanded for low values of q. The expansion
coefficients correspond to high moments involving summations of powers of
different intramolecular distances (it is well known that the mean quadratic ra-

Fig. 15. Correlation of vector bonds. li is fixed, while lj can cross the central bead. Solid dia-
monds: linear chain of 40 bonds, with i=11; solid triangles linear chain of 80 bonds, i=31.
empty symbols correspond to a star of 232 bonds and 12 arms (20 bonds/arm). Diamonds
i=11; triangles i=13; squares i=15 (the star center is reached after 9, 7 and 5 bonds respec-
tively). Reprinted with permission from [158]. Copyright (1997) American Chemical Soci-
ety
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dius of gyrations is, in fact, the second moment corresponding to the first term
in this expansion). Bishop et al. [159] have calculated these moments for linear
chains and stars using the Gaussian bead model with an LJ potential in the EV
regime. The results for linear chains are in good agreement with RG calculations
[160]. The moments expansion can, however, reproduce only the low q region of
the form factor, even when three or four terms of the expansion are considered.
The plot of the simultaneously obtained whole form factor function for stars re-
veals a closer agreement with the curve obtained by Alessandrini and Carignano
[66] (RG calculations) than with the Benoit function [60]. A more detailed study
including different solvent conditions introduced through the LJ attraction pa-
rameter [161] confirms this conclusion, showing a good qualitative agreement
with the RG curve for chains with up to 12 arms, even for chains close to the the-
ta point, as shown in Fig. 16. The solvent quality is only manifested through the
different scaling of the curves for low values of x. The appearance of the simula-
tion curves is again different from the theory prediction (Benoit curve) and it
seems in better qualitative agreement with the theoretical predictions for the EV
regime, obtained with the RG calculations. There is only a significant quantita-
tive disagreement between the RG curve and the simulation results in the as-
ymptotic behavior for high values of x, where the simulation data are shifted up-

Fig. 16. Generalized Kratky plot of the form factor of a star from numerical data of a MC
simulation [161]. x=q2<S2>. e/kBT=0.1 corresponds to EV chains and e/kBT=0.3 is close to
the theta state
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wards by a constant value. A similar shift is also found in the comparison of the
asymptotic plateau of experimental data corresponding to good solvent condi-
tions with respect to the plateau for high values of q exhibited by the RG curve
(Fig. 4). However, a higher value of n would be required to get a real plateau for
the plotted RG and simulation data, instead of the straight lines with small pos-
itive slopes shown in Fig. 16, probably due to finite size effects inherent to the
relatively small values of N used in the simulations. Moreover, numerical fits of
the simulated data to the RG curve in the range of low and moderate q using
<S2> as a single fitting parameter yield numerical estimates of the chain sizes
very similar to their actual values (known through direct Monte Carlo evalua-
tion). However, similar fits using the Benoit curve lead to significantly different
estimates of the radius of gyration. These types of fits are sometimes used in the
interpretation of experimental data [2].

4.1.3
Translational Friction Coefficient and Intrinsic Viscosity

We have previously pointed out that the experimental data for hydrodynamic
properties of stars such as the translational diffusion coefficient in the dilute re-
gime and the intrinsic viscosity (expressed in terms of ratios h or g' to the ho-
mologous linear chains) are not quantitatively reproduced by approximate the-
ories. The semiempirical relations, Eqs. (45) and (46), also have a limited success
in describing existing experimental data. Therefore, it seems that the use of sim-
ulation procedures is particularly useful for this purpose. An adequate calcula-
tion should consider the following points: (a) to take into account the presence
of intramolecular interactions, and (b) to improve the simplistic preaveraged
description of HI, employed in the KR or ZK approaches. As previously ex-
plained, point (b) is crucial to reproduce viscosity results, which seem particu-
larly affected by the preaveraging approximation in compact structures. Point
(a) affects both equilibrium and hydrodynamic properties, especially for chains
in the theta conditions, since the ratios of the EV star chains to the correspond-
ing linear chain are always very close to those calculated with Gaussian statistics.

Simple MC calculations with the rigid-body approximation were performed
by Zimm [126] for Gaussian and wormlike stars with and without EV up to six
arms. Neither the effect of stiffness nor EV effects seem to affect greatly the value
of ratios h or g', which are always similar to those obtained with ideal chains. The
differences with respect to the KR values are about 7% for h, but they increase to
14% for the ratio g'. These conclusions agree with the general picture given
above. A similar calculation on a cubic lattice was carried out by Wilkinson et al.
[162]. Freire et al. used the translational Pivot MC algorithm to perform a more
extensive rigid-body investigation with the Gaussian bead model with an LJ po-
tential for short stars up to 18 arms. Chains in the theta region [109] and with
EV effects [125] were alternatively considered.

Tables 3 and 4 contain extrapolations to the long chain limit of ratios h and g',
obtained from rigid-body simulation data, together with similar numerical val-
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ues obtained through other models and approaches and a summary of the ex-
perimental data reviewed in [49]. The rigid-body EV results for h and g' are sim-
ilar to those obtained with the same hydrodynamic treatment for ideal chains,
in good agreement with the RG theory conclusion that the ratios corresponding

Table 3. Comparison of theoretical, simulation and experimental values of ratio h

h

Model HI treatment f=4 f=6 f=8 f=12 f=18

Gaussian Kirkwooda 0.89 0.80 0.73 0.67 0.53
Gaussian Preaveragedb 0.92 0.86 0.81 0.73 0.65
Gaussian Rigid-body 0.95c 0.86d, 0.90c 0.75d 0.66d

Theta Rigid-bodyd 0.89 0.82 0.73
EV Rigid-body 0.94c 0.89c,e 0.78e 0.66e

Theta 
(experimental)f

0.94 0.89 0.74–0.85 0.72–0.76

EV 
(experimental)f

0.92–0.93 0.86 0.82 0.70–0.83 0.64–0.68

a Eq. (38), [84]
b Eq. (34), [84]
c [126]
d [109]
e [125]
f Data reviewed in [49]

Table 4. Comparison of theoretical, simulation and experimental values of ratio g'

g'

Model HI treatment f=4 f=6 f=8 f=12 f=18

Gaussian Preaverageda 0.81 0.69 0.61 0.51 0.42
Gaussian Rigid-body 0.71b 0.58b,c 0.38c 0.24c

Gaussian Lower boundd 0.33
Theta Rigid-bodyc 0.59 0.39 0.28
Theta Lower boundd 0.41
EV Rigid-body 0.73b 0.56b,0.58e 0.37e 0.22e

EV Lower boundd 0.33
Theta
(experimental)f

0.76–0.77 0.63 0.53 0.42 0.28–0.35

EV 
(experimental)f

0.73 0.58 0.43 0.33–0.35 0.22–0.26

a [84]
b [126]
c [109]
d [164]
e [125]
f Data reviewed in [49]
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to ideal and EV chains should be very close. Moreover, these EV and Gaussian
results for h are not very different from those obtained with the Gaussian chain
with the preaveraged treatment, Eq. (34), though they are always greater than
the Kirkwood formula estimations, Eq. (38). However, the rigid-body values of
g' for Gaussian and EV stars are smaller than the results from the preaveraged
theory, and the differences increase dramatically with the number of arms. It can
be verified that the rigid-body MC data give an adequate reproduction of most
experimental data corresponding to the investigated architectures for ratios h
and g' in the two distinct solvent conditions. These conclusions show that points
(a) and (b) enumerated above are the main requirements for a good description
of the hydrodynamic properties of stars. Simultaneously, the same rigid-body
calculations approximately reproduce the experimental ratios P and F. The pa-
rameters approach the values for rigid spheres for stars with high numbers of
arms [51]. As in the case of linear chains, P and F decrease in EV conditions with
respect to their values for ideal chains or in theta conditions.

Since the rigid-body approximation gives only an upper bound for the trans-
lational friction coefficient and viscosity, MC values of the viscosity for ideal star

Fig. 17. A log-log plot of expansion factor, ah
2, (obtained from intrinsic viscosity calcula-

tions) vs reduced excluded volume, |z*|, for MC data of 12 arms stars with N=25–109 units
(symbols as in Fig. 11 ). The solid lines and figures represent slopes corresponding to the
predicted asymptotic behaviors for the EV and sub-theta regimes. Reprinted with permis-
sion from [143]. Copyright (1992) American Chemical Society
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chains have also been obtained [163] with the alternative variational method of
Fixman [112]. The comparison between both sets of results indicates that the
upper and lower bound methods establish a reasonably narrow range for the real
value of this property, at least when the comparison is performed from data cor-
responding to relatively short chains (about 20% in a 12-arm star of 37 beads).
Differences due to the bound method are smaller for the ratio g', since both lin-
ear and star chains exhibit similar relative deviations in the viscosity results ob-
tained with the upper or with the lower bound procedures. The viscosity was
also obtained from the numerical study of the stress tensor time-correlation
function calculated from BD trajectories of ideal chains that include fluctuating
HI [163]. The latter results can be considered as rigorous and, though affected
by higher statistical uncertainties, they were always consistent with the calculat-
ed bounds.

The numerical efficiency of the viscosity lower bound method has allowed
calculations on considerably longer chains. The long chain limit results for 12-
arm stars without intramolecular interactions and with EV (up to 325 beads)
and in the theta region (up to 145 beads) [164] are close to the previous estimates
with shorter chains (the extrapolated ratio g' obtained in this study is also in-
cluded in Table 4). The lower bound method has also served to characterize
globule-coil transitions of 12-arm star chains from intrinsic viscosity calcula-
tions [143], though finite size effects are considerably more important than in
the characterization of this transition from the radius of gyration data (see
Fig. 17). This is due to the noticeable increase in the solvent permeability asso-
ciated with the chain expansion in better solvent conditions. However, the per-
meability effects are smaller in the more compact star chains than in their linear
counterparts.

4.1.4
Dynamics and Relaxation

Accurate calculations for the real and imaginary components of the complex vis-
cosity function [h(w)]* should certainly have to consider the same features re-
quired to obtain the intrinsic viscosity. Rey et al. [165] computed the Fourier
transforms of the time-correlation function of the stress tensor, obtained from
their BD simulation trajectories of ideal chains, to calculate this function. The
calculations were performed with preaveraged and fluctuating HI interactions.
Although the quantitative differences in these two different estimations of the
intrinsic viscosities for highly branched stars are very important (the preaver-
aged values of the intrinsic viscosity are about 70% above the real values for 12-
arm stars), the qualitative aspects of the log-log plots for [h(w)]*, extended over
the useful several decades of frequency values, are not so different. Moreover,
the effect of introducing the preaveraging approximation decreases in impor-
tance at higher frequencies.

However, the consideration of intramolecular interactions and, therefore, of
realistic distributions of intramolecular distances changes the shape of the func-
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tions. This effect was first observed by Rey and Freire [89] by computing Eq. (52)
for ideal and EV stars with up to 12 arms, with relaxation times obtained from
their generalized Rouse-Zimm model. According to this scheme, the relaxation
times can be calculated through the consideration of MC computed equilibri-
um averages. The stress time-correlation function obtained with this method
gives a perfect agreement with the function directly computed from BD trajec-
tories with preaveraged HI (see Fig. 18). This confirms the accuracy of the ap-
proximate treatment. The real and imaginary dynamic viscosity curves calcu-
lated through this method for EV star chains exhibit features different to the
ideal chain curves, as they lie very close and parallel in a limited range of inter-

Fig. 18. Stress time-correlation function of EV linear chains and stars with different func-
tionalities. Comparison of Brownian dynamics (crosses) and generalized Zimm calcula-
tions from MC averages (solid lines). Reprinted with permission from [89]. Copyright
(1996) American Institute of Physics



92 J. J. Freire

Fig. 19. Complex viscoelastic moduli for linear chains and stars of different functionalities,
without intramolecular interactions (ideal) and with a repulsive potential (EV). Reprinted
with permission from [89]. Copyright (1996) American Institute of Physics
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mediate frequencies, which is broader for higher values of f (in fact, the curves
for f=12 cross each other twice in this region) (see Fig. 19). The previously men-
tioned theoretical calculations by Ganazzoli [92], performed for longer EV
chains but with approximate estimations of the intramolecular distances, also
show similar curves but without the double crossing. Such double crossings are
found for stars [166] and other branched structures in the melt. In any case, the
approach of the real and imaginary curves due to non-Gaussian effects in stars
is totally missed by the older ideal chain calculations of Sammler and Schrag
[91].

Models based on Gaussian beads cannot describe the high frequency region
of the dynamic viscosity curves. These models predict a final cross-over of the
real and imaginary curves in this region since the storage modulus, G', smaller
at low frequencies, tends to an asymptote, while the loss modulus, G", tends to
vanish, as can also be seen in Fig. 19. However, the rigid-bond constraints pre-
vent the decrease of the curves for a single chain. This constitutes another failure
in the ideal chain calculations. The incorporation of local constraints can be car-
ried out by means of some theoretical schemes [167]. BD simulations can also
consider strong harmonic forces or totally rigid bonds, but BD calculations of
the complex viscosity functions for multi-bead linear or star Bead and Spring
chains have only achieved a modest increase of the frequency of the cross-over
[168].

BD and MD simulations can directly describe the dynamic behavior of a
chain molecule. Grest et al. [131, 169] studied the relaxation processes, investi-
gating the elastic, rotational, and arm disentanglement mechanism described
above. They confirmed the theoretical prediction that the elastic relaxation time
is approximately independent of the number of arms. However, the rotation and
disentanglement processes, which require longer simulation runs, could not be
analyzed through this procedure. The MD simulation of Smit et al. [153] includ-
ed explicit solvent (monomer) units. They analyzed the time-correlation func-
tion of the radius of gyration, together with the diffusion coefficient (from the
center of masses displacement and also from the velocity autocorrelation func-
tion), but their results show a great dependence on concentration, and a further
analysis was not attempted.

MC methods can also be employed to investigate dynamic properties. Ohno
et al. [170] applied a Kramers potential (proportional to the product of coordi-
nates xy) to mimic the effect of simple shear flow, and studied the induced
change of the averaged size. Therefore they obtained the relaxation time from
the analysis of purely static quantities. Their study was performed with the fluc-
tuation bond model. They alternatively applied the enrichment algorithm to
SAW star chains with a core on a cubic lattice. Their results confirmed the ap-
proximately f-independent behavior of the elastic relaxation. Su et al. [171] used
the bond fluctuation model to perform a dynamic MC simulation of three- and
four-arm stars. Although their results confirm again qualitatively the scaling law
obeyed by the elastic relaxation time, their rotational relaxation functions do
not decay as a single exponential. 
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Sikorsky and Romiszowski [172, 173] have recently presented a dynamic MC
study of a three-arm star chain on a simple cubic lattice. The quadratic displace-
ment of single beads was analyzed in this investigation. It essentially agrees with
the predictions of the Rouse theory [21], with an initial t1/2 scale, followed by a
broad crossover and a subsequent t1 dependence. The center of masses displace-
ment yields the self-diffusion coefficient, compatible with the Rouse behavior,
Eqs. (27) and (36). The time-correlation function of the end-to-end vector fol-
lows the expected dependence with chain length in the EV regime without HI
consistent with the simulation model, i.e., the relaxation time is proportional to
N1+2n. The same scaling law is obtained for the correlation of the angle formed
by two arms. Therefore, the model seems to reproduce adequately the main fea-
tures for the dynamics of star chains, as expected from the Rouse theory. A sim-

Fig. 20a–d. Rules of bead-jump involving the chain center, employed for a DMC simulations
of stars ([154]): a,b used for f=3; c,d applicable for f=4
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ilar simulation has been recently applied to the MC investigation of three- and
four-arm stars [154]. The different rules employed for the motion of the star
center are detailed in Fig. 20. In this case, the relaxation times of the Rouse co-
ordinates have been directly investigated, giving the correct scaling law depend-
ence on the chain length. Moreover, the elastic relaxation times are roughly in-
dependent of the number of arms, see Table 5. These simulation results also
seem to confirm that the rotational relaxation times, also included in Table 5, de-
pend on the number of arms according to the theoretical scaling law, Eq. (54).
However, the arm disentaglement relaxation needs much longer dynamic trajec-
tories, and it is currently very difficult to characterize this mode from any type
of simulation algorithm.

Only a few investigations have dealt with star chain dynamics in many-chain
systems. Needs and Edwards [174] considered a random walk three-arm chain
in a set of fixed obstacles formed by infinitely long rods. With this model they
reproduced the exponential dependence of the theoretical diffusion coefficient
dependence on chain length. A similar exponential law is predicted for the chain
relaxation time. Sikorski et al. have studied star chains up to 1196 units in a ma-
trix of free linear chains of 800 units. [175]. The diffusion coefficient and longest
relaxation time follow similar behaviors as in the single chain case, although
there is a larger difference between the one-arm and two-arm relaxation times.
Some evidence of the arm retraction mechanism was found, though the chains
are too short to see the onset of the exponential scaling. The entanglement
lengths for stars are somewhat larger than for linear chains.

4.1.5
Copolymers and Miktoarm Stars

Block copolymers have peculiar characteristics due to the coexistence of two or
several different parts of different chemical compositions within a chain. They
can undergo microphase separation transitions from a homogenous phase to a
variety of spatially periodic structures [176]. A distinction should be made be-
tween star copolymers, where each arm is composed by two or more blocks, and
miktoarm polymers, formed by homopolymer arms of different chemical com-
positions. Floudas et al. [177] recently performed an extensive study of four-

Table 5. MC data of te and tD

f=3 f=4

Nb Nb

  12   16   24   32 50   12   16   24 32 50

te
a 15.2 24.2 59.0 118.3 323 21.4 26.9 68 113 319

tD
a 164 318 663 1194 3550 257 403 994 1719 4033

a [154] (in DMC step time units)
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arms star diblock copolymers which includes a computer simulation. The arms
are composed of a block of styrene and a block of isoprene with similar or clearly
different number of segments (symmetric or asymmetric compositions). The
stars with symmetric compositions exhibit a well-ordered lamellar microstruc-
ture at low temperatures. Asymmetric stars of four arms, however, show a suc-
cession of phases on heating. Similar theoretical and experimental studies have
been carried out for miktoarm stars [178, 179], showing the formation of hexag-
onally ordered cylinders with a kinetically accessible metastable region broader
than in linear diblocks.

The conformational properties of single miktoarm chains have been investi-
gated through MC simulations with the Gaussian bead model with LJ intramo-
lecular interactions by Vlahos et al. [180] for A2B and A3B miktoarm stars and dif-
ferent solvent conditions. This study was aimed at characterizing the segregation
between the arms due to EV heterointeractions. The results were compared with
predictions from RG group calculations and also with intrinsic viscosity data. It
is observed that the more compact star structure causes a significantly stronger
segregation between chemically distinct blocks than for linear diblock chains.

4.2
Combs

We have previously mentioned that the first MC simulations on comb-like poly-
mers with varying solvent conditions and including the theta point were per-
formed by Mazur and McCrackin [121] on a cubic lattice. In fact, these authors
considered the ratio of the molecular weight of a branch to that of the backbone,
xb, to define the comb architecture so that the star chains can be considered as
the limit case corresponding to xb

–1®0. It is not surprising that the mean size in
the theta state is greater than the results given by the general formula of Kurata
and Fukatsu [48], who considered Gaussian statistics. The experimental data for
chains in the theta state are also greater than the ideal chain statistics, though
these data are significantly scattered. Also, as in the star case, the global expan-
sion factors are smaller than those found in linear chains (in contradiction with
the two-parameter first-order perturbation theories) due to the smaller values
of g for EV chains with respect to the theta state. Their results for the backbone
radius of gyration show that this quantity is greater than for the equivalent linear
chains, again in variation with the ideal chain model that does not describe such
a difference.

Lipson et al. [181] performed an MC study on different types of lattices for
three functional comb chains with two branched points, or H-combs, in the ex-
cluded volume regime. The variation of the branch mean size with its length fol-
lows the expected scaling law in terms of critical exponent, Rg

b»Nb
n. This is in

accordance with the expected behavior in the low branching (or mushroom) re-
gime, and it is also in agreement with RG calculations [182]. In the Lipson et al.
simulations, expansion of the different branches was analyzed by evaluating
their amplitudes in this power-law. Thus, the “internal branches” (backbone seg-
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ments between two branching points) present a greater expansion than the ex-
ternal branches, due to the higher number of intramolecular interactions be-
tween segments. The expansion of the external branches is similar to that of a
three-arm star. Their ratio g is similar to that of an ideal chain, in good agree-
ment with the results obtained for EV stars, and also with experimental data and
RG calculations [43, 49], as summarized in [49]. A similar study was carried out
by Bishop and Saltiel [183] with a BD simulation.

Lipson [184] also carried out an MC simulation of long EV combs with many
branches on a tetrahedral lattice. Three different types of branches (of lengths
smaller than, equal to, or larger than those of the segments between branching
points in the backbone) were considered, while the total number of branches in-
creases linearly with molecular weight. It is evident that, as in other architec-
tures previously analyzed, the scaling law for global dimensions vs chain length
is properly described by the critical exponent n. The presence of finite size ef-
fects is, however, larger for the combs with long branches. Moreover, the ratio g,
and also an estimation of the ratio h from the friction coefficients obtained
through the Kirkwood formula, Eq. (38), are significantly greater than those
predicted by the ideal Gaussian model, in contrast to the results obtained for
stars and H-combs. These results are consistent with the available experimental
data of combs with randomly attached branches but with similar weight fraction
of material in the backbone, which seems to be the most relevant characteristic
variable. These experimental data correspond to both good and theta solvents
[185], which indicates the relative lack of sensitivity of these results to solvent
conditions (actually the theta point values of g are slightly greater than the good
solvent data, as in the case of stars of low functionalities).

Kosmas et al. [5] performed some MC simulations on a cubic lattice to verify
their theoretical calculations for combs with polyfunctional branching points
(or “brushes”). They analyzed the expansions of internal branches and found an
extra expansion, in agreement with the theory.

Comb polymers may also have a backbone chemical equal to or different from
the branches. In many cases this backbone can be stiff or rigid. According to the-
ory [186], this rigidity can be induced by interactions between different branch-
es and depends on rf. One can distinguish between a regime where the backbone
only experiences its own EV at low density of branching, rf, an intermediate re-
gime where the EV of branches dominates, and a high rf regime, where the back-
bone is very rigid. This rigidity effect was confirmed by the simulation of
Rouault and Borisov [187]. They use a bond fluctuation MC algorithm, and
again the branch extension varies with Nb according to the mushroom regime.
The increase of the backbone persistence length due to interactions between
branches was also recently simulated by Saariaho et al. [188] with an off-lattice
model. Grest and Murat [9] have also presented MD simulations describing the
f-dependence of the chain mean size for EV stars and high rf combs, or “bottle-
brushes”. Although for low rf both types of chains show similar log-log linear
behaviors, for high rf the size of bottlebrushes suffers a further increase as they
become more elongated.
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A limiting case is constituted by many branches grafted to an inflexible line.
The scaling theory is pertinent to this case. Then the density of segments is

(61)

and

(62)

in theta and good solvent conditions respectively. The density of segments de-
creases with r more slowly than in stars (Fig. 2) because the volume available for
higher r increases more rapidly in the star case. An MD simulation performed
by Murat and Grest [189] for bottlebrushes formed by EV chains attached to cyl-
inders of different curvatures seems to confirm this point for strong curvature,
though the simulation results indicate an exponent for the r dependence inter-
mediate between the values –2/3 and –1/2. Recent experimental data [190] for
highly-branched combs show an extension of branches proportional to Nb

0.71, in
reasonable agreement with the exponent @0.8 predicted from Eq. (17). Accord-
ing to these data, the backbone becomes very stiff, which is attributed to inter-
actions of the branches.

Gauger and Pakula [191] performed an MC simulation of comb polymers on
the fcc lattice in dilute and dense media, using the cooperative motion algo-
rithm. It is shown that, unlike linear chains, the EV screening does not appear in
the global mean size dependence on N. However, this screening is complete for
the branches in the melt, which exhibit ideal behavior.

Branched chains may have an important role in interfacial phenomena. Ger-
sappe et al. [192] studied the behavior of combs constituted by backbones of A
monomers and branches, or “teeth”, of B units at the interface between immis-
cible A and B monomers. These teeth are more preferentially located at the in-
terface than the equivalent units in linear chains.

4.3
Brushes

Many different simulations have been performed to test the different features of
brushes in different situations. Here we will give only a summary of these results,
in the context of the similarities and differences with the features observed in in-
dividual branched polymers.

An obvious aim in the simulations is to check the mean-field, and SCF theo-
retical approaches, which differ in some basic features. Both theories predict the
same qualitative relationship for the brush height or the main chain extension in
a good solvent (proportional to Nrf

1/3). This result has been confirmed by the
MC calculations of Chakrabarti and Toral [193] and Lai and Binder [194] (who
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used the bond fluctuation model) and by the BD simulations of Murat and Grest
[195] and Neelov and Binder [196]. Another simulation by Grest [197] has
shown that the dependence on the grafting density adopts a higher exponent
close to 1/2 for high densities and long chains. This effect is explained by pre-
dominant three-body interactions [198] and defines a new range of high grafting
densities. Grest and Murat have also checked the predictions for the bead densi-
ty, rb, through BD [195] or MD [199] simulations. Their results, together with
the MC simulations of Chakrabarti and Toral [193] and Lai et al. [200] can
roughly be fitted in terms of the parabolic form predicted by the Milner et al.
theory [35], allowing for plots of universal (i.e., f-independent) scaling curves
except for the end of the brushes (see Fig. 21). Nevertheless, a deviation from the
parabolic shape should also be noted near the surface, in the form of a depletion
layer, which is more clearly observed for relatively smaller densities. According
to the simulations [193, 195, 200] the distribution of free ends follow roughly the
behavior predicted in the Milner et al. theory, though it is slightly sharper. This
behavior is observed for the adequate range of high grafting density. Clancy and
Webber [201] used the Pivot algorithm to compute rb in both the mushroom and
high grafting density regimes.

The simulations and theoretical approaches reveal that the density profile is
somewhat lost in the presence of polydispersity [193, 202], and special features
(including a kink in the profile) are observed for a bimodal chain distribution
[195, 203]. The profiles are flatter for the highest grafting densities, due to the in-
fluence of high-order terms. Laradji et al. [204] performed an MC simulation
with an off-lattice model that uses the Hamiltonian employed in the SCF calcu-
lations (i.e., it only considers binary interactions). The parabolic profiles are

Fig. 21. Bead density profiles in a brush of EV grafted chains with N=50, 100 and 200, and
the indicated grafting point densities. Reprinted with permission from [199]. Copyright
(1993) American Chemical Society
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found even for high grafting densities. These results demonstrate that the devi-
ations from the parabolic prediction are due to the influence of predominant
three-body terms for high densities.

Toral and Chakrabarti [205] used an off-lattice model to study EV chains
grafted onto a spherical surface with different radius of curvature. For high val-
ues of this radius the bead density profile follows the parabolic behavior. As the
radius approaches the brush height, however, the bead density shows a maxi-
mum near the surface. Since free ends are located anywhere within a planar
brush and they are placed in the outer region of star molecules, it is possible that
for finite values of the radius of curvature there is a “dead zone” close to the sur-
face without chain ends. These simulations show that this dead zone only ap-
pears for small radii (high curvatures) in relation to the brush height. A similar
conclusion is obtained with the MD simulation previously described for a bot-
tlebrush [189]. This is probably due to finite size effects, as the simulation results
are in agreement with numerical SCF calculations [206, 207], but not with the
analytical results of Li and Witten [208] that predict a dead zone for brushes of
long chains in a good solvent. These simulations are also in good agreement
with the recent single chain mean-field theory proposed by Carignano and
Szleifer [209].

When the brush is immersed in poorer solvents, the theory predicts substan-
tial changes. Thus, the chain extension and the brush height should scale as

(63)

for a theta solvent and

(64)

in the sub-theta compact globule regime. It should be noted that the overlap-
ping density of grafted chains increases, since the chains are not expanded in
these solvent regimes. Then rf*»N–1 in the theta state and rf*»N–2/3 for com-
pact globules. As a result, the system can actually change from the overlapping
to the mushroom regime by decreasing the temperature. Consequently, more
costly simulations are required to test the theoretical predictions in the high rf
regime. Different solvent conditions were contemplated in the bond fluctuation
MC calculations of Lai and Binder [210] and the BD calculations of Grest and
Murat [199]. Although the Lai and Binder results seem to show a scaled behav-
ior consistent with the theoretical SCF predictions for the first moment of bead
density function in the theta state, the profiles obtained in the BD simulations
are not in good agreement with the elliptical form predicted by the theory, and
they exhibit a significant clear depletion layer close to the grafting surface, as
shown in Fig. 22. Moreover, Grest and Murat could not obtain the predicted
universal behavior in their scaled plots. In the sub-theta regime at moderately
high grafting densities, both simulations found steplike profiles, i.e., with a uni-
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form bead concentration across the brush (Fig. 23). For grafting densities close
to the overlapping value, projections of all the monomers on the surface plane
indicate a strong phase separation, with monomer-rich and monomer-poor
phases, due to attraction between different chains. This behavior has been con-
firmed by atom force microscopy experiments [211]. The holes tend to disap-

Fig. 22a,b. Bead density profiles in a brush of grafted chains in a theta solvent with N=200,
and two different values of the grafting point densities. The smooth curves correspond to
the elliptical theoretical prediction. Reprinted with permission from [199]. Copyright
(1993) American Chemical Society
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pear as the grafting density or the chain length increases, but it is not clear
whether a uniform phase should be obtained for very long chains. Weinhold
and Kumar [212] used a Bead-Rod model with LJ potential to perform MC sim-
ulations of brushes in poor solvent conditions. The significantly homogenous
bead density profiles are also in agreement with the theoretical predictions.
They also studied the transition between the mushroom and the stretched
chain regimes.

Pakula and Zhulina [213] have simulated dry brushes at melt densities in con-
tact with a repulsive wall. They used the cooperative motion algorithm. Their re-

Fig. 23a,b. Bead density profiles of grafted chains with N=50, 100 and 200, and the indicated
grafting point densities, and three different values of the temperature (EV, Tq=3e/kB, and
sub-theta). Reprinted with permission from [199]. Copyright (1993) American Chemical
Society
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sults were satisfactorily compared with a SCF approach, using a free energy
functional, with an energetic part depending on the local stretching and an en-
tropic part derived from the distribution of chain ends. Its minimization, con-
sidering uniform bead densities and constant chain lengths, allows them to ob-
tain analytical expressions for these quantities. The chain stretching was found
to be larger near the grafted surface.

The surface osmotic pressure, PS, can be determined from the first derivative
of the free energy per chain with the inverse of the grafting density. Grest [197]
performed MD simulations at constant osmotic pressure, studying its variation
with rf. The results can be expressed according to the power law PS»rf

y, with
y@2.5. This exponent is significantly higher than the results of the Flory-type and
scaling theories, y=5/3 and y=11/6, respectively. However, the simulation value
of y is in better agreement with the calculations of Carignano and Szleifer [214]
who relate the local osmotic pressure with the conformational distribution of
chains, taking into account the bead size. Experimental data by Kent et al. [215]
exhibit similarly higher exponents.

The interaction between two parallel brushes in the EV regime has been the
object of several BD [216] and MC [217, 218] simulations. When the two surfac-
es are at a distance of about twice the brush height the brushes begin to overlap
and the bead density profiles suffer a deformation. At small distances the bead
density becomes uniform, but at moderate compression the profiles still resem-
ble the parabolic form. The ends tend to penetrate into the opposite brush and
also migrate into the depletion region near the surfaces where the bead density
is small. The forces between the brushes is always repulsive in good solvent con-
ditions. The interaction energies obtained from the simulations can be com-
pared with the theoretical predictions from the scaling and the Milner et al. the-
ories. These predictions are slightly different. The BD simulation data show a
good agreement with the scaling theory, and also with distance-force experi-
mental data obtained by Tauton et al. [219] with terminally attached PS chains.
A recent generator-matrix calculation on lattices by Ruckenstein and Li [220]
also shows good agreement with the experiments of Tauton et al. and Watanabe
and Tirrell [221], which constitutes an improvement of the theoretical descrip-
tion.

The dynamics of chains in a brush can also be characterized by means of
time-correlation functions of properties such as the grafting point-to-end dis-
tance. The Murat and Grest BD simulations [195] for EV chains and the dynamic
MC simulations performed by Lai and Binder with the bond fluctuation model
for chains in the EV [194] and theta regimes [210] have analyzed this function.
The simulation relaxation times for EV chains scale similarly to the prediction
of Klushin and Skvortsov [222], which can be roughly explained as Eq. (53) for
te, but now considering that not only units belonging to the external blobs (that
are of similar size as the rest in the case of brushes) but all units contribute to the
free-draining diffusion of the grafted chain. Then Eq. (51) can be considered
again, but now in the form tb»(Rg

b)2/Db. Since in the free-draining regime,
Db»1/Nb (consistently with the simulations which ignore HI and with the semi-
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dilute conditions in the overlapping regime) and taking into account Eq. (18) it
follows that

(65)

which is in rough agreement with the simulation data. However, the simulation
exponent for the rf dependence obtained by Lai and Binder in the theta point is
1.6, while the argument given yields an exponent of 1 for theta chains.

Lai and Binder also studied the mean quadratic displacement of a given bead
in the plane defined by the surface or in the direction perpendicular to it. The
displacement in the latter direction in both the EV and the theta regimes follows
the typical Rouse t1/2 behavior for intermediate times, except for the beads close
to the grafted ends. At longer times the displacement increases more slowly to
its saturation value due to the grafted nature of the chain. Something similar
happens to the displacement parallel to the surface for good solvents. However,
the results at the theta point show a slow, proportional to t1/4, mean quadratic
displacement at intermediate times before saturation. Stronger entanglement of
chains in the poorer theta solvent conditions may explain these data.

Similar to the branches in copolymer stars and miktoarms, the grafted chains
in brushes can be of different chemical compositions. Brown et al. [223] studied
the microphase separation of grafted mixtures of homopolymer chains com-
posed of immiscible A and B units and also [224] of diblock AB copolymers. In
the former case, the brushes expand laterally and then experience lateral micro-
phase separation. In the latter case, however, monomers segregate vertically to
the surface forming a three layer structure.

4.4
Dendrimers

An MD simulation of dendrimers was performed by Naylor et al. [225]. They
employed an atomic model and found open structures which do not support the
concentric shells proposed by de Gennes and Hervet [39]. Their method re-
quires long equilibration times and it is not clear that the results describe equi-
librium. Lescanec and Muthukumar [226] used an off-lattice kinetic growth al-
gorithm to generate SAW dendrimers. This approach does not ensure a reliable
estimation of the true equilibrium configurations, unless a procedure is includ-
ed to introduce the configuration bias. They obtained a bead density profile mo-
notonously decreasing from the center, in contradiction with the de Gennes and
Hervet findings, with substantial chain folding. The mean size data were fitted
to an Rg»N0.22nS

0.50 scaling law. Mansfield and Klushin [227] performed MC
simulations of dendrimers up to the eighth generation. The profiles from these
simulations show a minimum density for high generation numbers. The mono-
mers corresponding to the last generation are shown at any distance from the
center, indicating extensive chain back folding. Also, the different dendrons (or
structures contained in a given arm of the first generation) are segregated. Carl
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[228] employed the Pivot algorithm for a freely-rotating model of Beads and
Rods including a hard-spheres potential with several values of the diameter (the
value zero corresponds to an ideal chain). He found a mean size Rg»N0.25–0.34,
depending on the bead diameter. Their asphericity values show that the mole-
cules are prolate ellipsoids through all generations. Chen and Cui [229] used a
similar algorithm and model, and they found agreement with the profiles ob-
tained by Mansfield and Klushin. Their results for the mean size can be ex-
pressed in terms of the total number of units, the generation number, and the
length of spacers as Rg»N2n–1(gnnS)1–n.

Murat and Grest [230] have performed a BD simulation of dendrimers whose
beads interact through an LJ potential. Then they have considered different sol-
vent qualities. Including data corresponding to different generations they found
Rg»N0.3 for all the solvent conditions, which suggest a compact globular struc-
ture (exponent 1/3). Recent experimental data of poly(amidoamine) dendrimers
[231] seem to follow this power-law for the hydrodynamic radius in most sol-
vents, except for the highest generation number. In the simulations of Grest and
Murat, the amplitudes of the power-law depend on the solvent condition, as the

Fig. 24. Bead density profiles in an EV dendrimer with different generation numbers. The
curves for gn=6, 7, and 8 are shifted up by 0.1, 0.2 and 0.3 in the vertical axis. Reprinted with
permission from [230]. Copyright (1996) American Chemical Society
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size decreases for decreasing temperatures. The bead profiles show a sharp de-
crease from the center, followed by a minimum and a plateau of constant density,
when the generation number is higher than 5 (Fig. 24). The density in this pla-
teau does not depend on the generation number. Finally there is a gradual de-
crease of the density in the outer zone. Narrower plateau regions with higher
densities are found for poorer solvents (see Fig. 25). Monomers belonging to the
first four generations are localized, but the density is almost constant within the
chain for beads corresponding to the sixth or higher generations. Segregation of
dendrons is also observed. It decreases for poorer solvent or for higher numbers
of generations due to the global increase of the bead density. The internal dy-
namics of the dendrimer was also analyzed through these simulations. They cal-
culated the time-correlation function of the squared global size. The relaxation
times are higher for better solvent conditions and they also seem to increase
with increasing number of generations, except at low temperatures. However,
this dependence is noisy, perhaps due to the presence of multiple slow disentan-
glement processes.

Numerical calculations inspired in the ZK method for stars have also been ap-
plied for the description of the dynamics of model dendrimers. La Ferla [232]
used a freely-rotating model, including a topology-dependence stiffness param-
eter and preaveraged HI. With this model, he obtained a complex analytical ex-
pression for the mean size. Cai and Chen [233] used a Gaussian model without
HI and performed a detailed analysis of the relaxation motions. They investigat-
ed the diffusion of the center of mass, the relaxation of the center of mass posi-
tion relative to the core monomer, and also the rotational and internal modes.

Fig. 25. Bead density profiles in an EV dendrimer with gn=8 at different temperatures (in
units of e/kB). Reprinted with permission from [230]. Copyright (1996) American Chemical
Society
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They obtained an approximate linear dependence of the intrinsic viscosity with
the generation number that, for Gaussian dendrimers without bead overlap-
ping, means a logarithmic dependence with the total number of monomer units.
A similar description has been employed for tree-like comb structures [234]
showing a power-law of the main relaxation time with chain length whose expo-
nent is the generation number. Then this relaxation time obviously diverges for
polymer networks.

4.5
Adsorbed Branched Polymers

According to the generalization of the scaling theory to adsorbed chains [235],
the mean size of center-adsorbed stars should depend on the number of units in
a way similar to that of free stars with the same functionality. The Ohno and
Binder [132] two-dimensional simulations through the MC enrichment algo-
rithm also consider this type of systems, and they have confirmed this point. In
a d dimensional space the prediction for the mean size of the adsorbed chain is

(66)

The MC data are in good agreement with this prediction, giving exponents
consistent with the value 3/4 corresponding to the critical exponent n for d=2.

The scaling theory also describes the behavior of the root-mean quadratic
end-to-center and bead-center distances in terms of power laws for low values of
these distances. Shida et al. [236] have carried out MC simulations of stars with
different numbers of arms in three dimensions that are center-adsorbed on a re-
pulsive surface, performing a detailed analysis of these functions. Thus, the dis-
tribution functions for the center-to-end parallel and perpendicular to the sur-
face distances, rs and rz, were analyzed. For small distances, the results are com-
patible with the theoretical description of scaling and RG theory in terms of a
power law [27, 46]. The logarithmic plot of the decreasing bead density vs rz
shows a clearly defined slope for low rz, whose value is in good agreement with
the theoretical result, (1/n)–d@-4/3 for d=3. However, a similar plot of the distri-
bution profile vs rS exhibits a strong curvature for small values of rS. Fits of the
intermediate straight regions give slopes that are then compared with the theo-
retical value, –d+l(f). The data of l(f) obtained in this manner seem to slowly
converge to the known limit for f®¥, l(f)=1/n@5/3.

Star polymers in a good solvent grafted by one arm on a surface have been in-
vestigated through an SCF analysis by Irvine et al. [237]. The chains exhibit sig-
nificant stretching of the tethering arm which gives rise to a dense region with a
peak in the bead density profile, followed by a monotone decrease with the dis-
tance from the surface.
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Dilute and semi-dilute solution properties of several classes of branched macromolecules
are outlined and discussed. The dilute solution properties are needed for a control of the
chemical synthesis. The molecular parameters also determine the overlap concentration
which is an essential quantity for description of the semi-dilute state. This state is represent-
ed by a multi-particle, highly entangled ensemble that exhibits certain similarities to the
corresponding bulk systems. Because of the rich versatility in branching the present contri-
bution made a selection and deals specifically with the two extremes of regularly branched
polymers, on the one hand, and the randomly branched macromolecules on the other.
Some properties of hyperbranched chains are included, whereas the many examples of
slight deviations from regularity are mentioned only in passing. The treatment of the two
extremes demonstrates the complexity to be expected in the general case of less organized
but non-randomly branched systems. However, it also discloses certain common features.

The dilute solution properties of branched macromolecules are governed by the higher
segment density than found with linear chains. The dimensions appear to be shrunk when
compared with linear chains of the same molar mass and composition. The apparent
shrinking has influence also on the intrinsic viscosity and the second virial coefficient.
Shrinking factors can be defined and used for a quantitative determination of the branching
density, i.e., the number of branching points in a macromolecule. A broad molar mass dis-
tribution has a strong influence on these shrinking factors. Here the branching density can
be determined only by size exclusion chromatography in on-line combination with light
scattering and viscosity detectors. The technique and possibilities are discussed in detail.

The discussion of the semi-dilute properties remains confined mainly to the osmotic
modulus which in good solvents describes the repulsive interaction among the macromol-
ecules as a function of concentration. After scaling the concentration by the overlap concen-
tration  and normalizing the osmotic modulus by the molar mass, uni-
versal master curves are obtained. These master curves differ characteristically for the var-
ious macromolecular architectures. The branched materials form curves which lie, as ex-
pected, in the range between hard spheres and flexible linear chains.

Keywords. Solution properties, Regularly branched structures, Randomly and hyper-
branched polymers, Shrinking factors, Fractal dimensions, Osmotic modulus of semi-di-
lute solutions, Molar mass distributions, SEC/MALLS/VISC chromatography
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p osmotic pressure

osmotic modulus

Mapp(c) apparent molar mass
ga factor governing the correlation between A3 and A2

reduced concentration

1
Introduction – Why Study Dilute Solution?

Macromolecular chemistry, or more general polymer science, is commonly con-
nected to material science, and here in turn the solid state is often meant. In fact,
a typical engineer or physicist is not really interested in the solution properties
but in typical materials science parameters, for instance the tensile strength, the
glass transition temperature or the degree of crystallinity. Of course, a full set of
data can be collected in a list, which is to be consulted when a material has to ful-
fill special requirements in an application. Certainly, after a while, everybody
will start wondering whether all these data in the whole set of parameters are re-
ally needed, because some of them are evidently cross-correlated to each other,
and furthermore, he will wonder whether all the same data have to be measured
again each time when a new product comes on the market. Such suspicions aris-
es for instance when the rubber elasticity is considered which evidently is not a
unique property of natural Indian Rubber but appears to be a general feature of
all macromolecules when the material is heated beyond a certain temperature.

In such cases it is reasonable to step down to the molecular level of these ma-
terials and to think of a conjecture that many of the condensed materials prop-
erties may actually be connected to the properties of the individual macromol-
ecules. Pursuing this idea one may follow two approaches. The first consists of
molecular modeling of structures on a computer and simulating the material
properties of interest. Alternatively, attempts can be made to set up a rigorous
basic molecular theory.

Both routes have their limitations. The basic theory of complex structures,
which are encountered with macromolecules, often does not allow analytic so-
lutions. Incisive, though reasonable, approximations have to be introduced. On
the other hand, rigorous simulations can be made by means of molecular dy-
namics, but this technique has the limitation that only rather small and fast
moving objects can be treated within a reasonable time, even with the fastest
computers presently available. This minute scale gives valuable information on
the local structure and local dynamics, but no reliable predictions of the macro-
molecular properties can be made by this technique. All other simulations have
to start with some basic assumptions. These in turn are backed by results ob-
tained from basic theories. Hence both approaches are complementary and are
needed when constructing a reliable framework for macromolecules that re-
flects the desired relation to the materials properties.

RT
c¶

¶p

1
RT c

¶p
¶
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The two approaches have been very successfully applied to linear and flexible
macromolecules and have given us a deep understanding of their individual be-
havior and the correlation to their properties in the condensed phase. Some ide-
alizing assumptions were still necessary to find the desired solid state proper-
ties, but as long as only weak van der Waals interactions among the chains are
active, these assumptions have led to valuable qualitative conclusions [1–7].
Quantitative data were obtained by the above-mentioned computer simulations
[8]. Unfortunately, the physical basis of these simulation results is often not yet
well understood. To give an example, the selective permeation of gases through
a membrane can reasonably well be simulated, yet no prediction has been pos-
sible by an analytical theory.

The situation becomes drastically more complex when directed, strongly at-
tractive interactions are present, which lead to association [9–11]. Similar prob-
lems arise when branched macromolecules are to be considered. Branching and
the ensuing gelation and network formation are known almost from the begin-
ning of polymer chemistry, now about 70 years ago [1, 12, 13]. In particular the
sol-gel transition has been an intriguing phenomenon, and was initially per-
ceived as a mysterious process. The elucidation has been a matter of intense ef-
forts in research up to the present day. A reliable and quantitative description of
the gelation process is, of course, of immense importance. For instance an unde-
sirable gelation in a batch reactor and the laborious cleaning will certainly be
costly.

Traditionally, polymer research was concerned with the kinetics of macro-
molecule formation. A considerable simplification was achieved by Flory [1]
when introducing the extent of reaction of a functional group that may belong to
a monomer or a long chain. This extent of reaction a of a functional group is de-
fined as the ratio of the number of reacted functionalities [At] to the total
number of reacted and non-reacted functionalities [Ao]:

(1)

where the subscripts t and o denote the time of reaction and the starting time of
reaction, respectively. Thus the extent of reaction is actually a probability of re-
action. This concept allows the substitution of the time in kinetics by a probabil-
ity parameter, and common laws of probability theory can be applied. One im-
portant outcome of this probabilistic treatment was the discovery by Stockmay-
er [14] of a very broad molar mass distribution for random branching processes.
The type of this distribution differs fundamentally from all other molar distri-
butions known from the polymerization kinetics of linear chains.

Already in the study of linear chain molecules it has become evident that the
shape of the molar mass distribution and its width provide a valuable guide to the
mechanism of chain formation. Best known are the most probable (or Schulz-
Flory) distribution and the narrow Poisson distribution. The former is often
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found in free radical polymerization and linear polycondensation and has a
rather broad width (Mw/Mn=2) that does not change with the molar mass. The
other distribution is characteristic of living polymerization and has a width that
narrows with increasing chain length (Mw/Mn@1+Mo/Mn, where Mo is the molar
mass of the monomer unit) [15]. The type and width of the molar mass distri-
bution remain extremely important also for branched macromolecules and al-
low a classification of possible branched molecular architectures. On random
branching the polydispersity index Mw/Mn increases almost linearly with the Mw
(Mw/MnµMw) [1, 14], but in hyperbranching processes it increases only with the
root of the weight average molar mass (Mw/MnµMw

1/2) [1, 16, 17].
A broad distribution has undoubtedly a marked influence on the properties

of the materials. As a simplifying rule the effects of branching are increasingly
counter-balanced by an increasing polydispersity. In some cases the effect can
become so pronounced that the branching effects are fully masked by the huge
polydispersity. Examples will be given later in this contribution. Because of this
influence the immense effort invested in determining these size distributions
becomes understandable. However, from the behavior of linear chains we know
that it is the molecular structure and the required space which determine the
properties in solution as well as in the condensed state. It is not in the first place
the molar mass of the macromolecule. This fact becomes intriguing and very
complex with branched macromolecules. Grotesque errors are introduced if
only standard size exclusion chromatography (SEC) is applied and a calibration
curve, obtained with linear polystyrene, is used. This error occurs because the
separation in a SEC column proceeds according to the hydrodynamic volume
and not according to the molar mass. A linear chain and a branched macromol-
ecule of the same molar mass have however different hydrodynamic volumes.

At this point the following general remark may be appropriate and has to be
remembered as an urgent warning. In the last ten years we have gained a com-
prehensive understanding of the behavior of linear chain molecules. We know
that the laws, which govern this behavior, are quite general and in some respect
universal. Because of this universality we intuitively tend to believe that the same
laws will also hold for all non-linear molecular architectures. This, however, is
not the case and it is the basis of many misinterpretations. Branched structures
are certainly built up of linear chain segments, but nonetheless they represent
new topological classes which differ basically from linear chains. As a new pa-
rameter the so called fractal dimension df has been successfully introduced by
which a desirable classification became possible.

The final goal of all attempts is a description, and hopefully also a reliable pre-
diction, of the macromolecular properties in bulk and in moderately concentrat-
ed solutions. It may be useful to recall that even the polymerization processes
are conducted either in the melt or in fairly concentrated solutions. Under such
conditions a complex interplay between the structures of the individual macro-
molecules with strong mutual interactions takes place. In order to disentangle
the complexity it will be helpful to derive at first a precise picture of the structure
of individual macromolecules. Their properties can most adequately be studied
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in the highly diluted regime. Here the distance between macromolecules can be
made much larger than the molecular size diameter. Interparticle interactions
still have some influence on the measurable parameters, but the concentration
is then already sufficiently low that a simultaneous interaction of more than two
particles can be considered as negligible. Only the effect of the second osmotic
virial coefficient A2 has to be taken into account.

The second virial coefficient is not a universal quantity but depends on the
primary chemical structure and the resulting topology of their architecture. It
also depends on the conformation of the macromolecules in solution. However,
once these individual (i.e., non-universal) characteristics are known, the data
can be used as scaling parameters for the description of semidilute solutions.
Such scaling has been very successful in the past with flexible linear chains [4,
18]. It also leads for branched macromolecules to a number of universality class-
es which are related to the various topological classes [9–11, 19]. These conclu-
sions will be outlined in the section on semidilute solutions.

2
Topological Structures

The set of all phenotypes of molecular branching is evidently very complex; any
unit on a linear chain can in principle be a branching point for another chain
that again can branch off at a more or less defined position. For a better under-
standing of the effects of branching it is advantageous to start the study with
simple models and to proceed step by step to more complex topologies. This ap-
proach does not represent the historical development. Actually for historical
reasons the study of branched polymers started with the random polycondensa-
tion of f-functional monomer units, which might be considered a topological
system of highest complexity. Conceptionally the understanding of regular
structures appears to be much easier, though the chemical realization has of-
fered great difficulties. Therefore, the presentation of branched models may be
opened with some regular structures

2.1
Regularly Branched Systems

2.1.1
Regular Star Molecules

The simplest structure is that of f linear chains of exactly the same length at-
tached to an f-functional central unit – see Fig. 1

In this model the linear chains become the rays of a star molecule. The rays,
consisting of m repeating units, can be considered stiff rods, but in most cases
they will be flexible and can be described in a first approximation by Gaussian
chain statistics. A star molecule has only one branching unit among f´m units
which belong to linear chains. Their properties can be expected to show a close
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similarity to linear chains. This indeed has been observed when studying the in-
ternal and local structure. The global structure, however, deviates considerably
from that of linear chains and is determined by tethering the f chains with their
end at the branching center [20–37].

A distinction between global and internal or local structures will be repeat-
edly made in this contribution. The discrimination proved to be helpful when
interpreting the properties of branched molecules. It is here defined more ex-
plicitly. With global the behavior of a particle is understood as it appears to an
observer from a longer distance. Since in solution the particles are in continuous
rotational and translational motion they appear on average to have a spherical
shape. Thus a mean radius of an equivalent sphere and the domain of interaction
among such spheres are the main global parameters. If techniques were available
to measure additionally deviations from this equivalent sphere, the shape, i.e.,
the outer contour of the particle, is also a global structure parameter.

On the other hand, scattering techniques and all types of spectroscopy allow
us to get information on the internal structure of the particle. These questions
will be considered in a forthcoming review.

2.1.2
Regular Comb Molecules

The next higher topological complexities are obtained with flexible regular
comb molecules and with so called dendrimers. Regular comb molecules (see
Fig. 2) consist of a linear flexible chain of defined length, that forms the back-
bone, and f flexible side chains of uniform length which are grafted at regular
distances onto this backbone.

Again, this structure resembles very much a linear chain, when the side
chains are much shorter than the backbone. The other limit is that of a short
backbone and long side chains grafted on the backbone in the densest way. This
structure will approach the behavior of star molecules. It should be mentioned
that a realization of complete regularity will scarcely be possible. It is almost im-

Fig. 1. Regular star macromolecules with f=3, 4, and 8 arms of identical length. The arms
or rays can consist of rather stiff chains, but are in most cases flexible chains. The global
structure is determined by the overall shape of the whole macromolecule; the internal
structure is indicated by a domain that is much smaller than the overall dimension but still
larger than a few Kuhn segments
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possible to prepare a comb with a uniform backbone. Imperfections in the spac-
ing of the side chains will often be the result of the chemical synthesis.

2.1.3
Dendrimers

Dendrimers, in the generalized form, are obtained when each ray in a star mol-
ecule is terminated by an f-functional branching unit from which rays of the
same length are emanating. A next generation is created when these f-1 rays are
again terminated by the branching units from which again rays originate etc.
Figure 3 shows examples.

If the rays possess ideal flexibility to allow application of Gaussian statistics,
the resultant structure will resemble a soft sphere. This was the reason why the
present author introduced the soft sphere model [38]. This model reduces to
dendrimers in the narrow sense when no spacer chains between the branching
units are present.

Fig. 2. Two limiting cases of a regular comb molecule. The flexible chain sections between
two branching points may consist of m monomer units while the f flexible side chains have
a length of n monomer units. The one structure (short side chains) resembles a substituted
linear chain, the second one (short backbone) has similarity to star molecules

Fig. 3. Dendrimers. The branching units can be directly attached to each other in genera-
tions or shells (left), but can also be connected via flexible spacers of identical length (right)
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In recent years the chemistry of preparing dendrimers has become very suc-
cessful although painfully cumbersome and time consuming [39–47]. This is not
the only drawback. Because of space filling it has not been possible to prepare
more than five generations. Either the reaction to a higher generation stops
completely or, what happens in practice, the outermost shells will develop im-
perfections. As in the case of comb molecules, corrections have to be made to the
properties of this idealized structure.

2.2
Statistical Branching

In most cases no special care is taken in chemistry to achieve regularity: f-func-
tional and bifunctional monomer units are mostly just mixed together and left
for reaction without any constraints.

2.2.1
Randomly Branched Systems

The simplest assumption is that all functional groups have the same reactivity
independent of whether they are connected to a monomer or to a macromolecu-
lar species. Furthermore, the possibility of ring formation, i.e., the reaction be-
tween functional groups belonging to the same macromolecule, has been ex-
cluded [1, 13, 14, 48]. Although the visual perception now becomes blurred such
fully random systems can be treated analytically by theories of random statis-
tics. Clearly it represents a mean field theory. The whole statistics is based on the
extent of reaction a as defined in Eq. (1). The first important conclusion was
drawn by Flory [2] who predicted a critical point where gelation takes place. An-
other important step was the derivation of the molar mass distribution by Stock-
mayer [14] who showed that this distribution has a hitherto not anticipated ex-
tremely broad width. Further progress was made later in the calculation of con-
formational properties [10, 49–52]. Here the adequate method of representation
of the average structure is that of rooted trees. Figure 4 shows three examples of
such rooted trees [53]. The treatment of random branching is often called the
Flory-Stockmayer (FS) theory. In percolation theory [7] the mean field approach
is equivalent to percolation on a Bethe lattice. More details will be given below.

2.2.2
Deviations from Randomness

No real system is fully random. Random systems are over-simplified ideal mod-
els similar to those of strictly regular structures. Most relevant is the effect of the
finite volume of the monomer units which implies that two units can approach
each other only up to their diameter. Thus a certain volume is forbidden or ex-
cluded for the individual repeating units. For hard sphere monomers this ex-
cluded volume is just eight times the monomer volume. This excluded volume
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causes a swelling of the branched structures that significantly perturbs the Gaus-
sian statistics. It can also cause a change in the expected topological architec-
ture, because in a densely branched system the reaction of the various functional
groups on a monomer will be influenced by the condition of how many of the f-
functional groups had already reacted. This interdependence was called a nega-
tive substitution effect by Gordon and Scantlebury [54]. (A positive substitution
effect may be observed when there is a local stimulating cooperative reaction,
but these cases are rare and mostly less effective than the always existent volume

Fig. 4a–c. Rooted trees: a for a tri-functional random homo-polycondensation; b for the
two trees in the copolymerisation with bi functional monomers; c for the vulcanization of
linear chains. The rooted tree representation brings a clear ordering of the units into gen-
erations. Hence the degree of polymerization can be obtained by first deriving a general ex-
pression on the population of monomer units in the n-th generation followed by summing
over all generations
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exclusion.) Clearly these reactions can no longer be adequately described by a
mean field approximation. Only crude approximations are at present available
to treat this problem [1, 55, 56]

2.2.3
Hyperbranching

There exists, however, one special group of branched structures that, in spite of
an incisive constraint imposed onto the reaction, can be well described by a
mean field approach. This case occurs when a monomer bears two types of func-
tional groups [1, 16, 51], say A and B, where only group A can react with one of
the (f-1) B groups of another monomer unit. Figure 5 shows as examples two
cases of an AB2 polycondensation.

The chemical constraint reduces the number of possible reactions considera-
bly, and consequently it leads to a much narrower molar mass distribution. Fur-
thermore, the extent of reaction a of the A-group can cover all values from zero
to unity, but the extent of reaction b of the equally reactive B-groups cannot be-
come larger than b=a/(f-1). One important consequence of this strict constraint
is that gelation can never occur [1, 13]. A much higher branching density than
by random polycondensation can be achieved. For this reason one nowadays
speaks of hyperbranching.

Fig. 5. Polycondensation of  and  monomer units (hyperbranching). Much-

longer linear chain sections between branching points occur on average when B2 has a low-
er reactivity than B1, and a linear chain is obtained when the reaction of B2 can be fully sup-
pressed. The structures are called hyperbranched, since due to the chemical constraint a
very high branching density becomes possible without gelation
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In spite of the many possible structures in branching processes, several simi-
larities, which are specific for branching, can be observed. These similarities are
most clearly recognized when the two extremes of strictly regular star molecules
and randomly branched macromolecules are compared. The detailed outline in
the following sections focuses for this reason mainly on these two structures.
The many real systems will be discussed in the light of the knowledge gathered
from these two structures.

3
Global Properties of General Macromolecular Architectures in Solution

3.1
Experimental Techniques

The experimental techniques for the study of conformational branched proper-
ties in solution are the same as used for linear chains. These are, in particular,
static and dynamic light scattering, small angle X-ray (SAXS) and small angle
neutron (SANS) scattering methods, and common capillary viscometry. These
methods are supported by osmotic pressure measurements and, nowadays ex-
tensively applied, size exclusion chromatography (SEC) in on-line combination
with several detectors. These measurements result in a list of molecular param-
eters which are given in Table 1.

As was already mentioned we tend to judge the results on the basis of our
knowledge of linear chains. This, however, can be very misleading, and for this
reason it will be useful to go back to the basic equations and to recall how these
molecular parameters are obtained. Everybody who is familiar with these rela-
tionships may omit this section and proceed immediately to the discussion of
the results. Whenever questions occur, the basic relationships may be consulted.

All investigations have to start with the determination of the global properties
of the macromolecules. In fact, the combination of these data already gives a cer-
tain insight in the topological structure and the resulting consequences for the
properties. A far more detailed knowledge is obtained when, in addition, the in-
ternal structure is studied. Both the experimental techniques and the theoretical

Table 1. Molecular parameters and techniques for their determination

Parameter Symbol Technique

molar mass Mw static LS
radius of gyration Rgº[<S2>z]1/2 static LS
second virial coefficient A2 static LS
translation diffusion coefficient Dz dynamic LS
intrinsic viscosity [h] viscometry

The indices w +and z denote the weight and z-averages, respectively
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relationships needed for such a study are far more complex. For this reason it is
advisable to discuss both aspects separately.

The main global parameters are the molar mass and the radius of an equiva-
lent sphere. Because of the often observed large molar mass distribution one has
to distinguish between the number and the weight average molar masses Mn and
Mw. The former can be measured fairly quickly with dynamic osmometers. In
spite of limitations in sensitivity, measurement of the osmotic pressure still pro-
vides us with valuable parameters. Most common is the determination of the
weight average by means of static light scattering. The ratio Mw/Mn is related to
the mean square dispersion, s2, (which describes the width of a distribution) by
the relationship

(2)

The next step consists of the determination of the size of the macromolecules
in space. Two equivalent sphere radii can be measured directly by means of static
and dynamic LS. Another one can be determined from a combination of the mo-
lar mass and the second virial coefficient A2. Similarly, an equivalent sphere ra-
dius is obtained from a combination of the molar mass with the intrinsic viscos-
ity. This is outlined in the following sections.

3.2
Special Relationships

3.2.1
Static Light Scattering

A relationship for evaluation of static light scattering (LS) data from dilute solu-
tions is given by

(3)

(qRg<2; A2Mwc<0.5) (3')

In this equation, Rq is the normalized scattering intensity (Rayleigh ratio) at
the scattering angle q, c is the concentration in g/cm3, and q is the magnitude of
the scattering vector that is related to the scattering angle

(4)
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where lo is the wavelength of the light used and no the refractive index of the sol-
vent. K is a contrast constant that is differently defined in the various scattering
techniques. For static LS one has [57]

(5)

in which ¶n/¶c is the refractive index increment which, roughly speaking, is the
difference in the refractive indices between a solution and the solvent divided by
the concentration. The contrast in small angle X-ray scattering (SAXS) is deter-
mined by the difference in the electron density [58] and in small angle neutron
scattering (SANS) it is given by the difference in the scattering length [59]. The
relationships are, for SAXS

(6)

with

(6')

where Dz represents the difference in the electron density between the solute and
the solvent in which is z2, the molar number of electrons (i.e., M z2 is the number
of electrons per molecules of molar mass M), 2, the specific volume of the poly-
mer in solution, and r0, the mean electron density of the solvent. d denotes the
thickness of the scattering cell. The numerical value is IeNA=(7.9´10–26)
(6.023´1024)=21.0, i.e., the product of the Thomson factor and Avogadro´s
number, and is given in [58].

For SANS

(7)

with

(7')

where bi is the scattering length of the i-th element in the macromolecule (or sol-
vent molecule, respectively), ri their corresponding densities, and mi are the
masses of the various elements.

The angled bracket in <S2>denotes the average over all possible conforma-
tions and the index z indicates that this value is the z-average over the molar
mass distribution. For convenience the abbreviation Rgº(<S2>z)1/2 is used.
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Equation (3) is valid when the dimensions of the particle are less than the
wavelength of the light and the concentration is sufficiently small. These limits
are given in Eq. (3'). Furthermore the light of the primary beam has to be verti-
cally polarized. The scattered light that enters the detector is the sum of the two
contributions Vv and Vh which corresponds to the scattered light with an an-
alyzer vertically oriented to the scattering plane (i.e., parallel to the polarization
direction of the primary beam) and horizontally oriented, respectively. For
branched structures the Vh contribution is very small (Vh/Vv<10–3) and can be
neglected.

Equation (3) demonstrates that the radius of gyration Rg can unambiguously
be measured by static scattering experiments.

3.2.2
Dynamic Light Scattering

The equations for dynamic LS require a more detailed outline. Here a time cor-
relation function (TCF) of the scattering intensity is measured that is given as
[60]

(8)

In this relationship i(0) is the scattering intensity at the time zero and i(t) that
a short delay time t later. Correspondingly i(¥) is the scattering intensity at delay
time t®¥. The brackets < >denote the average over a large number of repeti-
tions (n>105). If the delay time is of the order of a relaxation time the correlation
function decreases from a value of about g2(q,0)=2 to a base line at g2(q,¥)=1.

The intensity TCF g2(q,t) is related to the field TCF g1(q,t), that is accessible to
theoretical derivations. Its relationship is in the general case very complex, but
as long as the concentration fluctuations of different volume elements in the
scattering volume can be assumed to be spatially independent of each other, one
can apply the Siegert relationship [61]

(9)

The coefficient b<1 depends on the quality of the instrumental set-up but
takes a value close to unity when monomodal fibers are used[62].

The field TCF can be calculated on the basis of Brownian motion theory. Its
initial time dependence is in every case described by a single exponential decay

(10)
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This decay time is related to the translational diffusion coefficient as [63]

(11)

where

(12)

The relationships follow from considerations of Brownian motions and ther-
mal fluctuations which also influence the internal motions in flexible objects. Dz
is the translation coefficient of the particle's center of mass where the subscript
indicates the z-average over the molar mass distribution. The first bracket in
Eq. (12) describes the concentration dependence which often is well represented
by a linear dependence

(13)

with kD as a coefficient that depends on the second virial coefficient as well as on
the concentration dependence of hydrodynamic friction.

A translational motion can be concentration dependent but it cannot be an-
gular dependent. However, the quantity G/q2 is often found to depend on the
scattering angle when the particles are large. Therefore, G/q2ºDapp(q,c) must be
an apparent diffusion coefficient. In fact, if a region of qRg>2 is covered by dy-
namic LS the scattering response arises from internal structures, which are
much smaller than the radius of gyration Rg. As long as the particles are rigid the
mobility of the internal domains will be essentially the same as that of the center
of mass, and no angular dependence can be observed. Figure 6 exhibits the re-
sult obtained with large latex particles, which indeed shows over a wide angular
region no q-dependence of the diffusion coefficient in spite of the strong angular
dependence in static LS.

If, however, the various internal domains can move relative to each other they
will occur with much faster relaxation times than given by the diffusive transla-
tional motion of the center of mass. The motions will become increasingly faster
with decreasing size of the domains. Hence, the superimposed internal relaxa-
tion spectra must cause an increase of G(q) as the scattering angle (i.e., q) is in-
creased. For values qRg<2 this effect could be calculated for flexible chain seg-
ments (Gaussian statistics) by a rigorous perturbation theory which resulted in
[63]

(14)

with a coefficient C that is essentially determined by the longest internal mode
of motion with respect to the center of mass [64]. This coefficient was calculated
for various molecular architectures and proved to be a valuable guide for esti-
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mating different types of architectures [63]. Details and applications will be dis-
cussed later in this contribution. For the moment it is sufficient to remember
that one has C=0 for hard spheres, but the value becomes larger with increasing
internal flexibility up to a value of C@0.2 for linear flexible chains. Branching and
cyclization reduce the value again [64, 65].

3.2.3
Stokes-Einstein Relationship

The last point to be made is the famous Stokes-Einstein relationship that was
found by Einstein by comparing the Brownian motion with common diffusion
processes [66, 67]. Accordingly the translational diffusion was found to depend

Fig. 6. Lower part: angular dependence of the non-normalized static scattering intensity
I(q) observerd with latex particles (R=265 nm). Upper part: dependence of G/q2ºD on the
scattering angle in dynamic LS. The sharp downturn at large scattering angles results from
a weak back reflection of light on the boundary of the aqueous solution to the index match-
ing bath, that consisted of toluene. This reflection results from the difference in the refrac-
tive indices of water (no=1.333) and toluene (no=1.51). Reprinted with permission from
[182]. Copyright [1982] American Society
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on the frictional coefficient f of the particle that again is determined by the hy-
drodynamically effective radius Rh by the Stokes equation

 (Stokes) (15')

and gave

(Einstein) (15'')

or

(Stokes-Einstein) (16)

Two remarks have to be added. First, Eq. (16) is a definition for a hydrody-
namically effective sphere radius Rh that becomes the actual sphere radius only
for spheres with a well defined periphery. Second, Rh actually represents an av-
erage over all possible conformations and is given more explicitly by

(17)

in which <>represents the average over all possible reciprocal distances 1/rn; the
index n denotes the number of monomer units between two segment points in
the molecule and the index z indicates that a further averaging with respect to a
molar mass distribution (z-average) has to be taken into account. We may say Rh
is the z-average of the –1st moment of the sizes distribution. Note: the mean

square radius of gyration is the z-average of the 2nd moment of the 

size distribution. Thus, Rh and Rg are short hand writings of rather complex
quantities.

3.2.4
Intrinsic Viscosity

The viscosity of the solution is significantly increased when macromolecules are
dissolved in a solvent. The specific viscosity of a solution hsp=(h-ho)/ho can be
expected to increase proportionally to the concentration c. The reduced viscos-
ity hsp/c still increases with increasing concentration. The data, however, can be
extrapolated to zero concentration and results in the intrinsic viscosity, or the
viscosity number [h], sometimes also called the Staudinger index

(18)
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Staudinger realized that for macromolecules [h] depends characteristically
on the molar mass which can be expressed by the Kuhn-Mark-Houwink-
Sakurada (KMHS) relationship

(19)

in which Kh and ah are molecular specific constants which also depend on the
solvent quality (i.e., on A2). Equation (19) has been the subject of many theories.
The first result was obtained by Einstein who considered suspensions of hard
spheres [68, 69]. He found

(20)

with R the radius of the sphere. Equation (20) can be made more specific by ex-
pressing the molecular volume V by the cube of the radius of gyration

(21)

a relationship that is known as the Fox-Flory [70] relationship. The front factor
F could be calculated for linear flexible chains and was found to approach a con-
stant value when Mw>104. However, the magnitude of F is influenced by the hy-
drodynamic interaction (to be defined later), and this in turn depends on the in-
terparticle distance or in other words on the segmental concentration [71]. Since
this segment density is larger in branched macromolecules than in linear coils,
we have to expect an increase of F with branching.

Another interpretation of Eq. (20) is to introduce an equivalent sphere radius
Rh by rewriting Eq. (21) as

(22a)

or

(22b)

which yields

(23)
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Roughly speaking the F-factor describes how deeply a particle is drained by
the solvent: a deep draining causes a reduction of the hydrodynamically effective
sphere radius and F becomes small, if on the other hand only a shallow draining
is possible F increases and Rh can become much larger than Rg.

3.2.5
The Second Virial Coefficient A2

All measurements, of course, have to be made at a finite concentration. This im-
plies that interparticle interactions cannot be fully neglected. However, in very
dilute solutions we can safely assume that more than two particles have only an
extremely small chance to meet [72]. Thus only the interaction between two par-
ticles has to be considered. There are two types of interaction between particles
in solution. One results from thermodynamic interactions (repulsion or attrac-
tion), and the other is caused by the distortion of the laminar flow due to the
presence of the macromolecules. If the particles are isolated only the laminar
flow field is perturbed, and this determines the intrinsic viscosity; but when the
particles come closer together the distorted flow fields start to overlap and cause
a further increase of the viscosity. The latter is called the hydrodynamic interac-
tion and was calculated by Oseen to various approximations [3, 73]. Figure 7 elu-
cidates the effect.

In all hydrodynamic methods we have the effect of both the hydrodynamic
and thermodynamic interactions and these do not contribute additively but are
coupled. This explains why the theoretical treatment of [h] and of the concen-
tration dependence of Dc has been so difficult. So far a satisfactory result could
be achieved only for flexible linear chains [3, 73]. Fortunately, the thermody-
namic interaction alone can be measured by static scattering techniques (or os-
motic pressure measurement) when the scattering intensity is extrapolated to
zero scattering angle (forward scattering). Statistical thermodynamics demon-
strate that this forward scattering is given by the osmotic compressibility ¶c/¶p
as [74, 75]

Since dilute solutions are considered we can expand the osmotic pressure in
a virial series that is truncated at the second virial coefficients

(23')

Actually a dilute solution may be defined by the condition of A2Mwc<<1. The
theory of the second virial coefficient has been well developed for flexible chains.
The treatment is quite general so that the basic equation can be assumed to hold
also for branched structures; see [3]. Accordingly A2 is expressed in terms of the

    

R
Kc

RT
cq ¶

¶p
= =0

    

K
R M

A c
M

A M cc

w w
w

q =
= + = +[ ]

0
2 2

1
2

1
1 2



Solution Properties of Branched Macromolecules 135

radius of gyration, the molar mass and a segment-segment interpenetration
function Y as follows:

(24)

Of course, the interpenetration of two clouds of segments will depend on the
repulsive interaction among the various segments, and a certain molar mass de-
pendence of Y is to be expected. Surprisingly, in good solvents the Y-functions
soon approaches a constant value Y* [6]. The magnitude of Y*, however, increas-
es with branching since this causes an increase in the segment density [76–79].

Similar to what was done with the intrinsic viscosity we may compare Eq. (24)
with the corresponding equation for hard spheres which is given by [3, 74, 75]

(25)

This allows us to define a thermodynamically effective equivalent radius RT
by replacing the actual sphere radius of a hard sphere by RT which gives

(26)

Together with Eq. (24) this gives a relationship for the interpenetration func-
tion Y* in terms of this equivalent radius:

(27)

Fig. 7. Schematic representation of laminar flow distortion due to the presence of isolated
particles (left) and the corresponding effect at higher concentration when the perturbed
flow fields start to overlap (right). The latter effect causes the hydrodynamic interaction
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This equation looks very similar to Eq. (23) for the draining function F. The
meaning, however, is different: the function F is determined by the resistance of
the penetration of small molecules (the solvent molecules) into the clouds of
connected segments, while the interpenetration function Y * results from the far
more inhibited interpenetration of two connected segment clouds. Figure 8 elu-
cidates the difference.

3.3
Synopsis

The results of this consideration may be summarized as follows. The study of
global properties of macromolecules in dilute solutions by means of static and
dynamic LS and by viscometry allows the determination of the molar mass Mw
and four differently defined equivalent sphere radii, Rg, Rh, Rh, and RT (see
Table 2). All the radii have a certain molar mass dependence. The magnitudes of
these radii, however, can deviate strongly from each other. These differences re-
sult from the fact that they are physically differently defined. The radius of gyra-
tion, Rg, is solely geometrically defined; the thermodynamically equivalent
sphere radius, RT, is defined by the domains of interaction between two macro-
molecules, or in other words, on the excluded volume. The two hydrodynamic
radii Rh and Rh result from the interaction of the macromolecule with the sol-
vent (where the latter differs from Rh by the fact that in viscometry the particle
is exposed to a shear gradient field). 

These differences are of special value for an estimation of the effects of
branching.

Fig. 8. Representation of the interaction functions F and Y* in terms of equivalent sphere
radii Rh and RT, respectively. Both interaction functions depend on the segment density but
small solvent molecules can easier penetrate into a coil (left) than two of such coils pene-
trate into each other (right)
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· The interpretation of measured data can be started by examining the molar
mass dependence. Here the influence of a broad molar mass dependence has
a strong influence, but just this effect can be used for a differentiation between
the various mechanisms of their formation and the resulting architectures.

· The various quantities can be compared with that of the linear analogue at
constant molar mass. This leads to so called contraction factors, which are
significant quantities for a quantitative estimation of the number of branch-
ing points per macromolecule.

· Generalized ratios of the four differently defined radii can be written. By this
manipulation the molar mass dependence is widely eliminated, and the ef-
fects of branching becomes more evident. See Table 2.

The three approaches will now be discussed with some examples. We should
however keep in mind that conclusions on the shape and internal structure of
the macromolecules can be made only with reservations. For more reliable con-
clusions the angular dependencies in LS, SAXS, and SANS have to be analyzed.
This problem will be outlined separately in a forthcoming review.

4
Molar Mass Dependencies of Global Parameters

4.1
Regular Stars

As already outlined, star branched macromolecules resemble their linear chain
analogues. The behavior becomes evident when for a given number of arms f the

Table 2. Radii and dimensional ratios formed with the molecular parameters of Table 1

Quantity Methods

Rgº[<S2>z]1/2 static LS, angular dependence

RT º[(3/16pNA)(A2Mw
2/]1/3 static LS, concentration dependence

RhºkT/(6ph0Dz) dynamic LS at c=0 and q=0

Rhº{(3/10pNA)[h]Mw}1/3 viscometry/static LS

rºRg/Rh static LS/dynamic LS

VT ºRT/Rh static LS/dynamic LS

A2Mw/[h] static LS/viscometry

For linear chains the relationships between the various parameters are as follows: 

Note: The numerical values differ for other architectures
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length of the arms is varied. A double logarithmic plot of the radius of gyration
or of the intrinsic viscosity as a function of the molar mass results in straight
lines which run parallel to the corresponding molar mass dependence of the lin-
ear chains. This behavior is found in q-solvents as well as in good solvents. The
lines for stars of different arm numbers are, however, increasingly shifted to low-
er values as the number of arms is increased.

Schaefgen and Flory [79] were the first to observe this effect. They prepared
star-branched polyamides by co-condensation of A-B types of monomers with
central units which carried f-functional A groups. By this technique star mole-
cules were obtained in which the arms are not monodisperse in length. They
rather obeyed the Schulz-Flory most probable length distribution with polydis-
persity index Mw/Mn=2. However, the coupling of f arms onto a star center leads
now to a much narrower distribution that was first derived by Schulz [80]. Later
the asymptotic form of this distribution has been extensively used in polymer
science of linear chains to characterize the molar mass distributions of their
fractions obtained by precipitation procedures. This asymptotic form was ob-
tained by Zimm [81]. For this reason the distribution is often called the Schulz-
Zimm distribution.

Elementary probability theory shows [82] that on coupling f polydisperse
arms onto a star center (this corresponds to an f-fold convolution of a most
probable distribution) the polydispersity is reduced: The polydispersity index of
the star macromolecules (Mw/Mn) is simply related to the polydispersity index
of the arms as [80, 82, 83]

Fig. 9. Molar mass dependencies of the intrinsic viscosity of star-branched polyamides ob-
tained by co-condensation of bifunctional amino acids with f-functional polyacids. The
curves appear shifted towards smaller intrinsic viscosities as the functionality of the star
center was increased [79]. Reprinted with permission from [79]. Copyright [1948] Ameri-
can Society
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(28)

where for abbreviation the non-uniformity was introduced.

Figure 9 shows the results of the intrinsic viscosity obtained by Schaefgen and
Flory. 

The fairly broad most probable distribution for the rays may be considered as
an undesirable imperfection of regular stars. Corresponding measurements
with much narrower arm length distributions were made later, mainly by the re-
search groups of Fetters [20, 30, 31] and Roovers [25, 26] which were obtained
by living anionic polymerization of styrene, isoprene and butadiene respective-
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Fig. 10. Molar mass dependencies of the radii of gyration for stars of different functionality
in a good solvent [25]. From top to bottom, linear, 4, 18, 32, 64 and 128-arms. Reprinted with
permission from [25]. Copyright [1993] American Society

Fig. 11. The same plot as in Fig. 10 but for the intrinsic viscosity of the same samples [25].
Same symbols as in Fig. 10. Reprinted with permission from [25]. Copyright [1993] Amer-
ican Society
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ly. Figures 10 and 11 demonstrate some results for the radii of gyration and the
intrinsic viscosities, respectively.

Similar effects were also observed for the hydrodynamic radii Rh, obtained by
dynamic light scattering, and for the second virial coefficients A2 [25].

In 1953 Benoit [84] succeeded in the calculation of the particle scattering fac-
tor P(q) of regular stars with f-monodisperse arms, which obey unperturbed
Gaussian statistics. The particle scattering factor is defined as the ratio of the
scattering intensity Rq at the scattering angle q to that at the scattering angle q=
0: P(q)º(Rq/Rq=0), where q=(4pno/lo)sin(q/2) with no the refractive index of the
solvent and lo the wavelength of the light used. The scattering intensities can be
measured by common static light scattering (LS), by small angle neutron scat-
tering (SANS), or small angle X-ray scattering (SAXS). For small values of
qRg<<1 the particles scattering factor solely depends on the radius of gyration 

Therefore the derived equation for the particle scattering factor simultane-
ously gave an equation for the radius of gyration which is

(29)

(29')

(29'')

(29''')

Equation (29) was previously derived by Zimm and Stockmayer [49] who
used another technique. Figure 12 shows a plot of the theoretical increase of the
radii of the stars as a function of the number of arms.

The radius becomes practically independent of the number of arms when f is
larger than 8. Inspection of the structure immediately makes clear why this is so;
evidently no change is to be expected when one or two more arms are added to
a star of, say more than 20 chains. A significant change in the dimensions is only
detectable when the number of arms changes between 2 and 6.

Up to this point we have considered only unperturbed chain statistics. How-
ever, even under Q-conditions when A2=0 unperturbed statistics cannot be
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strictly obeyed if f>6. This conclusion results from the finite volume of the indi-
vidual monomers. The free space needed for irregular motions of the arm seg-
ments remains strongly limited near the star center. As a consequence the arms
stretch out, and the decrease of the radius and the intrinsic viscosity (Figs. 10
and 11) will be less pronounced than given by the unperturbed statistics. This
effect was observed by Huber et al. [30]. On the other hand, the segment over-
crowding quickly vanishes when segments of long arms in the peripheral region
of the star are considered. In the limit of long arms the stretching-out effect be-
comes negligibly small. A quantitative estimation of the segment density distri-
bution was made by Daoud and Cotton [29]. Besides the above-mentioned over-
crowding effect they also took account of the excluded volume effect and its
shielding in a region near the star center. They found the following results.
(a) A constant density j(r)»1 (close sphere packing) is obtained up to a radius

r<r2µf 1/2lK where lK is the Kuhn segment length and f the number of arms.
(b) For r2<r<r1 the segment density is so high that all excluded volume effects

are screened and the chain sections exhibit Gaussian chain behavior. The ra-
dius r1 is given by r1µf 1/2lK/v with v the excluded volume. In between r1 and
r2 the density decreases as
j(r)µf 1/2(lK/r)

(c) For sufficiently long arms the segment density is small and volume exclu-
sion can become effective. For r>r1 the density now decreases as
j(r)µf 1/2(lK/r)µf 2/3(lK/r)4/3v–/3

Fig. 12. Change of the radius of gyration Rg,star /Rg,arm with the number of arms Mstar /Marm
for stars with monodisperse arms and Rg(z),star /Rg(z),arm as a function of Mw,star /Mw,arm for
stars with polydisperse arm lengths which obey the most probable distribution. (Note that
Mw,star /Mw,arm=(f+1)/2 does not represent the number of arms as this is the case for mon-
odisperse arms (see Eq. 28)
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Integration over this segment density profile under the condition of
then leads to a relationship for R as a function of N

(30)

with its asymptote for very large arms of

(30')

where NK is the number of Kuhn segments per arm and v is the excluded volume.
Equation (30) suggests that Rµf1/5 rather than independent of f as shown in the
Gaussian model of Fig. 12.

Accordingly, in good solvents the curves for Rg and [h] become parallel to
those of their linear analogues if the arms are sufficiently long. A quantitatively
reliable estimation of the magnitude of the shift to lower values could not be
made by this theory. A satisfactory answer was given later by Freire et al. [85–87]
on the basis of Brownian motion simulations. Experimentally, it was observed
that the difference in the decrease for Q- and good solvents is rather small but
measurable. For stars with a small number of arms the Gaussian approximation
is met at the Q-conditions and approximately also at the good solvent condition.
Departures are noted only when the molecular weight of the arms are small
(large core fraction). However, when the number of arms becomes large (f>20)
deviations from Gaussian behavior are observed in good solvents and apparent-
ly at the Q-condition. The Daoud-Cotton-theory [29] would apply, especially in
the latter case. The situation at the Q-condition is not completely clear because
of the uncertainty in establishing the Q-temperature for individual samples.

A further remark has to be made when the stars contain polydisperse arms.
The radius of gyration is now based on the z-average of the mean square radius
of gyration over the molar mass distribution while the degree of polymerization
is the weight average DPw. Also for this case the molar mass dependence of this
radius could be calculated and was found to be [83]

(31)

where an index z in brackets was added, which may remind that actually one has
Rg(z)º(<S2

z>)1/2. Since with Eq. (28) 
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we can also write

(31')

The corresponding curve of Rg(z),star/Rg(z),arm as function of Mw,star/Mw,arm is
shown for comparison with the strictly regular stars as dashed line in Fig. 12.

The shift in the intrinsic viscosity is easily understood in qualitative terms.
Assuming validity of the Fox-Flory relationship also for branched macromole-
cules one can write

(32)

This equation suggests a much stronger decrease for [h] than for Rg on
branching. However, the front factor Fstar is not a universal coefficient but de-
pends on the hydrodynamic interaction among the monomeric units in the
macromolecules [3, 88]. Because of the higher segment density compared to the
linear chain this hydrodynamic interaction has a stronger effect in branched
macromolecules. For this reason an increase of the front factor F can be expect-
ed with branching which counteracts the decrease in Rg. This point will be dis-
cussed in greater detail in the next section.

In earlier experiments the effect of branching on the second virial coefficient
was not seriously considered because the accuracy of measurements were not
sufficient at that time. With the refinements of modern instruments a much
higher precision has now been achieved. Thus A2 can also now be measured with
good accuracy and compared with theoretical expectations. The second virial
coefficient results from the total volume exclusion of two macromolecules in
contact [3, 81]. Furthermore, this total excluded volume of a macromolecule can
be expressed in terms of the excluded volume of the individual monomeric
units. In the limit of good solvent behavior this concept leads to the expression
[6, 27] as shown in Eq. (24):

(24)

where Y(z) is a coil interpenetration function that approaches a constant value
Y* for interaction parameters of z>0.75 [6, 90], a value that is much exceeded for
large macromolecules in a good solvent. For linear chains this asymptote is
reached for DP>100 [89]. Experiments with branched macromolecules give ev-
idence that this limit may be reached at even lower DP.

Equation (24) indicates a similar decrease with branching for A2 as already
discussed for the intrinsic viscosity. A first quantitative theory was made by
Casassa [91] (see also [3]) but the experimentally observed shift to lower values
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Fig. 13. Chain length dependence of the second virial coefficient A2 for some star branched
macromolecule, according to Casassa (full line). The data points correspond to measure-
ments [89] (triangles 3-arm, circles 12-arm and rhombus 18-arm stars. Reprinted with per-
mission from [89]. Copyright [1984] American Society

Fig. 14. Dependence of the interpenetration function Y* on the number of arms in star
molecules. The full line represents the result of the renormalization group theory [90], the
data points refer to measurements [77]. Reprinted with permission from [77]. Copyright
[1983] American Society
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was not as large as predicted. This fact results from the difficulty in the correct
estimation of the coil interpenetration function. Qualitatively it is obvious that
the interpenetration of branched coils will be more strongly inhibited than for
linear chains. Figure 13 shows the theoretical result obtained by Casassa [90]
and some experimental data [89].

A much better agreement was obtained recently by renormalization group
theory (RG), but this theory failed to describe the effect correctly when f>6. This
is demonstrated by Fig. 14.

4.2
Randomly Branched Macromolecules

Remarkably different molar mass dependencies are obtained with randomly
branched or randomly crosslinked macromolecules. Often, below the critical
point exponents n in RgµMw

n are found which are close to n=0.5, and sometimes
even lower. Figure 15 shows two typical examples.

These low exponents seem to suggest poor solvent behavior. However, the
second virial coefficients are clearly positive and still fairly large and prove good
solvent behavior. Surprisingly the molar mass dependencies of Rg and Rh of un-
fractionated samples are almost indistinguishable from those of their linear an-
alogues.

Also the molar mass dependence of the intrinsic viscosity appears odd at first
sight. Here exponents in the KMHS equation of ah<0.4 are common, and often
the exponent decreases further at large molar masses. Figure 16 shows exam-
ples.

Finally the second virial coefficient displays a much faster decrease with Mw
than observed with linear chains. Exponents of  in the relationship

(33)

of  were found. Figure 17 shows some examples. Evidently
branching displays its effect mainly in the behavior of [h] and A2. In the radii Rg
and Rh, on the other hand, the branching effect seems to be masked by another
property.

These observations require a detailed explanation. After several unsuccessful
attempts a satisfying answer was finally found. A first step was made by the in-
genious derivation of the molar mass distributions of randomly branched or
randomly cross-linked materials [14]. The equation, that was later rederived by
Flory [13], will be given in the next section. Here it suffices to point out that the
width of the distribution, or the polydispersity index Mw/Mn , increases asymp-
totically with the weight average degree of polymerization

(34)

    
aA2

    
A K MA w

aA
2 2

2= –

    
0 55 0 8

2
. .£ £aA

  

M
M

DPw

n
w@



146 W. Burchard

The increasing polydispersity, however, represents only one contribution to
Rg. As already demonstrated with the regular star-branched macromolecule,
branching results in smaller radii than observed with linear chains at the same
molar mass. This effect, that corresponds to an apparent contraction, is a gener-
al topological property of branching and must also be present for every species
in the randomly branched ensemble. Thus, besides the polydispersity this
shrinking effect is also operative. Actually, the two effects, shrinking due to
branching and polydispersity, counteract and almost compensate each other.
This effect was disclosed when the z-average of the mean square radius of gyra-

Fig. 15a,b. Molar mass dependencies of the hydrodynamic radius in good solvents for
crosslinked polyester chains (obtained by phthalic acid anhydride curing of: a phenylglyci-
dyl ethers – linear chains (open squares), pregel (filled symbols) and postgel (open trian-
gles); b Rg and Rh of end-linked polystyrene 3-arm star macromolecules [92, 93]. The cor-
responding exponents are n =0.56±0.03 and n =0.53±0.03, respectively [94]. Reprinted with
permission from [94]. Copyright [1995] American Society
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tion <S2>z was calculated as a function of the weight average degree of polym-
erization [50]. For f-functional random polycondensation the result was [24]

(35)

where Gaussian statistics were assumed for the chains connecting two segments
in the macromolecule. (The z in brackets stresses that Rg is based on a z-aver-
age). This result shows two unexpected effects.
· Compared with their linear analogues the exponent in the power law behav-

ior for Rg is not changed due to branching. This observation also remains val-
id when excluded volume effects are taken into account.

· The prefactor [(f-1)/(2f)]1/2 increases from 0.5 for linear polycondensates (f=
2) to higher values and reaches asymptotically a value of 0.709 for f>>1.

Both effects are the consequence of the difference in averaging Rg and Mw. In
fact, a fully different picture is obtained when the radii are calculated for the
monodisperse fractions. These calculations were first made by Zimm and Stock-
mayer [49, 97]. Now the expected strong decrease of Rg with branching was in-
deed obtained (and also a different molar mass dependence that will be dis-
cussed somewhat later).

The peculiarly looking dependence of Eq. (35) is evidently the result of two
counteracting effects. The scheme of Fig. 18 may serve as an intuitive explana-
tion. Let us start the consideration with a monodisperse linear chain and a
branched species from the ensemble of randomly branched samples. Both mol-

Fig. 16. Molar mass dependencies of the intrinsic viscosity [h] for the same samples as
shown in Fig. 15 (end-linked PS-stars [94] and randomly crosslinked polyesters [92, 93, 95]
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ecules have the same molar mass. Then, due to the Zimm-Stockmayer theory, we
would observe a marked decrease in the radius of gyration. However, when the
z-average over the molar mass distribution is carried out, the radius is strongly
increased by the huge polydispersity. This increase due to polydispersity sur-
passes the decrease due to branching. Next, we have to take into account that the
molar mass also has to be averaged. This too causes a shift of the molar mass to
higher values. At the end the point comes to a position which lies only slightly
above the curve for the linear chain. If we perform the same procedure with a
much higher molar mass, then all corresponding effects are more pronounced,
but we end up again with a point that lies only slightly above the linear chain
curve.

Now, when measuring the intrinsic viscosity by common capillary viscome-
try and the molar mass by static light scattering, two quantities are compared
which correspond to different types of averages over the size distribution. From
light scattering one has MLS=Mw, but the average of the intrinsic viscosity is

Fig. 17. Molar mass dependencies of A2 for the same samples as shown in Fig. 16. The flat
curves correspond to their linear analogues [92–95]
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much closer to the number average, Mh@Mn. As long as the polydispersity index
remains independent of the molar mass this difference in the two averages caus-
es only a parallel shift of the data. But when the polydispersity increases strong-
ly, for instance, as is given by Eq. (34), then the intrinsic viscosities in the Mw
plot appear increasingly stretched to larger values of Mw. As a consequence, the
curve flattens and shows a lower exponent than expected.

The observed decrease in [h] (see Fig. 16) can be understood when recalling
that due to Marriman and Hermans [98] the intrinsic viscosity of polydisperse
macromolecules is given by the ratio of two number averages

(36)

Fig. 18. Schematic explanation why the molar mass dependence of Rg shows no significant
change when randomly branched samples are compared with their linear analogues. A de-
crease due to contraction (1) as a result of branching is overcompensated by the influence
of a very broad size distribution (2). Simultaneously the weight average of molar masses in
the ensemble causes a shift to the right (3). The final situation remains the same for a higher
molar mass sample since both the contraction due to branching and the width of the size
distribution increase in similar manner. The indicated points come to lie only slightly above
the curve for polydisperse linear chains. The power law remains unchanged and the exper-
imental results lie only slightly above the curve for polydisperse linear chains
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The decrease in [h] due to contraction as a result of branching is now no long-
er compensated by performing the number average over the ensemble distribu-
tion. Thus the branching effect here becomes apparent also for the non-fraction-
ated samples.

4.3
Fractal Behavior and Self-Similarity

4.3.1
The Concept of Fractal Dimensions

The molar mass dependence of the second virial coefficient remains, so far, not
fully understood. Why does the exponent  in the relationship

(33)

change so sharply from a value of about =0.20±0.03 for linear chains to
=0.65±0.15 when random branching occurs? A satisfactory answer to this

question was found by new arguments which were introduced by physicists [4,
7, 55, 99, 100].

The starting point was a reconsideration of the molar mass dependence of Rg
that is commonly written as

(37)

The exponent can vary from n=0.33 for hard spheres up to n=1.0 for rigid
rods. For linear chains n=0.5 refers to unperturbed coil dimensions in Q-sol-
vents and n=0.588 [6] to good solvent conditions. Equation (37) may be re-writ-
ten by expressing the molar mass as a function of the radius of gyration, i.e.,

(38a)

with

df =1/n (38b)

For solid bodies of hard spheres, flat discs and rigid rods one has
df =d3=3 for hard spheres
df =d2=2 for flat discs
df =d1=1 for thin rods

or in other words, df denotes the geometric dimension of the bodies, which in
these cases are three-dimensional, two-dimensional, or one-dimensional, re-
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spectively. However, when applying Eq. (38b) to the exponents, found with mac-
romolecules, one obtains a fractal number. For instance with n=0.587 one has
the fractal dimension

df =1.70 for coils of linear chains in a good solvent

A random coil is clearly a three-dimensional object when looked at from long
distance. Locally, however, it resembles more a one-dimensional thread. There-
fore it is sensible to describe the coil by a fractal dimension that lies closer to 1
(for other architectures somewhere between 1 and 3). Such disordered objects
are called fractals [101, 102].

So far this approach is nothing else than a new way to express a mathematical
relationship. But there is more behind this approach. It was proven mathemati-
cally that so-called self-similar objects must show power law behavior [103]. The
expression self-similarity has the following meaning: independent of the length
scale that is used to express the radius of gyration in actual measurements (i.e.,
whether the bond length b or the Kuhn segment length lK is chosen), the same
exponent n=1/df is obtained [4]. If a change in the exponent n is observed when
passing to very high molar masses, then this is a clear indication that these ob-
jects are significantly different from those at lower molar masses. Some exam-
ples will be discussed later when the structure of fractions in size exclusion chro-
matograms is considered.

Simulation of structure formation on a lattice [7, 100] demonstrated that ran-
domly formed branched clusters also fulfill self-similarity conditions and gave
fractal dimensions of [7, 104, 105]:

df =2.5 for clusters in the reaction bath (e.g. poorly swollen as in the melt)
df =2.0 for freely swollen clusters in a good solvent

4.3.1.1
Molar Mass Dependence of A2

We are now ready for an interpretation of the exponents in Eq. (33). Inserting
Eq. (38b) into Eq. (24) (that describes the structure dependence of the second
virial coefficient) we find

(39)

or

(40)

where we have assumed that the interpenetration function Y* does not signifi-
cantly change with the number of branching points in the macromolecules. With
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the fractal dimensions for the freely swollen and the poorly swollen clusters we
thus obtain

freely swollen: df =2.0; n=0.5; – =–0.5; ah=0.5 (41a)

poorly swollen: df =2.5; n=0.4; – =–0.8; ah=0.2 (41b)

Similarly, the values for ah=(3/df)–1 follow from the Fox-Flory relationship
(Eq. 26), again under the condition that Fb does not change with the number of
branching points per cluster. The assumption of constant Y* and constant Fb
are not strictly fulfilled. Nonetheless the scaling relationship of Eq. (40), and the
corresponding one for the intrinsic viscosity, lead to very reasonable results,
which were indeed observed. Here the full power of the fractal concept becomes
evident.

4.3.2
Influence of Polydispersity

The fractal dimension that is determined from Eq. (38) is not in all cases the true
fractal dimension of the individual macromolecules. In a polydisperse ensemble
one has to take the ensemble average which yields an ensemble fractal dimen-
sion df,e [7, 92]:

(42)

Since the mean square radius of gyration requires a z-average but the molar
mass a weight average the fractal dimension remains unchanged only if the ratio
Mz/Mw is independent of the molar mass or close to unity. These conditions are
mostly fulfilled with polydisperse linear chains but not for the randomly
branched ones. Here this ratio Mz/Mw increases strongly with the molar mass.
The leading parameter that characterizes the distributions of randomly
branched samples is an exponent t that is defined in the next section. The aver-
age procedures for the z-average of the mean square radius of gyration and the
weight average molar mass results in the relationship [7]

(43)

where t can vary between 2.2 and 2.5. Of course, if the z-average molar mass is
known one can determine the true fractal dimension directly from the plot of Mz
against Rg. Examples were given by Colby et al. [116] and in [120].
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5
Molar Mass Distributions

5.1
Linear and Quasi-Linear Chains

The molar mass distribution of branched materials differ most significantly
from those known for linear chains. To make this evident the well known types
of (i) Schulz-Flory, or most probable distribution, (ii) Poisson, and (iii) Schulz-
Zimm distributions are reproduced. Let x denote the degree of polymerization
of an x-mer. Then we have as follows.

5.1.1
Most Probable Distribution [1, 80, 106]

(44)

(45)

where a is the extent of reaction or in other words the fraction of reacted func-
tional groups to all (reacted+non reacted) functional groups in the polymer.

5.1.2
Poisson Distribution [82, 107]

(46)

(47)

where a is the number average degree of polymerization
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5.1.3
Schulz-Zimm Distribution [80, 81]

(48a)

(48b)

(49)
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Fig. 19. Weight fraction molar mass distributions w(x) of the Schulz-Zimm type for various
numbers of coupled chains in a double logarithmic plot. Note: for f=1 the Schulz-Zimm dis-
tribution becomes the most probable distribution; in the limit of f>>1 the Poisson distribu-
tion is eventually obtained. In all cases the weight average degree of polymerization was
xw=100. The narrowing of the distribution with the number of coupled chains is particular-
ly well seen in the double logarithmic presentation
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The exact formula was derived by Schulz [80] and the asymptotic equation is
due to Zimm [81]. Schulz derived the distribution for f chains that are coupled
together, where it has no influence whether one has a head to tail coupling of
most probable distributions or whether these distributions are coupled onto a
star center. Zimm recognized that the asymptotic form can be efficiently used to
describe the distributions of fractions. The index o refers to the primary (most
probable) chain distribution and p is the extent of reaction for this primary
chain.

The three types of distributions are plotted in Fig. 19. Actually the molar mass
would be increased by the number of chains, but to make the narrowing more
evident the curves were normalized to the same weight average degree of polym-
erization xw=100.

5.2
Distributions for Branched Chains

5.2.1
Stockmayer Distribution (Randomly Branched)

The Schulz-Zimm distribution would be found for f end-to-end coupled linear
chains which obey the most probable distribution, as well as for f of such chains
which are coupled onto a star center. This behavior demonstrates once more the
quasi-linear behavior of star branched macromolecules. In fact, to be sure of
branching, other structural quantities have to be measured in addition to the
molar mass distribution.

The other extreme to star molecules are the randomly branched macromole-
cules. Here the branching process has an immense influence on the shape of the
distribution. It was first derived by Stockmayer [14] and later reproduced by Flo-
ry [13]. The exact and asymptotic distributions are given by the following two
equations:

(50a)

with 

b=a(1-a)f—2

For a=ac=1/(f-1) one obtains the asymptotic form [14]

(50b)
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where 

(51)

Most remarkable is the immense increase of the polydispersity index xw/xn
and of the ratio xz/xw, which both increase with xw. This distribution follows as-
ymptotically a power law of w(x)µx1-t with t=2.5, when the critical point of ge-
lation is approached. Figure 20 shows some of these distributions for various a,
or different xw.

At this point it is appropriate to emphasize that the above derivation was
made under three essential assumptions.
· Intramolecular reactions (ring formation) are excluded.
· Excluded volume effects are neglected.
· All functional groups have the same probability of reaction a, independent of

whether the functional group is at the periphery of the branched cluster or
whether it might be buried inside of the cluster.

Around 1970 computer simulations of the branching processes on a lattice
started to become a common technique. In bond percolation the following as-
sessment is made [7]: whenever two units come to lie on adjacent lattice sites a
bond between the two units is formed. The simulation was made by throwing at
random n units on a lattice with N3 lattice sites. Clusters of various size and
shape were obtained from which, among others, the weight fraction distribution
could be derived. The results could be cast in a form of [7]

(52)

in which t=2.2 was found. The function f(x/x*) is a cut-off function with a char-
acteristic degree of polymerization x*. For x>x* a much stronger decay of the
distribution than given by the power law is now obtained. This characteristic de-
gree of polymerization shows critical behavior, i.e., it follows a relationship

(53)
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with another exponent s=0.44. In this equation p represents the occupation ra-
tio of lattice sites and pc is the critical occupation where for the first time a clus-
ter is formed that extends from wall to wall of the lattice box. Experiments have
given much evidence that x* is close to the z-average degree of polymerization
xz [109]:

x*@ xz (53')

The percolation simulations clearly allow ring formation; it also represents
self-avoiding statistics, i.e., includes the excluded volume effects in good sol-
vents. Finally, the probability of placing units on lattice sites becomes more and
more dependent on whether a site in the neighborhood is already occupied. In
other words the percolation experiment becomes a non-mean field approach
when the occupation reaches the critical percolation threshold. Therefore,
strong deviations were expected between the more accurate percolation and the
Flory-Stockmayer mean field approaches. Physicists were of the opinion that the
mean field results must be basically wrong.

Fig. 20. Plot of the exponent t as a function of the chain lengths between two branching
points. Open symbols: results by Colby et al. [118,119] for branched polyesters. The varia-
tion of this length was achieved by co-condensation of trifunctional monomers with in-
creasing fraction of bifunctional units. Filled symbols refer to polydicyanurates (N<<NK),
anhydride cured phenyl monoglycidyl ether with a small fraction of bisphenol A diglyci-
dylether as crosslinker (N@8 NK) and end-functionalized 3-arm polystyrene stars
crosslinked by diisocyanate (N@40 NK). N denotes the number of repeating units between
two branching points
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A careful examination of the Stockmayer and the percolation distributions
reveals that both theories gives the same type of distribution [110]. In terms of
the two exponents in Eqs. 52 and 53, the percolation calculation yields t=2.2 and
s=0.44, and the Stockmayer distribution yields t=2.5 and s=0.50. These differ-
ences in the exponents appear to be small in a double logarithmic plot, but they
cause significant differences in the absolute values for w(x) when 3–4 decades in
the degree of polymerization are covered. Another point is that the cut-off func-
tion could be calculated analytically in the FS-theory to be a single exponential
function [110], while the percolation theory could only make a guess about its
shape [7].

It took a long time before the percolation theory could be proved to be the
better one in most cases. The reason for this delay resulted in part from the fact
that until ten years ago the size exclusion chromatography (SEC) with on-line
light scattering was not sufficiently well developed. A direct molar mass deter-
mination is, however, imperative, since the separation in SEC is due to the hy-
drodynamic volume of the particles. A branched macromolecule has, however,
a significantly higher molar mass than a linear one of the same hydrodynamic
volume. Since 1989 a number of results have been reported which all strongly
supported the percolation theory [109, 111–116].

Scepticism still remained to some extent, because the FS mean field theory
could predict fairly well the point of gelation, while the prediction of the perco-
lation threshold was very poor. Also, the percolation result depended on the type
of lattice that was chosen for the simulation. This hidden reservation led de
Gennes to suggest [117] that the Ginsburg criterion (known in the theory of crit-
ical phenomena) may also be operative in the branching processes. According to
Ginsburg the critical range in which percolation can be observed decreases with
the chain length between branching points according to [117]

(54)

where e is the critical region that is defined as 

Accordingly the critical domain will become progressively smaller when the
chain length N increases. In these cases a transition towards mean field theory
should occur when e becomes larger than AN–1/3. Recently Colby [118] and
Lusignan [119] have finished comprehensive studies with polyesters, in which
the chain length between branching points was systematically varied. Gins-
burg's criterion was applied by interpreting N as NK, i.e., the number of Kuhn
segments. Furthermore, A=1 was assumed. The result is shown in Fig. 20. One
realizes that indeed a transition occurs at around NK=1; at shorter chains the
percolation exponent was obtained, at large length on the other hand the FS
mean field results were obtained. Similar experiments were performed in the
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Freiburg laboratory with three other materials in which the chain length varies
from a very small value to a rather large one [93, 110, 113, 115, 120]. The result
of the exponents are plotted in Fig. 20 as filled circles. The agreement is very
satisfactory.

5.2.2
Distribution of Hyperbranched Samples

A special case of statistical branching occurs when a monomer has one function-
al group (type A) that differs from the f-1 other ones (type B) such that only
groups A can react with group B, but no reaction between two A or two B groups
are possible. Because of this incisive constraint the reaction is clearly no longer
random. This has a stringent influence on the molar mass distribution, which is
not immediately recognized by a superficial inspection of the distribution that
is given by [1, 13]

(55)

with b=p(1-p)f–2 and p the probability of reaction of the B-groups. Eq. (55) looks
very similar to Eq. (50a) for random branching. The intermediate region can be
described by a power law as given in Eq.(55'):

(55')

However, because of the constraint that A can only react with a B-group one
has for the probability a of the A-group

a=(f-1)p (56)

i.e., the maximum value for p is by a factor 1/(f–1) smaller than the a value in
Eq. (50a). This leads to

(57)

where the arrows denote the limit for xw>>1. The limiting relationship results
from the condition a=(f-1)p@1.
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Comparison with the corresponding equations for random branching
demonstrates that the polydispersity index for hyperbranched materials in-
creases approximately only with the root of xw while it increases proportional di-
rectly with xw for random branching. Figure 21 shows these distributions for f=
3 and various weight average degrees of polymerization xw in comparison with
the Stockmayer distribution for random branching.

So far all (f–1) B-groups were assumed to have the same reactivity. The gener-
alized case, where, for instance, in a trifunctional unit the second B2-group has
a remarkably lower reactivity than the first one, leads to lower branching densi-
ties and eventually to a linear chain. This case was treated by Erlander and
French [16], who derived the weight fraction distribution and the various molar
mass averages. These derivations allowed the definition of a branching probabil-
ity and thus the number of branching points per number or weight average de-
gree of polymerization, respectively [17, 24, 52]. Particularly for AB2 unit the
branching probability can never become larger than 0.5. In spite of their impor-
tance the distributions are not shown here in a graph, but the lengthy equations
are found in [121] and in the Appendix.

One important result may be mentioned in particular. The ratio of xz/xw ap-
proaches the constant value of 3 [16]. Therefore, the ensemble fractal dimen-
sions becomes identical to the true fractal dimension, i.e. df,e=df.

Fig. 21. Comparison of the distributions of randomly branched (full lines) and hyper-
branched macromolecules (dashed lines) for f=3 at xw=25, 100, and 1000. The dotted lines
represent fits of the distributions to power laws with exponents (1–t)=–1.5 (randomly
branched) and –0.5 (hyperbranched), respectively. The intermediate region of the hyper-
branched distributions can be described by Eq. (55')
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6
Size Exclusion Chromatography

Modern size exclusion chromatography can nowadays be equipped with a multi-
angle laser light scattering (MALLS) detector on-line with a viscometer (VISC)
in addition to the common refractive index (RI) or ultraviolet (UV) detector.
Such a set-up allows the on-line determination of the radius of gyration and the
intrinsic viscosity as a function of the molar mass for each of the fractions. The
power of this combination is at present not fully used. This is probably for the
following reasons. A fraction of the material may sometimes be adsorbed onto
the separation gel of the column. Another reason originates from self-associa-
tion. As long as these particles remain in a metastable region, such that shear
forces do not cause a decomposition into smaller units, the aggregates can most-
ly be recognized via their fractal dimension. Troubles occur, however, when the
particles become disaggregated under the influence of shear. These effects can
make an interpretation of elution diagrams extremely difficult and the men-
tioned combination of LS and VISC data are considered as being loaded too
much by poorly understood uncertainties. Additional cross-checking with other
techniques are indeed imperative.

The following outline assumes ideal conditions in which all these spurious
side effects are avoided. Let us assume that the most developed SEC set-up may
be available. Then by SEC/RI/MALLS/VISC analysis four elution curves are ob-
tained

1. cj(ve) RI or UV detector

2. cjMj(ve) LS detector, (at zero scattering angle)

3. Rgj(ve) LS detector (from angular dependence)

4. cj[h]j(ve) VISC detector (58)

The index j denotes the measured quantity in the j-th slice at the elution vol-
ume ve. After elimination of the elution volume (as parameter) and by combin-
ing the four traces one obtains

1. cj as a function of Mj

2. Rgj as a function of Mj

3. [h]j as a function of Mj (59)

6.1
Molar Mass Distribution w(M)

The first curve is a histogram of the mass fraction detected in each slice. It is not
yet the correct molar mass distribution w(M), because a linear spacing with re-
spect of the elution volume corresponds to a logarithmic spacing in the molar
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mass. Hence at small elution volumes the average is taken over a much broader
range in the molar mass than it is the case for large ve. The correct molar mass
distribution is obtained by forming first a cumulant distribution Ik(M) which is
obtained by the operation

(60a)

where

In a second step this cumulant distribution has to be differentiated linearly
with respect to the molar mass, i.e.,

(60b)

The step from the discrete Ik(M) to the continuous I(M) often requires some
smoothing which has to be made with critical attention.

6.2
Molar Mass Dependence of the Radii of Gyration

The Rgj vs Mj curve often gives a straight line in the double logarithmic plot and
can be represented by

(61a)

or

(61b)

in which df is very close to the true fractal dimension of the clusters. Here the
data from the histogram can safely be taken. The fractions at small elution vol-
umes are certainly broader than those at large elution volumes, but the polydis-
persity in the various slices can still be assumed to be very low (probably
(Mw/Mn)j<1.05). For such small polydispersities the influence of the ensemble
averaging is negligibly small.

When comparing this true fractal dimension with that of the ensemble, which
is obtained with a series of non fractionated samples, one finds another possibil-
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ity for a determination of the exponent t in the molar mass distribution of
Eq. (52). According to Eq. (43) one has

(43')

The clusters which obey Eq. (61) are self similar to each other. Sometimes,
however, the Rg curve flattens at large molar masses and may form another
straight line with a different exponent. Such behavior is an indication of a limi-
tation in the separation capability of the column (or some other artifacts) or it
is the result of large particles with a different fractal behavior. These particles
can be aggregates or clusters of a higher branching density. Similar behavior can
be observed also from the molar mass dependence of the viscosity. An example
will be shown in the next section.

6.3
Kuhn-Mark-Houwink-Sakurada (KMHS) Equation

The intrinsic viscosity vs molecular weight dependence extracted from the SEC
experiments curve of the intrinsic viscosity also often gives a straight line in the
double logarithmic plot and can be described by the (KMHS) relationship:

(19')

In contrast to star-branched macromolecules, this relationship differs now
from that of the non-fractionated samples

(19'')

and this not only in the prefactor K but also in their exponents. A somewhat
steeper curve is usually obtained for the fractions. It exhibits power law behavior
over the whole molar mass region. For the polydisperse samples such power law
behavior is mostly not observed over the whole region, but only at very high mo-
lar masses a constant exponent is asymptotically observed. Here again the dif-
ferent averaging procedures have a significant influence as was already dis-
cussed in a previous section in qualitative terms. Daoud and Martin [102] and
Daoud et al. [121] took account of these differences and derived the following
equation:

(62)

which was used for an estimation of the exponent t of the molar mass distribu-
tion from end-linked star-branched polystyrenes [110] and for an epoxy system
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[120]. Figure 22 shows the results of the fractions from end-linked 3-arm star
molecules in comparison to linear polystyrenes in the same solvent and Fig. 23
gives the result of [h] as a function of Mw.

Fig. 22. KMHS relationships for the fractions of end-linked 3-arm star-branched polysty-
rene molecules and of linear polystyrene fractions. The data refer to three samples of dif-
ferent Mw in the pregel state and one from the sol fraction of a gel. The curves for the
branched macromolecules coincide within experimental error in the high molar mass re-
gion. The deviations at low Mw result from a different amount of non-reacted end-function-
alized stars. The exponents of the end-linked and linear PS chains are ahb=0.42±0.02 while
that of linear chains is ahlin= 0.70±0.01 [95, 120, 123, 124]. Reprinted with permission from
[95]. Copyright [1997] American Society

Fig. 23. The intrinsic viscosity of several end-linked PS star molecules as a function of Mw
[95]. In the limit of low and high molar masses asymptotic power law behavior may be de-
rived. That at low molar masses is widely controlled by the presence of non-reacted star
molecules, that at high molar masses is expected from theory for randomly branched mac-
romolecules. The exponents of the two asymptotic lines are ah=0.49±0.08 for
Mj<0.8´106 g/mol and ah=0.18±0.05 for Mj>2.0´106 g/mol. Reprinted with permission
from [95]. Copyright [1997] American Society
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6.4
Contraction Factors

At this stage it becomes possible to treat the decrease of Rgb and [h]b as a result
of branching quantitatively. This was done for the first time by Zimm and Stock-
mayer [49] for the radius of gyration, and somewhat later by Stockmayer and
Fixman [125] for the intrinsic viscosity. They introduced the following shrink-
ing or contraction factors. The radii of gyration can for Gaussian segment dis-
tribution in principal be calculated analytically without introducing any physi-
cal approximations. For the intrinsic viscosity this is not the case since hydrody-
namic interactions among the segments have to be taken into account. So far
these can be calculated only under certain approximations whose physical rele-
vance remains not fully understood [3, 88, 126].

(63)

(64)

For the contraction factors g of the mean square radii of gyration for fractions
of randomly branched materials Zimm and Stockmayer [49] obtained

(65)

(66)

The indices 3 or 4 indicate the functionality of the monomeric units, and n de-
notes the number of branching units in one branched molecule. This number of
branching units is related to the degree of polymerization x by the relationship

x=(m´n)

where m is the average number monomer units which contains one branching
point. For f-functional branching units the following asymptotic relationship
was obtained, now expressed in terms of the degree of polymerization x [49]

(67)
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The calculations were later reproduced by Kajiwara [97] following a different
route. For the exact equation the original paper may be consulted.

An experimental verification of Eqs. (65)–(67) has not yet been possible be-
cause the MALLS instrument that allows measurement of Rg has only recently
become available in laboratories. Furthermore, the combination of the MALLS
with the VISC detector is not a trivial problem. Several experiments are, however,
in progress. This work is of great importance since a quantitative estimation of
the branching density would be possible if the Zimm-Stockmayer equations for
the g-factor hold true.

The relationships of Eqs. (65)–(67) are not the same as the g factors for regu-
lar stars. This is easily understood since Eqs. (65)–(67) refer to fractions which
still remains an ensemble that contains a distribution of isomers of different ar-
chitecture but the same molar mass. The equation for the stars can be derived
from Eqs. (29) and (29'):

(29'')

Fig. 24. Contraction factors for star-branched macromolecules as a function of the number
of arms. The full line represents strictly regular stars, the dashed line one that for stars with
polydisperse arms (Mw/Mn=2), the dotted line according to Daoud and Cotton [29]. The
symbols represent the data from the literature. The deviation at large f represents the
stretching of the arms due to overcrowding
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for regular stars with monodisperse arms [49] and from Eqs. (31) and (31')
[24,52]:

(31'')

for stars with f polydisperse arms.
Figure 24 shows the dependence on the number of arms for the two examples

and experimental data from the literature.
Much easier, and with higher precision, on-line intrinsic viscosity measure-

ments are possible. Unfortunately, new problems arise from the insufficiently
well known interdependence between g' and g. The relationship between the in-
trinsic viscosity and the radius of gyration is fairly well settled for linear chains
[3, 71] and is satisfactorily described by the Fox-Flory equation (Eq. 21), but for
the branched chains the F-factor for branched chains may be different. In gen-
eral one has [49]

(68)

Thus a simple power law behavior with an exponent of 1.5 would result if F*=
1 [125]. Zimm and Kilb [128] made a first attempt to calculate g' for star
branched macromolecules on the basis of the Kirkwood-Riseman approxima-
tion for the hydrodynamic interaction. They came to the conclusion that

Zimm & Kilb (69)

would be a good approximation. Equation (69) suggests the very strong g-de-
pendence of F*(g) of

F*(g)=g–1  Zimm & Kilb (70)

Such behavior has not been observed. Kurata et al. [129] developed an empir-
ically based suggestion after comparing the results available in those days for
star molecules. He also assumes power law correlation between the two contrac-
tion factors as given by

(71)

but with an exponent of b=0.6, which would give

F*(g)=g–0.9 (72)
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In the meantime the precision in preparing well defined star molecules and
measuring g and g' have been significantly improved. Table 3 gives a list of the
data from the literature, and Fig. 25 demonstrates this dependence. Evidently
the experimental data cannot be described by a power law. A possible fit curve is
given by the equation [110]

(73)

with a=1.104; p=7; b=0.906

Table 3. Experimentally determined contraction factors  
and  for various star molecules in q- and good solvents

Polymer q-solvent good solvent Ref.

g g' g g'

Polystyrene Cyclohexane (35 °C) Toluene
f=4 0.63 0.76 0.65 0.72 [26, 130, 131]
f=6 0.46 0.63 0.48 0.57 [26, 131]
f=4 0.64 .077 0.65 0.68 [26, 131]
f=6 0.423 0.57 0.48 0.46
f=3 0.778 0.85 [26, 132]
f=4.75 0.625 0.85
f=7 0.675 0.514 [26, 133]
f=8.7 0.31 0.41 0.41 0.41
f=10.7 0.275 0.39 0.39 0.39
f=12.3 0.26 0.36 0.36 0.36
f=15.3 0.23 0.30 0.30 0.30
f=12 0.276 0.41 0.24 0.35 [77]
f=18 0.228 0.35 0.20 0.26

Polybutadiene Dioxane (26.5 °C) Cyclohexane (25 °C)
f=32 0.151 0.198 0.115 0.154 [108]
f=64 0.092 0.127 0.083 [25]
f=128 0.060 0.0805 0.044
PS-DVB THF
f=17 0.209 0.260 [76]
f=80 0.039 0.133

Polyisoprene Dioxane (34 °C) Toluene
f=4 0.65 0.772 0.733 [26, 134]
f=6 0.46 0.625 0.589

Polybutadiene Dioxane (26.5 °C) Cyclohexane
f= 270 0.06 0.045 0.03 0.029 [135]
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This relationship fulfills the condition of g'=1 at g=1 and attains a power law
proportional g'=a gb for very small g. The exponent p defines how quickly the
asymptotic power law is obtained.

There seems to exist a certain dependence on the solvent quality, but within
the experimental error the difference cannot be described as statistically signifi-
cant. Therefore, all available data were plotted on Fig. 25 without distinguishing
them by special symbols.

6.5
Application to Randomly End Linked Star-Branched Polystyrenes

We come back to the interpretation of the viscosity behavior of the fractions
from randomly branched samples. Some examples were given in Figs. 22 and 23.
The contraction factors g' from these samples are plotted in Fig. 26. The attempt
to describe the curves for the fractions by the Zimm-Stockmayer relationship of
Eq. (65) by applying Eq. (73) led to the dashed curve, that evidently gave no
agreement with the experimental findings. The fit of the curve with Eq. (73)
leaving the exponents p and b and the parameter a free fitting parameters leads
to

b=0.63, p»7000, a=1.04

Fig. 25. The viscosity contraction factor g' as a function of the geometric contraction factor
g for star-branched macromolecules (f=3–128). No distinction was made between the
chemical nature of the various arms and between the thermodynamic quality of the sol-
vents used. See Table 3
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The value of p»7000 makes the term (1-a)gp<<a and thus gives practically the
result of Kurata's estimation [129]. This observation leads to the conclusion that
it is not the total number of branching units in the branched cluster that defines
the type of the g' dependence on g, but very likely it is the functionality of the
repeating unit. However, further experiments with f=4 have to be made before a
well established statement can be made.

A remark had previously been made in various places of the text that the Fb
parameter will increase with branching or more precisely with the g-factor. This
g-dependence must necessarily also result in a molar mass dependence of Fb for
which a power law behavior was tentatively assumed. From the KMHS-relation-
ship one then finds [95]

(74)

or

(75)

Thus the molar mass dependence of the F-parameter can be estimated when,
besides the ah exponent, the fractal dimension of the clusters could be meas-
ured. This fractal dimension can be obtained from the molar mass dependence
of the radius of gyration of the fractions, or from the angular dependence of the

Fig. 26. Molar mass dependence of the g' factor for three pregel and one postgel fraction of
end linked PS stars. A good fit was obtained with the Zimm Stockmayer equation (Eq. 69)
and an exponent in Eq. (70) of b»0.63 [95] which agrees well with Kurata’s estimation with
b»0.6 [129]. Reprinted with permission from [129]. Copyright [1972] American Society
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scattered light at large values of q=(4pno/lo)sin(q/2) or from the molar mass de-
pendence of the unfractionated samples where then the exponent t of the size
distribution has to be known [95, 110, 129]. In the case of the end-linked PS star
molecules the fractal dimension has been estimated to df=2.63 and the exponent
in the KMHS relationship is ah=0.40, which gives aF=0.26 and an increase of the
Fb parameter by a factor of about three in a molar mass region of about two dec-
ades. Because of the large experimental error these data can be taken only as a
rough estimation. More precise measurements are needed to confirm the results.
An increase of the F parameter due to branching was already considered by
Zimm and Stockmayer as a possibility and was concluded by Roovers and Bywa-
ter [130, 131] from early measurements on star molecules.

This section on the contraction factor may be concluded with an example of
a comb macromolecule [136]. Due to the route of preparing this comb, unat-
tached side chains also occurred in the system. Figure 27 shows the result of the
molar mass dependence of [h] which was obtained from a SEC/LALLS/VISC
fractionation. One observes at low molar masses a straight line with an exponent
of ah,lin=0.70 that coincides with the exponents of linear side chains. It follows a
chaotic scatter until finally another straight line is formed at large molar masses
which has the much lower exponent of ah,comb=0.34 and which is clearly assign-
able to the branched structure of the comb molecule. In this case, the occurrence

Fig. 27. Molar mass dependence of [h] for a fractionated comb macromolecule. The frac-
tionation was made with a SEC/LALLS/VISC set-up. The comb macromolecule consists of
a polyimidazole backbone prepared by free radical polymerization. The imidazol side
groups acted in a melt with phenylglycidylether and phthalic anhydride as multifunctional
initiator for the anionic growth of polyester chains. The straight lines correspond to the be-
havior of unattached polyester chains and the comb polymers at low and high molar masses
respectively [136]
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of two molar mass dependencies within one sample facilitates the determination
of the contraction factor.

7
Generalized Ratios

7.1
The Rg/Rhºr-Ratio

The analysis of the contraction factors g and g' presents a valuable possibility to
determine the number of branching units per macromolecule or, in other words,
the branching density. The technique has however the disadvantage that the data
from linear chains as reference are needed. This reference is in many practical
cases not known. Here the use of other universal ratios can be helpful in judging
whether branching has occurred. In Sect. 3.3 it has already been mentioned that
four different radii can in principle be obtained by the combination of different
measurements. All these radii can be expected to show, at least asymptotically,
the same molar mass dependence. Therefore, when forming the ratio of two of
these radii the molar mass cancels. Since static and dynamic light scattering can
in many laboratories now be performed simultaneously, it is reasonable to intro-
duce the ratio [63, 137]

for the same molecule (76)

This ratio rlin=1.504 is well known from the Kirkwood-Riseman theory of
long linear chains in a Q solvent with hydrodynamic interactions. (Instead of us-
ing the above defined r-parameter the reciprocal quantity x=1/r is sometimes
used in the literature [138].) Corrections for the excluded volume were derived
by Akcasu and Benmouna [139]. Furthermore, the ratio was also derived for star
molecules and randomly branched and hyperbranched unfractionated and frac-
tionated macromolecules, in the latter cases, however, only for particles without
excluded volume interaction [24, 63]. Table 4 gives some examples. One realizes
that this ratio reflects sensitively the actual segment density as a results of the
corresponding hydrodynamic interaction. Unfortunately, the hydrodynamic in-
teraction is not completely correctly treated by the Kirkwood-Riseman approx-
imation [3, 88, 126]. This fact was suspected many years ago but was experimen-
tally proven only several years later [24, 140, 141]. A clarification of the effect was
finally given by the simulations of Freire and his coworkers [85–87]. It turns out
that the hydrodynamic interaction is somewhat underestimated in the Kirk-
wood-Riseman approach. The actual hydrodynamic radii are larger and the cor-
responding r-values are smaller by about 10–14%. In spite of this quantitative
disagreement the r-parameter can be efficiently used as a valuable qualitative
measure in judging what architectural structure may be present.
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7.2
The Ratio A2Mw/[h]

In principle all combinations of universal ratios of the four radii can be formed.
A useful combination, however, is the ratio of RT/R[h], where the two radii are re-
lated to the second virial coefficient and the intrinsic viscosity as outlined in
Eqs. (21) and (22). Likewise one could form the ratio [6, 142–145]

(77)

This equation has the advantage of being more sensitive than the g- parame-
ter, because volumes are compared rather than radii. It also gives us some infor-
mation on how the coil interpenetration function Y* changes in comparison to
the draining function F as a result of the increase in the segment density. There
exist at present only a few theoretical considerations of this effect [142–144]. Well
documented is the behavior of linear chains. Here an asymptotic constant value is
found only at fairly high molar masses that accounts to [6].
For hard spheres the corresponding value is . For the other

Table 4. The Rg/Rhºr-ratio and parameter C in Eq. (14) for various polymer architectures. 
The C-parameter gives information on the internal flexibility (C=0 inflexible particles, C=
0.2 flexible chain behavior)

Architecture r C Ref.

Homogeneous (hard) sphere 0.778 0.00
Random coil, linear chain, monodisperse [24, 63]
q-conditions 1.504 0.173
good solvent 1.78 –
Random coil, linear chain, polydisperse [24, 63]
q-conditions 1.73 0.200
good solvents 2.05 –
Regular stars, uniform arm length [24, 63]
q-conditions, f=4 1.333 0.148
q-conditions, f>>1 1.079 0.098
Regular stars, polydisperse arms [24, 63]
q-conditions f=4 1.534 0.178
q-conditions f>>1 1.225 0.133
Dendrimers n>10 (Gaussian “soft sphere”) 0.977 – [24, 47]
Randomly branched (A3-monomers) 1.732 0.200 [24, 52, 83]
Hyper-branched (AB2-monomers), xw>>10 1.225 0.133 [24, 52]
Cyclic chain, monodisperse 1.253 0.133 [150, 151]
Stiff rings (N>3) µ(1/p)lnN – [150, 151]

Stiff rods (N>3) – [150, 151]

Microgels 0.3–0.6 – [24, 65]
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structures only experimental data are known. Figure 28 shows some examples.
Accordingly, this ratio seems to increase with branching. This result appears to
be sensible since the interpenetration of two polymers will be more strongly in-
hibited than the penetration of small solvent molecules into a coil when the seg-
ment density is increased. As a consequence Y* should increase more rapidly
than F, and the ratio should increase. In the limit of a hard sphere with
an impenetrable periphery no interpenetration of macromolecules and no
penetration (draining) of the solvent can occur. Unexpectedly the  ratio of
the hard sphere appears to lie below that of randomly branched samples. This
effect is not yet understood, but it appears that the not well defined periphery in
star molecules is the reason for the wider range of thermodynamic than of
hydrodynamic interactions. At this point it is necessary to emphasize that the as-
ymptotes for A2Mw and [h] are not approached in the same manner. For linear
chains the asymptote of the ratio  is only slowly approached from below
[6]. In the case of the end-linked PS star molecules, however, it is approached
from above [120]. In the former case the intrinsic viscosity evidently approached
the asymptotic behavior earlier than the second virial coefficient, whereas for
the end-linked PS stars the situation is opposite. The data, plotted in Fig. 28, are
assumed to lie already in the asymptotic regime. There are, however, still too few
experimental data, or existent data have not yet been evaluated, to ascertain the
dependence shown in Fig. 28. A detailed discussion was given in [144].

Fig. 28. The ratio A2Mw/[h] at large Mw for star molecules (symbols) and randomly
branched structures [25, 26, 108, 130, 131]. The shaded area indicates the range of the ex-
perimental findings with randomly and hyperbranched samples [144]. The line was drawn
to guide the eye
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Another uncertainty arises from the influence of polydispersity. Intrinsic vis-
cosity data were mostly obtained from fractions but the second virial coefficient
data were chosen from unfractionated samples. The resulting error is probably
not large since A2 depends only slightly on the width of the distribution [183,
184].

7.3
The Ratio RT/Rh

This ratio of radii was introduced by Akcasu et al. [146, 147] and discussed in de-
tail for linear chains. It compares the range of thermodynamic interactions with
that of hydrodynamic interactions. Although no really satisfactory theory could
be derived, this ratio of radii might be a sensitive measure of branching. Experi-
ments mostly demonstrate that the ratio is close to unity which means that the
thermodynamic and hydrodynamic interactions act over very similar distances.
This observation seems to hold for linear as well as for branched structures
[144]. The quantity will not be discussed further as this ratio has not been much
used up to now. Two recent result may be mentioned however. Data with polybu-
tadiene star molecules in a good solvent with f=32, 64, and 128 arms respectively
yield ratios of 1.18±0.01 for short arms that decreases to 1.06±0.01 for long arms
[25, 108]. The second example is related to fractions of end-linked star-mole-
cules [120]. The results are shown in Fig. 29. In the limit of unreacted three-arm
starmolecules again a value of RT/Rh=1.0±0.05 is obtained.

Fig. 29. Molar mass dependence of the radii RT, Rh, Rh,w, Rh and of the ratio RT/Rh. The
straight line corresponds to the linear regression of the RT-data and has a slope of 0.46 [120]
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8
Semi-Dilute Solutions

8.1
General Remarks

The determination of molecular parameters is bound to very dilute solutions in
which on average the macromolecules are widely separated from each other.
Due to thermal fluctuations two molecules can still come together, but such oc-
casions will be rare and at most two molecules will have a noticeable chance to
collide but a collision of three particles at the same time can be disregarded. This
means that only the effects of the second virial coefficient has to be taken into
account and all higher terms can safely be neglected. For covalently bound ar-
chitectures the effect of the second virial coefficient can be eliminated without
difficulties by extrapolating the measured quantities towards zero concentra-
tion. Besides their academic relevance the molecular parameters are of special
interest to all preparative chemists who wish to know whether their synthesis
has been successful in the way it was intended. Recently, this question has be-
come increasingly important because of the effort in preparing special supermo-
lecular structures. The branched structures are one of these possible architec-
tures. In this section it will be shown that the various molecular parameters are
also necessary prerequisites for the description of semi-dilute solutions in a uni-
versal form.

The regime of semi-dilute solutions comprises still a rather dilute concentra-
tion regime and exceeds only in rare case a concentration of 10%. Nonetheless
there exists a rather incisive boundary between very dilute and semi-dilute so-
lutions which is characterized by the so-called overlap concentration c* [4, 151,
153]. At this concentration the macromolecules, which require a considerable
volume in the solution, start to touch each other. An instructive definition for c*

consists of the point where the weighed-in concentration equals the average seg-
ment concentration in a macromolecule. At higher concentrations, c>c*, there
remain only two possibilities: either the segment clouds from two or more
macromolecules interpenetrate, or the highly swollen macromolecules become
compressed. De Gennes [4] and des Cloizeaux [154] claimed that the mutual coil
penetration is the dominant effect. Innumerable experiments with linear chains
have shown that their predictions are indeed correct. Of course, flexible [18]
chains can yield when they collide, and the result will be the above-mentioned
overlap of different coils. Because of the repulsive interactions among the seg-
ments an appreciable energy is required to accomplish the undesired increase of
segment crowding.

Branched polymers can also be dissolved at fairly high concentrations. Be-
cause of the higher segment density in the isolated macromolecules the overlap
concentration will also be increased. For this reason the semi-dilute regime of
branched polymers may in some cases be larger than for linear chains, say about
20% or more. Clearly, however, a full interpenetration, as was assumed for flex-
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ible linear chains, can no longer be accomplished with branched macromole-
cules. The branching points evidently form obstacles which can no longer be cir-
cumvented, and the second alternative, i.e., a compression of the macromole-
cules will occur. Figure 30 demonstrates this effect.

Most important, however, was the discovery by Simha et al. [152, 153], de
Gennes [4] and des Cloizeaux [154] that the overlap concentration is a suitable
parameter for the formulation of universal laws by which semi-dilute solutions
can be described. Semi-dilute solutions have already many similarities to poly-
mers in the melt. Their understanding has to be considered as the first essential
step for an interpretation of materials properties in terms of molecular parame-
ters. Here now the necessity of the dilute solution properties becomes evident.
These molecular solution parameters are not universal, but they allow a defini-
tion of the overlap concentration, and with this a universal picture of behavior
can be designed. This approach was very successful in the field of linear macro-
molecules. The following outline will demonstrate the utility of this approach
also for branched polymers in the semi-dilute regime.

8.2
Suitable Choice for the Overlap Concentration

So far, the effects of semi-dilute solutions are qualitatively clear. Ambiguity
comes in, however, when the overlap concentration has to be defined quantita-
tively. This ambiguity arises from the fact that the volume of a macromolecule
cannot be uniquely defined. Because of the segment mobility the shape of a mac-
romolecule varies in time such that only a statistical description can be made. As

FFig. 30. Schematic representation of branched macromolecules at semi-dilute concentra-
tion, c>c*. Only the essentially non-branched chains from the outer shells can interpene-
trate. The shaded area remains excluded because of the obstacles formed by the branching
points [166]. Reprinted with permission from [166]. Copyright [1997] American Society
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was already outlined in the beginning of this contribution one can define four
different radii which, due to physical processes, are differently weighted with re-
spect to their segment density distribution. Accordingly also four different defi-
nitions for the overlap concentration can be given. These are

(78a)

(78b)

(78c)

(78d)

with 

Even if differences in the averages are neglected one has the following changes
when  is chosen as reference

(79a)

(79b)

(79c)

The differences in the overlap concentrations are instructively demonstrated
by Fig. 31 for amylopectin fractions [144], which are representatives for hyper-
branched structures.

However, the choice of  as reference is not advisable, because Rg is a z-
average while Mw is a weight average. Even for monodisperse samples the vari-
ous definitions are not equivalent. Therefore  is a quantity that strictly de-
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pends on the molecular polydispersity and will give a considerably distorted
picture of the actually occurring segment overlap. On the other hand,  and
c*h are governed by hydrodynamic interactions. The only consequent and con-
sistent procedure consists in the choice of  when thermodynamic interac-
tions are considered [6] and c*h when rheological properties are discussed
[144].

8.3
Osmotic Modulus

As demonstrated in a previous section the osmotic compressibility can be ob-
tained from the forward scattering of light

(80)

In order to have a suitable connection to the well understood dilute solutions
it was suggested by Debye to use the reciprocal of the osmotic compressibility,
which for convenience will be called the osmotic modulus

(81)

Fig. 31. Molar mass dependencies of four differently defined overlap concentrations
c* (ml/g) for amylopectin fractions in 0.5 mol/l NaOH [144]. Reprinted with permission
from [144]. Copyright [1996] American Society
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Developing the osmotic pressure in a virial series one obtains

(82a)

or

(82b)

The expression in brackets represents the interparticle interactions. It gives
the contribution by which the true molar mass is modified to yield the measur-
able apparent molar mass Mapp(c), which is a function of the concentration. A
dimensionless quantity can be obtained by multiplying Eq. (78b) with Mw,
which will be called the reduced osmotic modulus

(83)

The next step is whether the right side can also be transformed in a scaled
form. Two observations encourage such an expectation. The first has long been
known and states that all higher virial coefficients for hard spheres can be ex-
pressed in terms of the second one [74, 75]

(84a)

(84b)

etc.where the first five coefficients up to  are exactly known, and for two fur-
ther virial coefficients good approximations exist [74, 75]. In particular for the
first one ga=0.625 was obtained. The second observation is concerned with flex-
ible linear chains for which des Cloizeaux [154] and de Gennes [4] postulated the
asymptotic behavior of

(85)

with an exponent of m=5/4. This scaling result was subsequently confirmed by
renormalization group theory [6], which in addition gave the prefactor and an
approximate analytical equation that covered the whole region from the dilute
to semi-dilute concentrations. Also for these linear chains a ga=0.269 could be
derived that is close to an earlier estimation of ga=0.25 by Stockmayer and
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Casassa [155] but is different from 0.625 for hard spheres. These two results sug-
gests quite generally for self-similar objects

(86)

with

8.4
Star-Branched Macromolecules

This conjecture was found to hold for flexible chains, stiff worm-like chains, star
macromolecules, and hard spheres [156]. A few results are shown in Fig. 32.

The architecture dependence is also demonstrated in Fig. 33 by the ga factors
of several star macromolecules, flexible cyclic chains. Randomly and hyper-
branched materials show a more complex behavior because of the large width in
the molar mass distribution. Table 5 gives the actual values. The plot of Fig. 33
shows nicely how for a large number of arms the factor for hard spheres is ap-
proached.

The factors ga were determined in these cases by a virial expansion that was
truncated with the third virial coefficient. In this case one has

(87)

For a fit of experimental data it is more advantageous to use the scattering in-
tensity itself. In terms of the approximation of Eq. (83) one first obtains

(88)

then multiplying this equation with the second virial coefficient one arrives at

(89)

which again is a scaled function. Figure 34 shows the plot for some of the star
molecules in comparison to hard spheres, flexible, and stiff linear chains. The
curves show a maximum around X=1 whenever ga is positive. Interestingly for
stiff chains the ga is very small and the corresponding curve displays no maxi-
mum.
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At this point two essential remarks have to be added. The first is concerned
with the reduced concentration  which is a rather universal
scaling parameter. It indicates the fact that the same master curve is obtained
whether for a special sample the concentration is changed or the molar mass is
varied. Even the solvent can be changed as long as the good solvent condition re-
mains fulfilled, i.e., the coil interpenetration function Y(z) should have reached
its plateau value Y*. Finally it may be noticed that at no stage of this outline did
the chemical nature of the sample have to be introduced. In fact, measurements

Fig. 32a,b. Plot of the reduced osmotic modulus Mw/Mapp(c) as a function of reduced con-
centration . The solid lines represent theoretical curves for the
osmotic modulus from hard spheres [157], random coils [158] and stiff chains [159]. 
a Measurements from eye crystallines by Delay et al. [160, 161] as examples for hard
spheres, to linear polystyrene samples in toluene for molar masses between Mw=150,000 up
about 7´106 [156] and to various bacterial polysaccharides, which formed double helices
[162–164]. 
b Randomly branched (pre8, pre10) and to hyperbranched materials (HES and waxy
maize). Reprinted with permission from [157]. Copyright [1969] American Society
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from a water soluble polymer (polyvinyl caprolactam) and from cellulose tricar-
banilate in dioxane have been included in Fig. 32 (open symbols). They all fall
on the curve for flexible linear chains. Similar universality was also found for the
stiff chain bacterial polysaccharides which form double helices, no more than
five Kuhn segments in length [162–164]. The data from polybutadiene star
macromolecules [167] seem to deviate slightly from those of polystyrene stars
with the same number of arms. It is difficult to judge whether this is a real effect
or whether it is only a question of a systematic error. In spite of improvements
in the construction of static light scattering instruments, sometimes it still re-
mains problematic to compare the data from different laboratories.

The second remark concerns the results for the third virial coefficients ob-
tained by Japanese colleagues around Teramoto [168–170]. The authors applied

Table 5. Values of the parameters  and  in Eq. (91) for linear and cross-linked poly-
ester chains and for various fractions of amylopectin fractions obtained by a controlled acid 
hydrolysis [177]

Anhydride cured epoxies [165]

Sample Mw´10–6 

g/mol
mex mth 

Eq. (96)

Linear   0.103 0.134 0 0.24±0.07 1.50 1.36±0.11
pre5   0.172 0.183 0.067 a 1.70 a
pre8   1.77 0.124 0.211 0.65±0.04 2.40 2.86±0.36
pre10 13.6 0 0.308 0.65±0.04 2.40 2.86±0.36

Starch [144]

Fractions Mw´10–6

g/mol
mex mth 

Eq. (96)
0.035–5.2 0.18±0.03 0.03±0.01 0.61±0.03 2.2 2.59±0.16

a Transition region

Fig. 33. Plot of the ga factors against the number of arms for star macromolecules (l), star-
branched and stiff macromolecules [156]. The cyclic chain corresponds to stars with f=4.5
(¡). Reprinted with permission from [156]. Copyright [1990] American Society
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a different technique that was first suggested by Bawn et al. [171]. Here the slope
of the forward scattering between two concentrations is determined and these
values are plotted against (c1+c2) according to the following relationship:

(90)

A straight line is expected if all virial coefficients larger than A3 are neglected.
The slope gives the third virial coefficient and the intercept the second one. The
Japanese group found essentially the same values for ga with the exception that
for very high molar masses a continuous increase of about 25% was found. The
plot is essentially equivalent to a suggestion by Stockmayer and Casassa [155].
Roovers et al. [172] checked the Bawn procedure with the conventional one and
found no difference between the various techniques.

Possibly the increase in the ga factor at high molar masses contains a hidden
systematic error. Inspection of the curves in Fig. 34 reveals that the fit with the
truncated Eq. (89) holds only for values of X<2 and sometimes up to X=4. At
larger concentrations a fit becomes possible only when a further term in Eq. (89)
is added:

(91)

Fig. 34. Plot of the scaled forward scattering intensity (see Eq. 89) as a function of X=A2Mwc
for some selected molecular architectures [165]. o  linear polyester; m , D cross-linked pol-
yesters near the ge-point, Ñ weakly cross-linked polyester (see Table 5)
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Here now both coefficients and  vary with the molar mass in a manner
such that  decreases while  increases. This mutual dependence of the two
parameters clearly demonstrate that the new parameters no longer correspond
to true virial coefficients. Equation (91) has now to be considered as a semi-em-
pirical fit relationship. For an accurate determination of the correct ga factor the
fit should be restricted to a region of X<1, Roovers even demands X<0.5 [172].
The influence of higher virial coefficients may not be easily detected in the Bawn
treatment, and a weak curvature may look within experimental errors like a
straight line. Unfortunately, the Japanese authors avoided scaling arguments
and did not check whether their points of measurements from different molar
masses would form one common master curve. It may be noted, however, that
very similar results were also obtained by the Japanese authors when the high
molar mass region is disregarded.

8.4.1
Randomly Branched and Hyper-Branched Macromolecules

At present, there are only a few experimental results known on the osmotic mod-
ulus of randomly branched macromolecules or randomly cross-linked chains in
the semi-dilute regime. One possible explanation for this lack of data may be
based on the prejudice that the universality predicted by de Gennes [4] for linear
chains will hold in the same manner also for branched materials. In particular it
is expected that the individual characteristics of the macromolecules are lost due
to the strong overlap of the segments from different macromolecules. The fol-
lowing data, mainly from the author's own research group, revealed however,
that the characteristics of the special architectures are not lost.

Figure 35 shows the result for the scaled forward scattering from randomly
cross linked polyester chains which were prepared by anhydride curing of phe-
nylglycidylether in the presence of bisphenol A diglycidylether [173–175]. The
data could be fitted with Eq. (91) with values for  and  which are collected
in Table 5.

For low extents of crosslinking the curves lie between the limits of the curve
near the gel point and that for linear chains. This behavior is understood when
recalling that at low crosslinking the system mainly consists of linear chains. The
highly crosslinked chain on the other hand approaches a molar mass indepen-
dent master curve that, as expected, lies in the region of hard sphere behavior.

The results for the osmotic modulus from amylopectin fractions are shown in
Fig. 32b. The curves could be fitted by the  and  parameters as given in
Table 5. Interestingly, the same curve was obtained with the non-degraded na-
tive waxy maize (pure amylopectin) in water, with the amylopectin fractions
from potato starch in 0.5 mol/l NaOH and with hydroxyethyl starches (from
amylopectin) again in water. Amylopectin has a branching density of 4–5% and
is a typical representative of hyperbranching polymers. Unexpectedly, the curve
for these samples runs below that of the crosslinked polyester chains. The hyper-
branched materials have a much larger number of branching units than the ran-
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domly crosslinked chains and should thus show more similarity to hard sphere
behavior. The reason for the unexpected findings is not yet clear. One may spec-
ulate that not the number of branching units would be the essential parameter
but rather the functionality of the branching units. This functionality is four in
the crosslinked chains and three for the amylopectins. However, further results
have to be collected before more definite conclusions can be drawn.

8.5
Asymptotes for the Reduced Moduli

Des Cloizeaux [154] and de Gennes [4, 176] suggested an asymptotic power law
for linear chains when X>>1

(92)

The exponent was determined from two conditions (Eqs. 93, 94):

(independent of molar mass Mw) (93)

(fractal behavior) (94)

Fig. 35. Plot of the reduced osmotic modulus from anhydride cured linear and cross-linked
phenylglycidylethers [165, 173–175]
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where

(95)

with the fractal dimension df . The two conditions lead to

(96)

Table 6 gives a list of and the asymptotic exponent m for various the-
oretical models and experimental examples.

One realizes that the limiting values are correctly predicted for the hard
spheres and reasonably well for the linear chains according to the theory of Ohta
and Oono [4, 158]. The corresponding asymptotes for the two branched exam-
ples in Fig. 35 are also in reasonable agreement with the experimental data at
high X.

8.6
Behavior at X=A2Mwc>5

The asymptotic value of Eq. (92), however, will never be reached in realistic ex-
periments, since the physical conditions for this behavior will have changed
when a certain overlap concentration is exceeded. Often strong deviations from
the expected behavior are observed. The osmotic modulus no longer increases
with the concentration, but it fairly suddenly passes through a maximum and
starts to decay sharply towards very small values until either gelation takes place
or a strong turbidity makes further light scattering measurements impossible.

Table 6. Relationship between the fractal dimension df, the exponent  for the molar 
mass dependence of the second virial coefficient and the expected exponent m for the os-
motic modulus when the scaling assumptions of Eqs. (93)–(96) are made. The experimental 
data were derived from the exponents for the second virial coefficient

df m Comments

Theoretictal values
1.70 0.235 1.30 linear chains
2.00 0.500 2.00 branched chains, fully swollen
2.50 0.800 5.00 branched chains, in melt
3.00 1.000 ¥ hard sphere

Experimental values
2.16±0.05 0.61±0.03 2.56±0.11 starch fractions in 0.5 mol/l NaOH [144]
2.22±0.07 0.65±0.04 2.86±0.32 anhydride cured epoxies [93, 165]
2.14±0.08 0.60±0.05 2.50±0.41 end-linked star molecules in THF [120]
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The reasons for this peculiarly looking behavior become clear when writing
Eq. (92) is a slightly different manner:

(97)

This means that association is taken into consideration which would cause an
increase of the true molar mass when the concentration is enlarged. For hard
sphere interaction the term remains independent of
the molar mass and does not change with the concentration. Thus a situation
may be possible where Mw(c) increases stronger than the repulsive force, given
by the expression in curled brackets. Such a situation occurs for instance when
gelation takes place at a critical concentration ccrit which is lower than that for
close sphere packing. At the gel point the molar mass increases beyond all limits
but the repulsive interaction among the associates still remains finite. Such a
case has been observed with b-galactosidase in a phosphate buffer [177, 178]. In
most cases the repulsive interaction is slightly weaker, i.e., A2Mw(c) increases
slightly according to the fractal property as

(98)

This makes the 'catastrophic' break-down of the osmotic modulus somewhat
softer.

A second reason for the 'turn-over' in the osmotic modulus may arise from a
decrease in A2 until it becomes zero or even negative. This would be the classical
situation for a phase separation. The reason why in a good solvent such a phase
separation should occur has not yet been elucidated and remains to be answered
by a fundamental theory. In one case the reason seems to be clear. This is that of
starches where the branched amylopectin coexists with a certain fraction of the
linear amylose. Amylose is well known to form no stable solution in water. In its
amorphous stage it can be brought into solution, but it then quickly undergoes
a liquid-solid transition. Thus in starches the amylose content makes the amylo-
pectin solution unstable and finally causes gelation that actually is a kinetically
inhibited phase transition [166]. Because of the not yet fully clarified situation
this 'turn-over' will be not discussed any further.

In some case, however, only a flattening of the osmotic modulus curve is ob-
served. Such a case is found with star-branched macromolecules. This observa-
tion has rather comprehensively been investigated by Roovers et al. with stars of
64 and 128 arms [172]. The authors give the following explanation. At the point
of coil overlap and at somewhat higher concentrations the stars feel the interac-
tion as a quasi colloidal particle. Hence, a steeper increase of the osmotic mod-
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ulus than for flexible linear chains occurs. Once, however, most of the star mol-
ecules are involved in mutual interpenetration, only the interaction among lin-
ear chain section (from the arms) will be operative. Therefore the curve should
approach the asymptotic slope of the flexible linear chains. These arguments ap-
pear convincing and are essentially in agreement with the model that was pre-
sented by Daoud and Cotton [29].

A similar flattening of the osmotic modulus curve was also observed with na-
tive amylopectin from waxy maize starch. In contrast to the star macromole-
cules this hyperbranched macromolecule is multiply branched. A deep coil in-
terpenetration of the fairly short non-branched outer chains is not possible. In
this case a screening of excluded volume interaction was assumed [179], which
causes a shrinking of the molecular volume and thus a shift of the overlap con-
centration to higher values. When making a scaling assumption similar to that
given by Daoud [176], the flattening of the osmotic modulus could indeed be
well described. A closer inspection of the radii of gyration, which have been
measured simultaneously, also reveals, however, a strong increase of the dimen-
sion. Thus an association has to be taken into consideration. The increase of the
molar mass could be calculated via a fractal assumption. The required fractal di-
mension of the associates was known from previous measurements [180, 181].
Also in this case a screening of excluded volume interaction, or a compression
of the swollen particles, has to be assumed. The shrinking of the particle radius
was found to follow a power law with an exponent of approximately –0.19, a val-
ue that is close to that derived for linear chains [18].
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He also wishes to express his thanks to Dr. Jacques Roovers, for the many useful suggestions
which made this contribution readable and easier to understand. The manuscript would
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9
Appendix: Some Relationships of the -Polycondensation Model

The model goes back to Flory [1] and more specifically to Erlander and French
[16]. Further derivations concerning the mean square radius of gyration and the
hydrodynamic radius were made by the author [17]. The following calculations
are based on the  model which is related to the condensation of the glucose
ring. The reactive groups A, B, and C are related to the OH groups at the C1 (re-
ducing end group), C4, and C6 positions of the glucose ring. Because of enzymat-
ic specificity bonds can be formed only between C1®C4 and C1®C6; all other re-
actions are excluded. The corresponding extents of reaction (probability of re-
action) are p1, p4, and p6 with the obvious constraint

(A1)

  
A

B
C<

  A B
C<

    p p p1 4 6= +
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This model corresponds to the general case of hyperbranching and reduces
the common hyperbranching process if

(A2)

In amylopectin and glycogen p6=p is the branching probability, which does
not depend on the molar mass of the branched polysaccharides.

According to the common (mean field) theory of branching processes, one
has

(A3)
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One of the most puzzling properties of branched polymers is their unusual viscoelasticity
in the melt state. We review the challenges set by both non-linear experiments in extension
and shear of polydisperse branched melts, and by the growing corpus of data on well-char-
acterised melts of star-, comb- and H- molecules. The remarkably successful extension of
the de Gennes/Doi-Edwards tube model to branched polymers is treated in some detail in
the case of star polymers for which it is quantitatively accurate. We then apply it to more
complex architectures and to blends of star-star and star-linear composition. Treating lin-
ear polymers as “2-arm stars” for the early fluctuation-dominated stages of their stress-re-
laxation successfully accounts for the relaxation spectrum and “3.4-law” viscosity-molecu-
lar weight relationship. The model may be generalised to strong flows in the form of molec-
ular constitutive equations of a structure not found in the phenomenological literature. A
model case study, the “pom-pom” polymer, exhibits strong simultaneous extension harden-
ing and shear softening, akin to commercial branched polymers. Computation with such a
constitutive equation in a viscoelastic flow-solver reproduces the large corner vortices in
contraction flows characteristic of branched melts and suggests possible future applications
of the modelling tools developed to date.
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List of Symbols and Abbreviations

a tube diameter
b Kuhn step length
cj number concentration of object labelled j
CR constraint release
De diffusion constant of an entanglement length
Dmon monomeric diffusion constant
DR curvilinear diffusion constant of a polymer chain
E deformation tensor (non-linear)
f free energy density
feq equilibrium Brownian tension along an entangled chain
f(u,s,t) distribution function of segments of orientation u at co-ordinate s and

time t
f(m) distribution of segment priorities in an ensemble of branched 

polymers
G0 plateau modulus
G(t) relaxation modulus
G*(

 

w) complex modulus
HDPE high density polyethylene
h(

 

g) shear damping function
k Boltzmann's constant
k scattering wavevector
K velocity gradient tensor
L primitive path length along tube
LCB long chain branching
LDPE low density polyethylene
M molecular weight
Ma molecular weight of a star polymer arm
Mb molecular weight of a comb backbone or pom-pom cross-bar
Mc critical molecular weight
Me entanglement molecular weight
Mx molecular weight between branch points in a tree polymer
N degree of polymerisation
NMR nuclear magnetic resonance
NSE neutron spin echo
p probability of branching in a stochastic tree
pc critical branching probability at onset of gelation in a stochastic tree
p(s,t) survival probability of tube segment labelled s at time t
PB polybutadiene
PS polystyrene
q number of branches on a comb or on each end of a pom-pom polymer
Q Doi-Edwards strain tensor
<r2> mean square displacement of a monomer
R average end-to-end distance of a chain
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R ideal gas constant
R(s,t) chain configuration at time t
Rg radius of gyration
RPA Random Phase Approximation
SANS small angle neutron scattering
S(k,t) dynamic structure factor
S(t) time-dependent second orientation moment of a pom-pom cross-bar

ensemble
T absolute temperature
u dynamic exponent for power-law relaxation
u unit vector
U(z) free energy potential for fluctuations in primitive path length
Ueff(s) renormalised effective potential for path length fluctuations
Us<,Us> effective potentials for the star arm before and after the reptation time

in a star-linear blend
v(s) relative curvilinear velocity of tube and chain at co-ordinate s
x normalised contour variable along an entangled arm
z functionality of branch points on a tree polymer
a dilution exponent for Me; a=b–1
b dilution exponent for the plateau modulus

shear rate
g shear strain
d(r) Dirac delta function in three dimensions

extension rate
e extensional strain
e strain tensor (linear)
f volume fraction of a polymeric component in a solution or blend
fp(s,t) eigenmodes of tube relaxation equation
F entangled unrelaxed volume fraction
h viscosity
l(t) time-dependent average stretch of a pom-pom cross-bar ensemble
µ(t) stress relaxation functions (dimensionless)
n dimensionless number 15/8
r density
tarm longest relaxation time of a dangling arm
tb orientational relaxation time of a pom-pom cross-bar
te Rouse relaxation time of an entanglement length
ti relaxation time of the i-th level in a tree polymer
tk relaxation time of concentration fluctuation of wavenumber k
tk shortest time for time/strain factorability (in this context – see above

for scattering)
tmax longest relaxation time
tmon orientational relaxation time of a monomer
t0 attempt time for path length fluctuations
trep reptation time

 ̇g

 ̇e
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tR Rouse time of a chain
ts stretch relaxation time of a pom-pom cross-bar
t(s) relaxation time of a tube segment with arc co-ordinate s
s stress tensor
z monomeric friction coefficient
zbr effective friction constant of a long chain branch point
q topological dynamical exponent

1
Introduction

One of the most fascinating and rapidly moving areas of polymer science at
present concerns the rôle played by large-scale molecular structure in the dy-
namics and rheology of bulk polymer fluids. The technological aspects of this
highly interdisciplinary field are increasingly important: in this context the sub-
ject becomes the role of polymer synthesis in determining the processing char-
acteristics of an industrial polymer melt or solution. Polymer chemistry is play-
ing a vital role in providing model materials for the fundamental science, as well
as new catalysts for controlled industrial synthesis. Yet paradoxically many of
the relevant properties in polymer rheology are dependent on local (monomer)
chemistry via only a few scaling parameters – much of the behaviour is universal
among polymer chemistries. Far greater variation is found within the structural
parameters of long chain branching (LCB). So the role of branch structure in
polymer melts is becoming vital as a key to our understanding of their molecular
dynamics as well as the highly practical control of processing properties. Hence
the addition of theoretical and experimental physics to the techniques brought
to bear upon branched polymer melts. Not only careful rheological experiments,
but also molecular probes such as neutron scattering are providing further in-
formation for the remarkable theoretical models which have recently shed con-
siderable light on this tangled tale.

1.1
Evidence for Topological Interaction

It has long been realised that the key physics determining the rheology of high
molecular weight polymers in the melt state arises from the topological interac-
tions between the molecules [1, 2]. This is deduced from observations on many
different monodisperse materials that:
(i) above a critical molecular weight, Mc the viscosity h rises steeply with M as

approximately M3.4;
(ii) at high molecular weight the rheological response of polymer melts at high

frequency is similar to that of a cross-linked rubber network with a molec-
ular weight Me between cross-links (it exhibits an elastic modulus G0 nearly
independent of frequency);
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(iii) Mc~2Me for all amorphous melts independent of their chemistry, which de-
termines purely the value of G0.

This conclusion has been supported for over a decade by the remarkable con-
trast in the rheological behaviour of polymer melts whose molecules themselves
differ topologically. In the sphere of commercial materials the presence of “long
chain branching” has been invoked to explain the radically different rheology of
(branched) Low Density Polyethylene (LDPE) from that of (linear) High Density
Polyethylene (HDPE) [3]. A fascinating example is well-known from flow-visu-
alisation experiments. These two polyethylenes with matched viscosities (and of
course identical local chemistry) exhibit quite different flow-fields when driven
from a larger into a smaller cylinder (Fig. 1). The “contraction flow” for the lin-
ear polymer resembles that of a Newtonian fluid, while that of the branched pol-
ymer sets up large vortices situated in the corners of the flow field. The under-
standing of a link between such differences in molecular topology and a macro-
scopic change in flow represents a considerable challenge.

The rheology of LDPE is puzzling in a deeper way in that none of the panoply
of phenomenological constitutive equations in the rheological literature seems
able to account for all its properties with a single set of adjustable parameters,
no matter how large. For example, even the highly flexible integral equations
cannot reproduce softening in shear together with hardening in both planar and

Fig. 1 . Flow-visualisation of molten polyethylenes into a contraction: left HDPE (linear);
right LDPE (branched). (Courtesy of B Tremblay)
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uniaxial extension (see Sect. 6.2.2 below). Other differential constitutive equa-
tions have difficulty with the structure of stress-transients in “startup flow”.
Might a molecular understanding of the role of LCB and topology assist in iden-
tifying what is missing from traditional approaches?

More discriminating experiments have been possible with small amounts of
tailored model materials that possess nearly monodisperse molecular weight
and topology. These have typically been anionically synthesised polyisoprenes,
polystyrenes and polybutadienes [4]. Branching is achieved in a controlled way
by reacting living chain ends at multi-functional coupling agents such as chlo-
rosilanes. For some years the remarkable distinction in rheology between linear
and multi-arm star polymer melts has been exhaustively investigated [5]. Fewer,
but very significant, studies have been made on H-shaped [6], comb-shaped [7]
and the important case of blends containing branched components [8].

1.2
The Tube Model

The most successful theoretical framework in which the accumulating data has
been understood is the tube model of de Gennes, Doi and Edwards [2]. We visit
the model in more detail in Sect. 2, but the fundamental assumption is simple to
state: the topological constraints by which contingent chains may not cross each
other, which act in reality as complex many-body interactions, are assumed to be
equivalent for each chain to a tube of width a surrounding and coarse-graining
its own contour (Fig. 2). So, motions perpendicular to the tube contour are con-
fined while those curvilinear to it are permitted. The theory then resembles a dy-
namic version of rubber elasticity with local dissipation, and with the additional
assumption of the tube constraints.

The theoretical framework is economic in that the number of free parameters
required to make predictions is very limited: as well as the Kuhn step length b,

Fig. 2. The tube model replaces the many-chain system (left) with an effective constraint on
each single chain (right). The tube permits diffusion of chains along their own contours only
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one more static parameter is needed in the tube diameter, a (or equivalently the
plateau modulus G0) and one dynamic parameter – the monomeric friction co-
efficient z (or equivalently the Rouse time of an entanglement length). Once
these parameters are determined for a polymer of specified chemistry, quantita-
tive predictions for the linear rheology, as determined by the stress relaxation
modulus1) G(t) or its Fourier transform G*(w) are in principle calculable. Be-
cause the model is a molecular one, albeit coarse-grained on the level of Gaus-
sian sub-chains, it also provides predictions for other, more direct probes of the
molecular dynamics such as the dynamic structure factor S(k,t) (see Sect. 2.4 be-
low). This very important advantage of molecular theories has yet to be fully ex-
ploited experimentally in the context of polymers, mainly because the associat-
ed timescales are so long. However we will see below how single-chain and bulk
structure-factors may be calculated within the theory alongside the rheological
response.

A second appealing feature of tube model theories is that they provide a nat-
ural hierarchy of effects which one can incorporate or ignore at will in a calcula-
tion, depending on the accuracy desired. We will see how, in the case of linear
polymers, bare reptation in a fixed tube provides a first-order calculation; more
accurate levels of the theory may incorporate the co-operative effects of “con-
straint release” and further refinements such as path-length fluctuation via the
Rouse modes of the chains.

Third, the theory contains the implicit claim that entangled polymer dynam-
ics are dominated at long times by the topological interactions of the chains. If
true, then the rheological behaviour of polymer melts should show a high degree
of universality. For example, two monodisperse melts of different chemistries
but with the same number of entanglements per chain (M/Me equal for both)
should exhibit stress relaxation functions G(t) which may be superimposed by
simple scaling in modulus and time. This is a stronger requirement than simply
demanding that the molecular weight scaling of the viscosity is universal for all
linear polymers (see (i) above). However, the viscosity is just the integral of the
stress relaxation function:

(1)

which contains much more information than h alone. Figure 3 shows such shifts
on published data on three anionically polymerised linear polymers: polysty-
rene (PS), polybutadiene (PB) and polyisoprene (PI) [1]. The three have similar
degrees of entanglement. We plot the functions G¢ (w) and G² (w) – the one-sid-
ed Fourier transforms of the stress-relaxation function G(t). These are the in-
phase and out-of-phase stresses measured in an oscillatory shear experiment,

1 The experiment here is a small rapid shear-strain at time zero – after this the shear stress
in a viscoelastic liquid will not vanish instantaneously, but decay as a characteristic func-
tion with time. When normalised by the strain to yield the dimensions of modulus, this
is G(t).
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and reveal more structure than G(t) [1]. Both the shape of the peak around the
dominant relaxation time tmax

–1 and the frequency range before the minimum
in the curve are very similar providing values of M/Me are matched.

This is strong support for theories based on universal aspects of polymer
structure. In particular, a purely topological theory of dynamics leads naturally
to the conjecture that changes in the molecular topology itself will radically alter
the motions of entangled molecules. The simplest change one can imagine is to
introduce a single branch-point into the linear molecule, creating a “star poly-
mer”. So there are compelling theoretical as well as chemical reasons to synthe-
sise and characterise melts of monodisperse star polymers with controlled num-
bers of arms. We shall see that star polymers do indeed have very striking rheo-
logical behaviour. How these and more complex molecular architectures may be
treated within the tube model will be dealt with in Sects. 3 and 4.

Fourth, it is possible to extend the model to make predictions of response in
highly non-linear deformations and flows [2]. This is naturally of great interest
in applications, since most of polymer-processing involves extremely large and
rapid deformations, but is also proving of value as a strong experimental test of
theoretical assumptions and of polymer structures such as branching. For many
years the response of polymer melts in strong flows has been approached phe-
nomenologically: rather complex and subtle mathematical “constitutive equa-

Fig. 3. G'(w) and G"(w) for monodisperse linear polymers of PI, PB and PS. The curves have
been shifted so that the plateau moduli and terminal times coincide. The dashed line indi-
cates the Doi-Edwards prediction for G"(w) in the absence of path-length fluctuations
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tions” containing variable phenomenological parameters or functions have
been fitted to restricted sets of data in the attempt to predict further data sets [9],
or flows in complex geometries [10]. The mathematics incorporates the neces-
sary features of strain-history-dependence, elastic response at short times and
viscous flow at long times, but is not derived from any molecular physics. Much
of this work has been directed at the important branched polymer LDPE using
very adaptable integral equations [11]. However, as we noted above, even these
constitutive equations fail to describe the rheology of LDPE even qualitatively
when data from the challenging planar extension geometry is added to that of
shear and uniaxial extension [12]. We will see what inroads a tube model for
highly-branched polymers in shear and extensional flows can make into this
problem in Sect. 6.

2
Monodisperse Linear Polymers

The fundamental example of the tube model's application is the simplest one of
linear chains of identical molecular weight M or degree of polymerisation N. It
will provide the starting point for more complex applications.

2.1
Reptation

The tube model was first invoked by de Gennes as a dynamic constraint to model
the motion of a single free chain in a network of crosslinked chains [13]. The idea
was extended later to polymer melts by Doi and Edwards [2]. The curvilinear
motion along the tube contour is the only unrestricted type of motion at times
longer than an average monomer takes to diffuse a tube-diameter a. The motion
is a form of unbiased one-dimensional diffusion which has become known as
reptation. Central sections of the chain must follow their neighbours along the
tube contour, but the chain ends are free to explore the melt isotropically, so cre-
ating new tube (see Fig. 4). Such constrained dynamics gives rise to a character-
istic timescale: the time taken on average for the chain to diffuse one tube-length
by reptation (or equivalently one radius of gyration in space). This is the repta-
tion time trep and is given by the single-particle diffusion scaling:

(2)

where L is the curvilinear distance along the tube, and DR the curvilinear diffu-
sion constant for the chain. The tube can be thought of as a chain of N/Ne entan-
glement sections of diameter a (Ne is the degree of polymerisation of an entan-
glement segment of molecular weight Me), so L»aN/Ne. So the tube coarse-grains
the path of the chain at the length-scale a. This coarse-grained path was termed
the primitive path by Doi and Edwards [2], who identified it with the path of
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shortest distance through the melt which honoured all the topological interac-
tions of the defining chain.

The other important physical assumption is that the friction is local (hydro-
dynamic interactions are screened in the melt [2]) so that DR»(Ne/N)De with De
the diffusion constant in the melt of an unentangled chain of Ne segments. Now
the characteristic relaxation (Rouse) time of an entanglement segment te is just
a2/De so that

(3)

The second relation arises from the unentangled (Rouse) scaling of te with
Ne

2 in terms of a fundamental monomer timescale tmon.
This simple argument can yield the expected molecular weight dependence of

both the single chain diffusion constant (in three dimensions) D and the viscos-
ity h. For in one reptation time the chain has moved on average one chain end-
to-end distance R»(N/Ne)

1/2a, so

.  (4)

The viscosity scales, from Eq. (1), as h»G0trep since Go and trep are the char-
acteristic modus and relaxation times appearing respectively in the integral. The
plateau modulus is independent of molecular weight for highly entangled poly-
mers [1] but inversely proportional to Ne, so

. (5)

The prediction for the diffusion constant at Eq. (4) is in very good agreement
with measurements of the self-diffusion constants of polymer melts [14] while
results on the viscosity have consistently given a stronger dependence of the
characteristic times and viscosities on molecular weight of approximately N3.4.
The investigation of these discrepancies in the context of linear polymers has de-

Fig. 4. By curvilinear diffusion a chain evacuates its original tube and creates new tube seg-
ments from an isotropic distribution. “Forgotten” portions of the original tube are shown
shaded
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veloped into quite an industry, alongside the extensions to branched polymers
which we discuss below. There is a consensus now appearing that the answer can
be found in a proper treatment of the internal modes of entangled chains in ad-
dition to the centre-of-mass reptation mode. But first we must consider the ap-
plication of the theory to stress-relaxation and other rheological experiments.

2.2
Expression for the Stress

The first ingredient in any theory for the rheology of a complex fluid is the ex-
pression for the stress in terms of the microscopic structure variables. We derive
an expression for the stress-tensor here from the principle of virtual work. In the
case of flexible polymers the total stress arises to a good approximation from the
entropy of the chain paths. At equilibrium the polymer paths are random walks
– of maximal entropy. A deformation eij induces preferred orientation of the
steps of the walks, which are therefore no longer random – the entropy has de-
creased and the free energy density f increased. So

(6)

which is valid for timescales longer than those contributing to the sampling of
microstates in f but shorter than the slow degrees of freedom. In a polymer melt,
the free energy density can be expressed in terms of subchains of (arbitrary) de-
gree of polymerisation N of Kuhn segments of length b; the chain has an end-to-
end distance R. If these subchains have a number density cN in the melt, we have
from the properties of Gaussian chains [2]

(7)

where the angular brackets denote an average over configurations of subchains.
The tube model provides a specific choice of the scale of subchain (R and N)
which couples to the bulk imposed strain: assuming that the tubes themselves
deform affinely with the bulk, then chains confined within them are constrained
to deform at length scales larger than the tube diameter a but not at smaller
scales. These are the “slow degrees of freedom” in this case. So choosing Nb2=
R2=a2 and carrying out the differentiation in Eq. (6) leads to the simple form:

(8)

where u is the unit vector tangent to the tube axis containing a segment of chain
end-to-end length a, and ca is the number concentration of such segments. As in
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rubber elasticity, the stress arises from the anisotropic orientation of the elasti-
cally-active segments, and is dominated by the entropy associated with this ori-
entation. In contrast to a cross-linked rubber, however, it is the deformed tube
(deforming affinely with the bulk by assumption) which confers the orientation
on any chain which occupies it, rather than permanent crosslinks.

2.3
Stress Relaxation

The curvilinear diffusion along the contour of the tube gives an immediate the-
ory for stress relaxation, once the special physics of the free ends of the chains
are accounted for. The usual assumption is that the chain ends can explore the
melt in any direction. They create new tube segments for the chain which follows
them, but this new tube is chosen isotropically, so as time proceeds after a small
step-strain there are two populations of occupied tube segments: a decaying
fraction of anisotropically oriented segments and a growing fraction of isotropic
segments (Fig. 4).

If we assume that the anisotropic part of the stress is now just proportional to
the fraction of chain segments still constrained by the original (and deformed)
tube segments, then we just need to calculate the fraction of original tube sur-
viving at time t to calculate the stress relaxation function G(t). The easiest way
to do this is to recognise an equivalence between a picture in which the chain dif-
fuses curvilinearly along the tube and one in which the tube segments diffuse
curvilinearly along the chains. In this frame in which the chain is fixed, a tube
segment from the population at t=0 ceases to exist when it reaches a chain end.
So if p(s,t) is the probability that a tube segment situated a curvilinear distance
s from the end of a chain at time t is one of the original population, then p will
satisfy a linear one-dimensional diffusion equation – the physics is identical to
that of diffusion in one dimension if we map the population of original tube seg-
ments onto diffusing particles. The disappearance of original tube segments at
the ends of the chain corresponds to absorbing boundary conditions for the dif-
fusing particles, so finally

. (9)

As in Sect. 2.1, DR is the curvilinear centre-of-mass diffusion constant of the
chain, and is given in terms of the monomeric friction constant z by the Einstein
relation DR=kT/Nz. L is as before the length of the primitive path, or tube length
of the chain, which is Nb2/a. Finally, we need the initial condition on p(s,t), which
is just that at t=0 the survival probability is unity everywhere on the domain
(0,L). A standard method of solving a partial differential equation set such as
this is to expand in eigenfunctions of the spatial operator ¶2/¶s2 and its bound-
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ary conditions. These are the Fourier sine modes fp(s,t)=Ö(2/L)sin(pps/L)exp
(–p2p2DRt/L2), in terms of which the full solution is given by a linear expansion

(10a)

with

(10b)

The relaxation modulus G(t) is just the plateau modulus multiplied by the
fraction of remaining tube, which in turn is just the integral of the survival prob-
abilities p(s,t) over the tube co-ordinate s:

(11)

Substitution of Eq. (10) into Eq. (11) gives the well-known “Doi-Edwards” re-
laxation spectrum:

(12)

The sum over weighted relaxation times is heavily dominated by the longest
time (the reptation time) trep=L2/p2DR. Because of this the frequency-dependent
dissipative modulus, G²(w) is expected to show a sharp maximum1). The higher
modes do modify the prediction from that of a single-mode “Maxwell” model,
but only to the extent of reducing the form of G²(w) to the right of the maximum
from ~w–1 to ~w–1/2. In fact, experiments on monodisperse linear polymers
show a still broader maximum, with G²(w)~w–1/4 to the right of the peak, as
shown in Fig. 3, where data on well-entangled linear polymers is compared to
the Doi-Edwards spectrum. The power law to the right of the peak weakens for
less well-entangled chains [15]. These observations form the experimental start-
ing point for the additional effects of path-length fluctuations and cooperative
constraint-release of entanglements [16]. A version of the tube model due to
Cates [17], which treats the case of reptating living polymers (such as solutions
of self-assembled wormlike surfactant micelles or liquid sulphur) gives a pure
Maxwell model when the recombination reactions are fast enough – a result con-
firmed accurately by experiment [17].

1 It is a simple exercise to show that in a fluid for which the stress-relaxation is single-
exponential, G(t)=G0exp(–t/t), the viscous modulus G˝(w) has the simple peaked form
G0wt/(1+w 2t 2).
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2.4
Neutron Scattering and the Single Chain Structure Factor

There is a vast and continually growing collection of data on the rheological re-
sponse of entangled polymeric fluids. This is due both to the relative ease with
which this data is obtained and to the sensitivity of the data to structural features
such as polydispersity and branching (see below). However, the molecular theo-
ry for polymer dynamics makes predictions of other quantities which can pro-
vide much more specific checks on the behaviour at the molecular level than the
macroscopic rheological response. A common example is the scattering struc-
ture factor [18]. In the case of polymers, the ability to replace hydrogen atoms
selectively with deuterium allows wide application of the technique of neutron
scattering [18]. If uncorrelated single chains are deuterated in a melt of chemi-
cally identical but hydrogenous chains, scattering can measure the single chain
structure factor S(k,t):

(13)

Here, R(s,t) is the chain trajectory as a function of arc co-ordinate and time,
and k is the scattering vector of the experiment, related to the neutron wave-
length and scattering angle [18]. When t=0 this expression gives the “static
structure factor”, measured typically by small-angle neutron scattering (SANS).
At finite time the delay necessary between effectively interfering scattering
events may be introduced by the technique of neutron spin-echo (NSE) [19]. Full
calculation of S(k,t) is given in [2] for the cases of both unentangled (Rouse) and
entangled (reptation) dynamics. In particular, for the latter a similar one-di-
mensional diffusion equation is solved as for the stress relaxation, but with dif-
fering boundary conditions. Here we will discuss the limiting forms of the ex-
pression only in distinct regimes of time and scattering vector (or inverse
length-scale).

2.4.1
Unentangled Motion t<te, kRg>>1 (Short Timescales and Short Length Scales)

For times less than the Rouse time of an entanglement segment, te and short dis-
tances, the chain behaves as if it were free since no section has moved far enough
to be strongly affected by the tube constraint. The characteristic decay-rate of
the scattering function at wavevector k is dominated by the Rouse-time of chain
segments whose size is the order of k–1, tk~k–4. A detailed calculation gives for
t>>tk [2]

. (14)
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The form of the time-dependence can be understood from the “anomalous”
diffusion of a piece of Rouse chain, which displaces in time such that
<r2(t)>~t1/2 rather than ~t. As a result the exp(–k2Dt) scattering from Fickian
diffusers is replaced by exp(–k2Dt1/2tmon

1/2). The initial structure factor S(k,0) is
just the static scattering function from an ideal Gaussian random walk. Known
as the Debye function, at length scales well within the coil radius it is just the
Fourier transform of the coulomb-like density profile of monomers on the same
chain as a given monomer, and asymptotes to 12/k2b2.

2.4.2
Entangled Motion t>>te , kRg>>1

For times longer than te, the free Rouse motion of segments is restricted to
the tube contour and eventually, for t>tR, the structure factor is dominated by
reptation. In the high wavenumber limit relative to the coil size (though still on
length scales larger than the tube diameter), a simple argument again leads to
the correct asymptotic result. If R(s,t) is still in a piece of original tube then on
average it contributes to the structure factor as S(k,0). This is true with a proba-
bility of µ(t). Otherwise it has left the original tube and cannot interfere con-
structively with the piece at R(s',0), contributing zero to the structure factor.
Thus

(15)

The general form of these predictions for the dynamic scattering function is
that after an initial decay rate dependent on k and characteristic of free chains,
a much slower decay takes over, independent of k but depending on the molec-
ular weight of the labelled chain. At present the correlation times available from
NSE techniques are limited to a few hundred nanoseconds. This is not long
enough to probe the long-time dependence of the entangled regime at Eq. (15),
but has conclusively demonstrated the cross-over from free to hindered times-
cales [18].

Neutron scattering can probe molecular dynamics of polymer chains at long-
er timescales than the upper limits of NSE by exploiting flow or deformation. In
this case the equal-time (static) structure factor is measured from a partially-
deuterated polymer melt deformed out of equilibrium. These experiments are
hard to do because of the relatively low intensities of neutron sources. Either a
steady-state shear flow must be engineered in the neutron beam, or the melt
quenched rapidly below its glass transition temperature following a period of
deformation. The latter technique has confirmed that S(k) exhibits high anisot-
ropy for low wavenumbers (large lengthscales), but that this anisotropy is lost
rapidly above a characteristic wavenumber [20]. The corresponding wavelength
correlates well with the tube diameter a, consistent with rheological measure-
ments. This is expected because anisotropy on lengthscales smaller than a cor-
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responds to segments of chain which are not effectively entangled. They may
therefore relax to an isotropic configuration in the very short times typical of
free chain segments moving by Rouse dynamics [2].

Such scattering experiments on deformed and quenched melts, while concep-
tually simple, pose a thorny challenge to theory when requiring quantitative in-
terpretation. In equilibrium the scattering from a partially-labelled melt of flex-
ible polymer chains is relatively easy to calculate using the “Random Phase Ap-
proximation” (RPA) which develops a mean-field many-body response function
from the single-chain scattering functions calculated in the Gaussian limit [2,
18]. However, the RPA makes use of the equilibrium distribution of all the de-
grees of freedom in the system. A quenched deformed polymer melt has, by def-
inition, some slower degrees of freedom out of equilibrium while faster ones
have relaxed. Great care must be taken when calculating the response of a system
with mixed annealed and quenched degrees of freedom. An extension of the RPA
to cover these cases, when the quenched variables arise from the tube model, has
recently been proposed [21]. Motivated by experiments on controlled-topology
polymers under large extension, it predicts rather sensitive dependence of the
scattering peaks on the restricted dynamics of branch points (see Sect. 6.1.2).

3
Monodisperse Star-Branched Polymers

As we conjectured in the introduction, the fundamental role of topology in this
approach to entangled polymer dynamics would indicate that changes to the to-
pology of the molecules themselves would radically affect the dynamic response
of the melts. In fact rheological data on monodisperse star-branched polymers,
in which a number of anionically-polymerised “arms” are coupled by a multi-
functional core molecule, pre-dated the first application of tube theory in the
presence of branching [22]. Just the addition of one branch point per molecule
has a remarkable effect, as may be seen by comparing the dissipative moduli of
comparable linear and star polymer melts in Fig. 5.

Three experimental observations are particularly striking. First, the range of
relaxation times in star polymers is much broader than for monodisperse linear
polymers. Rather than representing a dominant single relaxation time, the me-
chanical spectra require a range of comparably-weighted modes. Second, the
range of timescales for this spectrum varies exponentially with the number of
entanglements of the arms, Ma/Me so that both the terminal time and viscosity
of the star polymer melt shows a dependence of roughly exp(–nMa/Me) where n
is a universal constant of ~0.6. Third, the terminal time and viscosity are de-
pendent only on Ma and not on the number of arms when the polymers are well-
entangled. It is therefore possible to increase the molecular weight of a melt of
star polymers by, say, a factor of ten without changing its viscosity at all, provid-
ing this is done by adding arms to the branch point. The use of highly multifunc-
tional chlorosilane coupling agents has permitted the synthesis of star polymers
with over 30 arms per molecule [23]. This independence on arm-number breaks
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down for very high numbers of arms, because overcrowding near the branch
point gives a crowded “core” dominated by material from a single molecule. The
cores may even order spatially within the melt, leading to new very slow modes
in the rheology [23].

3.1
Tube Model for Stars in a Fixed Network

The tube model gives a direct indication of why one might expect the strange ob-
servations on star melts described above. Because the branch points themselves
in a high molecular weight star-polymer melt are extremely dilute, the physics
of local entanglements is expected to be identical to the linear case: each seg-
ment of polymer chain behaves as if it were in a tube of diameter a. However, in

Fig. 5. The elastic modulus G'(w) and dissipative modulus G"(w) for linear (top) and three-
arm-star branched (bottom) polyisoprene from [5]. Note the broad range of relaxation
times indicated by the width of the peak in the star-polymer
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this case reptation is suppressed because the diffusion of the centre of mass of a
molecule along the tube formed by any two of the arms would necessitate drag-
ging the third arm into the same tube. This is entropically unfavourable since
3 kT of free energy (via the orientational degrees of freedom of a subchain of
length Me) would be paid for each tube segment dragged a distance a into the
tube of another chain segment. Thus the branch point is effectively pinned up to
very rare fluctuations of the configuration. Instead we must rely on the fluctua-
tions in the length of primitive path of the star arms (which must be present due
to the Rouse “breathing” modes along the tube contours) to renew the configu-
rations of the entangled arms as in Fig. 6. Of course the actual number of mon-
omers in the star arms does not fluctuate. Instead the motion results from the
formation of unentangled loops of chain both within the original tube and ex-
ploring the environment around it. The high free energy of these states arises
from their double-occupation of tube segments participating in the loops. Prim-
itive path length fluctuations will lose stress contributions from each arm inde-
pendently, so the stress relaxation function will not depend strongly on the
numbers of arms in the star. Moreover it is not surprising that the probabilities
of the largest fluctuations which completely release a star arm into a new config-
uration are exponentially low in the arm length. We now proceed to treat this in-
sight slightly more quantitatively.

3.1.1
Brownian Chain Tension in a Melt and the Tube Potential

An alternative way of viewing the entropy loss on constraining entangled poly-
mers is to see it as equivalent to a tension of 3 kT/a along every entanglement seg-
ment. So the free energy change associated with doubly-occupied tube de-
scribed above emerges naturally as just this tension multiplied by the distance
translated curvilinearly along the tube, a. This is a very useful insight – it pro-
vides an alternative way of understanding Eq. (8) for the stress: the tension
3 kT/a is carried by each entanglement segment of length a. The components of

Fig. 6. Proposed mechanism of entangled dynamics of a star polymer in a melt. Retractions
as shown partially renew the tube, beginning with rapid retractions near the free end and
much more rarely renewing deeper parts of the molecule
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the total stress are calculated by counting strands transferring tension across the
corresponding planes [2].

The chain tension arises in a physical way: at timescales short enough for the
tube constraints to be effectively permanent, each chain end is subject to ran-
dom Brownian motion at the scale of an entanglement strand such that it may
make a random choice of exploration of possible paths into the surrounding
melt. One of these choices corresponds to retracing the chain back along its tube
(thus shortening the primitive path), but far more choices correspond to extend-
ing the primitive path. The net effect is the chain tension sustained by the free
ends.

In fact, without the inclusion of the chain-end tension, the equilibrium path-
length of the chain is not maintained. We can write a potential U(z) for the length
of the primitive path z by including both the (quadratic) curvilinear rubber-
elastic term and the (linear) end-tension term as follows:

(16)

where L=Nb2/a is the equilibrium primitive path length of the chain. We have
chosen to measure z from the branch point outwards. This quadratic potential
will determine the fluctuation dynamics of an arm of an entangled star polymer:
the free energy paid for a retraction which brings the entangled path length
from the branch point to the free end from its equilibrium value L to some small-
er value z<L. Whenever this happens, the subsequent equilibrium configuration
will have a renewed configuration for all chain segments occupying tube whose
primitive path distance from the branch point is between z and L.

3.1.2
Approximate Theory for Stress-Relaxation in Star Polymers

The observations above can be rapidly turned into a semi-quantitative theory
for star-polymer stress-relaxation [24] which is amenable to more quantitative
refinement [25]. The key observation is that the diffusion equation for stress-re-
lease, which arises in linear polymers via the passage of free ends out of de-
formed tube segment, is now modified in star polymers by the potential of Eq.
(16). Apart from small displacements of the end, the diffusion to any position s
along the arm will now need to be activated and so is exponentially suppressed.
Each position along the arm, s, will possess its own characteristic stress relaxa-
tion time t(s) given approximately by

. (17)
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Henceforth we take the primitive path co-ordinate s=L–z from the free end
inwards to the branch point so that t(s) is an increasing function of s. The pref-
actor t0 is an inverse “attempt frequency” for explorations of the potential by the
free end, and may be expected to scale as the Rouse time for the star arm (in fact
this is not quite true – the actual scaling is as Ma

3/2 [25, 26]). The relaxation mod-
ulus can be calculated exactly as for linear polymers, using Eq. (11), but this time
with the simple (Poisson process) expression for p(s,t) from the activated diffu-
sion picture:

. (18)

The form of p(s,t) is well-approximated for highly entangled arms by a step
function in s: consider the form of the relaxation at any time t intermediate be-
tween the relaxation time of the first entangled segments near the end of the arm
and the core-segments of the star. At t some internal segment will typically be
just in the process of reconfiguration via its first “visit” by the free end. This seg-
ment will have an arc-length co-ordinate s given by t(s)=t. All segments exterior
to the segment s(t) are almost certain to have relaxed, because their relaxation
timescales are exponentially shorter, while segments nearer to the core are con-
versely almost certainly unrelaxed.

In this theory the diffusion constant of the star molecule and the viscosity are
both determined by the longest of the relaxation times of Eq. (17), so depend ex-
ponentially on the arm molecular weight Ma via tmax=t(L)~t0 exp(-U(L)/kT)~t0
exp (n'Ma/Me), where t0 is an attempt-time for arm retractions.

This theory was able to account for both the molecular-weight scaling of the
dynamic quantities D0, h, and tmax as well as for the shape of the relaxation spec-
trum (see Fig. 5) apart from one important feature – the constant n' in the lead-
ing exponential behaviour that multiplies the dimensionless arm molecular
weight needed to be adjusted. This can be understood as follows. The prediction
of the tube model for the plateau modulus from the stress Eq. (7) is

(19)

where feq is the equilibrium tension [2]. From the definition of the entanglement
molecular weight enshrined in

(20)

[1] in terms of the density of entanglement strands r/Me, we can deduce a quan-
titative relationship between a and b as a2=(4/5)Neb

2 and find from Eq. (16) that
U(L)=15Na/8Ne. So the tube model gives a prediction for the constant v' of 15/8.
This was in marked contrast to a value of about 0.6 required to fit experimental
data [25] and taken at face value gives enormous discrepancies in predictions
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for, for example, the viscosity, overpredicting values by many orders of magni-
tude for well-entangled stars. The resolution of this difficulty comes from recog-
nising the importance of co-operative constraint-release effects in the melt.
These are much more effective at accelerating relaxation away from the fixed
network result in the case of branched polymers than linear polymers. This is
because here constraint release acts directly against the exponentially slow re-
tractions of the dangling arms. We now look at a method for accounting for con-
straint release in star polymer melts.

3.2
Tube Theory of Star Polymer Melts

3.2.1
Approximate Theory for Constraint Release in Star Polymer Melts

The much more significant contribution of constraint release to the dynamics of
entangled star polymers in comparison to linear polymers arises from the very
broad distribution of relaxation timescales we have discussed above. Fortunate-
ly, the same breadth of timescales provides a simple way of calculating the effect
[27]. As a consequence of the exponential separation of relaxation timescales
along a star arm, by the time that a given tube segment s in the population is re-
laxing, all segments of tube s' such that s'<s (nearer a chain end) have renewed
their configurations typically many times. So chain segments at s and nearer the
star cores do not entangle with these fast segments at the timescale t(s) and be-
yond. Alternatively we can say that the tube is widened due to this effective dilu-
tion of the entanglement network – fast-relaxing segments act as solvent for the
slower relaxing ones. Such an idea applied to constraint-release in linear poly-
mers is problematical [26, 28] because of the dominance of the single relaxation
time trep, but becomes applicable in the case of stars, and branched polymers
generally. This picture of “dynamic dilution” is equivalent to an early theory for
constraint release in linear polymers dubbed “double reptation” because it asso-
ciated stress with binary topological contacts between chains. Such “stress
points” were supposed to vanish when either chain diffuses away [29, 30]. A cri-
terion which successfully accounts for the regimes of validity of such a simplifi-
cation compares the rates of self-diffusion of monomers on chain segments re-
laxing on a timescale t with the rate of tube widening given by the dilution hy-
pothesis. If the first is greater than the second, then the diluting tube acts as the
effective topological constraint, and “dynamic dilution” is valid. If not, then the
chain relaxation is not impeded by the tube and the approximation fails. We re-
visit this physics more quantitatively in Sect. 3.2.5. when we have a few more
tools to hand.

The new information necessary to make this approach quantitative is the de-
pendence of the effective entanglement molecular weight on the concentration,
f of unrelaxed segments. This is known from experiments on dilution of poly-
mer melts by theta-solvents to be approximately Me(f)=Me0/f, which corre-
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sponds, via Eq. (20), to the approximately quadratic concentration dependence
of G0~f2 [2, 31] (but see Sect. 3.2.2. for refinements). At any stage in the relaxa-
tion dynamics of a melt of identical star polymers, therefore, when a segment s
is currently relaxing for the first time, the effective entanglement molecular
weight is Me(s)=Me0/(1–s/L). To recompute the relaxation times t(s) with the dy-
namic dilution assumption we consider the activated diffusion in a hierarchical
way: to retract from s to s+Ds, the attempt frequency is t(s)–1 and the barrier to
diffusion is exp {(–1/kT) [U(s+Ds; Me(s))–U(s; Me(s)) ]} where the notation for U
indicates that the running value of the entanglement molecular weight is kept.
Taking the limit of Ds small gives the differential equation

(21)

where the last term arises from the “dynamic dilution” of the tube increasing the
effective value of Me [27]. Integration of this equation leads to an effective renor-
malisation of the potential U(s) which is now a cubic in s

. (22)

The terminal time and viscosity are dominated, as we saw above, by the po-
tential at complete retraction Ueff(L). This is now given by 15/24(Ma/Me), in
much closer agreement with experiments. The formula for the relaxation mod-

Fig. 7. The effective free-energy potentials for retraction of the free end of arms in a mon-
odisperse star polymer melt. The upper curve assumes no constraint-release, the lower two
curves take the “dynamic dilution” approximation with the assumptions Me~f–1 (Ball-
McLeish) and Me~f–4/3 (Milner-McLeish)
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ulus also needs modifying since each element of chain ds contributing to the
stress relaxation now does so in an environment diluted by (1–s/L), so picks up
this factor within the integrand [27]. Figure 7 compares the original quadratic
entropic potential of Eq. (16) with the renormalised effective potential of Eq.
(22). Both the terminal time and the shape of the potential are modified, the flat-
tening at high s (deep retractions) giving rise to a flatter slope in G²(w) for the
longest relaxation times.

The shape of the relaxation spectrum predicted by Eq. (22) does indeed fit
rheological data on pure star melts better than the quadratic expression calcu-
lated for stars in permanent networks [27], except at high frequencies where the
assumption of activated diffusion breaks down (it may easily be verified that
Ueff(s)<kT for the fraction (Me/Ma)1/2 of chain nearest the chain end). This and
other refinements to the theory have been the subject of very recent work, to
which we now turn.

3.2.2
Parameter-Free Treatment of Star Polymer Melts

The approximate treatment described above accounts rather well for the linear
rheology of star polymer melts. In fact it has been remarked that the case for the
tube model draws its real strength from the results for star polymers rather than
for linear chains, where the problems of constraint release and breathing modes
are harder to account for (but see Sect. 3.2.4.). However, there are still some out-
standing issues and questions:
(1)what are the proper prefactors to the expression for t(s) using Ueff(s)?
(2)how sensitive is the result to the exact dilution behaviour of the entanglement

network?
(3)at short times, how can we account for the effect of non-activated Rouse mo-

tion on the relaxation of segments near the end of the star arms?

In particular it has been conjectured that the terminal relaxation of star pol-
ymers might be the most sensitive test of the “dilution exponent” b in G0~fb. We
noted above that values of b close to 2 are candidates, but a number of careful
experiments in theta solvents suggest a mean value of nearer 2.3 [32]. A physi-
cally reasonable scaling assumption for the density of topological entangle-
ments in a melt of Gaussian chains leads to a value of 7/3 [31].

Recent work [33] has addressed all these questions, and in particular has giv-
en a cross-over formula for t(s) incorporating all these effects, so valid for all
timescales longer than the Rouse time of an entanglement segment te. The pref-
actor comes from a solution to the diffusion equation appropriate to the activat-
ed barrier-hopping of the star-arm free end under a steady-state flux of diffus-
ers. The first-passage time for diffusing particles (the chain ends) can be written
exactly as a quotient of integrals over the effective potential well in which they
are trapped. When the renormalisation process applied to the “bare” quadratic
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potential is modified for a general dilution exponent and the integrals calculated
in the (appropriate) asymptotic limit of Ueff>>kT, the result is

(23)

where x=s/L, a=b–1, and the generalised effective potential is given by

(24)

It is straightforward to check that this is equivalent to Eq. (22) in the case a=1.
However, it differs significantly in the case a=4/3 (see Fig. 7). The Boltzmann fac-
tor in Ueff still dominates Eq. (23) for the first-passage times, but now the weakly
s-dependent prefactor is calculated explicitly, as is its scaling with (Ma/Me)

3/2.
Early-time motion, for segments s such that Ueff(s)<kT, is dominated by non-

activated exploration of the original tube by the free end. In the absence of top-
ological constraints along the contour, the end monomer moves by the classical
non-Fickian diffusion of a Rouse chain, with spatial displacement <r2>~t1/2, but
confined to the single dimension of the chain contour variable s. We therefore
expect the early-time result for t(s) to scale as s4. When all prefactors are calcu-
lated from the Rouse model [2] for Gaussian chains with local friction we find
the form

. (25)

A cross-over formula for t(s) covering both the early and activated times-
cales can be constructed with sufficient accuracy as t(x)=ta(x)te(x)/(ta(x)exp
(–Ueff/kT)+te(x)).

Finally we require an expression for the relaxation modulus consistent with
the dilution hypothesis in which each tube segment relaxing its stress typically
at a time t(x) does so in a background whose effective density of entangled
strands is Feff. The appropriate general form is

(26a)
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which in the specific case of monodisperse star melts, Feff =(1–x) with x=s/L, be-
comes

(26b)

with notation as above.
The scheme of Eqs. (23)–(26) above allows a prediction for the relaxation

spectrum of a monodisperse star melt to be made without any free parameters
at all if Go and te are taken from data on linear polymers in the low and high fre-
quency range respectively. When this is done the shape and range of relaxation
times (via the rheological function G²(w)) is very well accounted for (see Fig. 8).
The departure of data from theory at this level, which just concerns entangled
modes, is delayed to frequencies higher than te

–1, when the classical w1/2 form
of unhindered Rouse relaxation is both expected and seen. To achieve a quanti-
tative fit for the entangled modes at the level of prefactors, shifts of about 1.6 in
the modulus and 2 in the monomeric friction factor are required from those cal-
culated from linear polymers. These shifts seem to be independent of polymer
chemistry, and may result from the level at which constraint-release has been
treated via the dilution approximation. In particular it was confirmed that the
difference of just 1/3 in the candidate values for the dilution exponent can alter
the terminal time of a moderately-entangled star polymer by over an order of
magnitude. If this theoretical framework is correct, it therefore allows simple
melt rheology to become an exceedingly accurate way to determine b. Within the

Fig. 8. Predictions of parameter-free theory for G"(w) and data for a star polybutadiene
from [33]. Small shifts in the two prefactors bring the experiments and theory into quanti-
tative agreement over five decades in timescale. Dilution exponent a=4/3 and Me=1850
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range of reported values of Me for the range of chemistries examined [33, 34], a
value of about 7/3 [30] seems to be preferred.

With this choice of b, the theoretical picture presented in this section is con-
sistent, for example, with the range in Ma/Me (from about 2 to about 20) ex-
plored by the polyisoprene (PI) data set of Fetters et al. [5] using a single value
of Me of 5000 g mol–1. The viscosities of these melts cover five decades in magni-
tude yet the current theory, together with values for G0 and te consistent with
data on linear PI predicts the entire range of viscoelastic spectra (see Fig. 9).

3.2.3
Single Chain Structure Factor for Star-Polymer Dynamics

The dynamic structure factor for scattering from a single chain as defined in
Eq. (13) has a simple long-time form for the case of linear reptating polymers
(see Eq. 15), due to the homogenous nature of the chain's orientational relaxa-
tion. The special entangled dynamics of star polymers, however, lends a little
more structure to S(k,t) [35]. The full result is relatively complex, but differs
from the approximation for linear polymers as given in Eq. (15) in that the scat-
tering within the range Rg

–1<k<a–1does not follow the same time-dependence,
but decays more rapidly with increasing k. This is due to two effects: the expo-
nentially slower relaxation of deeper parts of the chain, which dominate the low-

Fig. 9. Predictions of parameter-free theory for G"(w) with O(1) corrections to G0 and te as
for Fig. 8 and data for a range of 3- and 4-arm star polyisoprenes from [5]. Arm molecular
weights in 103 g mol–1 are 11.4, 17, 36.7, 44, 47.5, 95 and 105. The entanglement molecular
weight has been taken as 5000 g mol–1 
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k region, and also the continued contribution of relaxed outer parts of the chain
to the low-k scattering. In particular, pairs of monomers nearby on the outer
parts of the star arm, which contribute at early times to high-k scattering, con-
tribute to lower-k scattering at longer times, when they have become part of a
retracted and renewed portion of chain. The interference in the scattering am-
plitude is then between the former and present pieces of chain (the two copies of
the outer parts of the star arm in Fig. (6). As the retractions and reconfigurations
become deeper, monomer pairs which once were typically separated by short
distances may approach separations of the order of the chain radius of gyration.
The scattering function can be approximated by:

(27)

for tR<t<tmax. The scale-dependent dynamic exponent z(k) is an approximately
linear function of k, decreasing from 1 to 0.2 over the k-range 3Rg

–1 to Rg
–1. Cur-

rent experiments do not provide access to the timescales over which such behav-
ior is predicted, but may do so in the future.

3.2.4
Linear Chains Revisited – The “3.4 Law”

Comparison of Fig. 3 (dashed line for theory) and Fig. 8 will underline our ear-
lier remark that the tube model seems to do much better when applied to star
melts than to its original goal of linear melts, at least as far as the shape of the
relaxation spectra, and the dependence of the terminal times on molecular
weight in concerned. However, it is clear that the physics accounted for in the
previous section on star polymers represents a more complete theory than that
used in Sect. 2.2 for stress relaxation by reptation in linear polymers. There only
a single mode (the “centre of mass” mode) of the chain was assumed without any
detailed structure coming from internal chain modes. Of course the considera-
tion of entangled star polymers forces us to consider these modes because the
reptation mode is absent. In fact, at the level we treated reptation, there is no
stress relaxation in star polymers at all! This suggests that a tube theory for lin-
ear polymers which treats path-length fluctuations at the same level as we have
used for stars might do more justice to the data – it would certainly do more jus-
tice to the capabilities of the model.

Doi conjectured early in the development of the tube model that path-length
fluctuations would both reduce the predicted reptation time and steepen its de-
pendence on molecular weight [36]. As we have seen for the essential path fluc-
tuations of star polymer arms, at the Rouse time of the dangling arm, a fraction
(Na/Ne)

–1/2 of the original tube is lost by the curvilinear Rouse diffusion of the
free end. At longer times the fluctuations begin to be activated by the effective
path-length potential – hence the exponentially slow deeper retractions in stars.
But the linear polymers will also lose entanglements from their free end in just
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the same way. This reduces the path length which the centre of mass must typi-
cally diffuse by reptation to renew the entire tube by a factor of [1–k(Ne/N)1/2]
where k is a number of order 1. So the reasoning that led to Eq. (3) above for the
reptation time now gives

(28)

Such a functional form mimics a power law of M3.4 over a range of molecular
weights up to about 100Me, but this is not as large as the range experimentally
observed, even with a free choice for the parameter k.

Various authors have performed numerical simulations on one-dimensional
chains which possess the curvilinear Rouse modes necessary to capture path
length fluctuations [37–40]. Stress is arranged to be lost from tube segments
passed by either free end of the polymer – this happens in general as a combina-
tion of reptation and fluctuation. These calculations produce up to three orders
of magnitude in M/Me for which the power law M3.4 models the viscosity de-
pendence well, crossing over gently to the pure-reptation result of M3 at very
high molecular weights.

Fig. 10. Data for G"(w) on three monodisperse linear polystyrenes from [15] with values of
M/Me of 22, 57 and 191. The theoretical curves account for path length fluctuations calcu-
lated as for star polymers [41] choosing values for G0 and te consistent with published data
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Rubinstein has constructed on a reptation-fluctuation approach a detailed
self-consistent theory of constraint release, allowing each loss of entanglement
in one chain to permit a random jump in the tube of another [37]. When this is
done the form of predicted relaxation functions are in good accord with exper-
iments. However, in monodisperse linear melts it appears that the fluctuation
contribution is more important than constraint release.

Very recent work has applied the analytical form for the stress relaxation fol-
lowing that for star polymers developed above, but crossing over to disentangle-
ment by reptation when this is faster than fluctuation. At earlier times another
cross-over to unentangled Rouse modes on length scales smaller than a was in-
cluded, again without resort to extra free parameters [41]. This approach gives
a close match with experiments on monodisperse model melts. The results of the
predictions for G² are shown in Fig. 10 together with the data on linear polysty-
renes (PS) from [15]. The advantage of this approach is, as in the case of star pol-
ymers, that there are no extra parameters to import into the theory – the tube
diameter and monomeric friction constant invoked in the basic reptation model
are sufficient for the inclusion of fluctuation and Rouse modes. The theory cor-
rectly predicts the viscosity (response to the left of the peak) and the fluctuation-
dominated slope (to the right of the peak) in this range of M/Me from 20 to 200.
Note that the dependence of the effective slope of G"(w) to the right of the peak
on molecular weight is also captured. The physical reason for this is also clear:
the x4-dependence of the Rouse disentanglement times near the chain end is di-
rectly linked to a form for G"(w) that asymptotes to w–1/4 to the right of the peak
if chains are long enough. The only region in which there are significant differ-
ences between theory and experiment are at the reptation time itself where the
effects of constraint release by reptation of other chains and polydispersity are
expected to be strongest. Satisfyingly, a plot of the predictions of the viscosity
against molecular weight are very closely modelled by a power law with expo-
nent 3.4 up to M/Me of 1000, in close agreement with the data. Further careful
experiments on the rheology of very high molecular weight monodisperse pol-
ymers will serve to test other consequences (such as a return to a slope of –1/2
in G"(w) immediately to the right of the maximum for extreme values of M/Me)
of this very promising resolution of an ancient puzzle.

3.2.5
A Criterion for the Validity of Dynamic Dilution

The mathematical treatment that arises from the “dynamic dilution” hypothesis
is remarkably simple – and very effective in the cases of star polymers and of
path length fluctuation contributions to constraint release in linear polymers.
The physics is equally appealing: all relaxed segments on a timescale t are treated
in just the same way: they do not contribute to the entanglement network as far
as the unrelaxed material is concerned. If the volume fraction of unrelaxed chain
material is F, then on this timescale the entanglement molecular weight is renor-
malised to Me/Fa or, equivalently, the tube diameter to a/Fa/2. However, such a
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simple approach cannot work for all cases in which constraint-release is impor-
tant. In particular it fails for monodisperse chains affected by constraint-release
from the reptation of other chains as the following rough calculation will show:

A single-mode approximation for the relaxation of entangled fraction F(t) by
reptation is

. (29)

A naïve application of dynamic dilution would introduce a dependence of the
reptation time on the unrelaxed volume fraction. Since trep~L2~(aM/Me)

2 this
would imply the choice of trep(F)~F in the case a=1 for the dilution exponent. But
making this substitution completely alters the relaxation function to the patholog-
ical G(t)=G0(1–t/trep)2. A more refined treatment at the level of a proper diffusion
equation retains a relaxation which is much too fast. Yet dynamic dilution works
perfectly for branched polymers – why? Clearly the answer lies in the distribution
of timescales for the constraint-release (CR) events. In the linear polymer case the
CR events all occur on the timescale of trep. On the other hand the vast majority of
CR events that permit swelling of the tube in star polymer melts to occur on a
timescale t, themselves possess exponentially shorter timescales than t.

The key issue is the following: to follow dynamics constrained by a tube dilat-
ed to diameter a at a timescale t, a chain must be able to explore a distance per-
pendicular to its contour of at least a by constraint-release Rouse motion [26, 42].
Here entanglements on fast timescales act as effective friction-points on unre-
laxed chains – an example would be self-dilute long chains in a melt of shorter
chains. At the short chains' reptation time, local sections of the long chain of mo-
lecular weight Me may “hop” a distance of order a. Such local dynamics always
results in Rouse-like motion at longer length and timescales [2]. An equivalent
picture is one which endows Rouse dynamics to the tube of the long polymers
[26]. Another example is the motion of slow sections of star polymers – if they
have no entanglements with equally slow or slower material, they are free to
move in a local frictional environment determined by the relaxation of faster-re-
laxing material. In both these cases, as in ordinary unentangled Rouse chains,
the perpendicular diffusion of local pieces of chain follows the sub-Fickian be-
haviour <r2(t)>~t1/2. The important requirement for a piece of unrelaxed chain
to feel a dilated tube is that the Rouse-like exploration of space generated by fast
entanglements <r2(t)> is faster than the growth of the tube diameter a2(t)
through dilution by current disentanglement. So if x is some label for chain ma-
terial which relaxes at time  t(x) (for example x could be, as above, the co-ordi-
nate label of segments along the arm of a star polymer) the physical criterion for
dynamic dilution can be written

(30)

    

d
d t

F F( )
( )

t
t

t
rep

= - 1

    

1 1
2

2

2
2

r t

dr t
dt a t

d
dt

a t
( )

( )

( ( ))
( ( ))>

F
F



226 T.C.B. McLeish, S.T. Milner

Using the Rouse result, the left hand side of Eq. (30) is just 1/2t. In the case of
star polymers, using the approximate result for t(x) from Eq. (21) and the cor-
responding dynamic dilution result F(x)=(1–x) the criterion becomes

(31)

(see [42]). This is satisfied for x>8/15(Me/Ma), i.e. when the chain first feels the
original undiluted tube, and for x<1–(8Me/15Ma)1/2. This is typically very close
to the core of the star, and corresponds to a “disentanglement transition” when
the tube dilates faster than the remaining unrelaxed star arm can follow it by
Rouse-like constraint release. The contribution of this small amount of unre-
laxed material obeying effectively unentangled dynamics near the terminal time
contributes very little to the relaxation modulus.

So the criterion that the effective constraint-release must be fast enough to al-
low local pieces of unrelaxed chain to explore any dilated tube fully confirms the
assumption of dynamic dilution for nearly the whole range of relaxation times-
cales exhibited by star polymers.

As a second example we can apply it to polydisperse linear polymers; the var-
iable x becomes naturally the molecular weight of a chain reptating at time t,
and F(x) the integrated weight distribution function over all chains longer than
x. This is just the problem addressed by the “double reptation” [29, 30] approach.
Use of the general expression for G(t) in Eq. (26) gives an expression identical
with that derived from double reptation (simply squaring the fraction of unre-
laxed material to calculate the current stress). Applying the dynamic dilution
criterion Eq. (30) we find as shown in detail in [42]

. (32)

So dynamic dilution is valid in linear polymers only for the case of extremely
wide polydispersity in which the weight distribution is broader than that of a
power-law with exponent –5/2. In particular we see that it is not valid for near-
monodisperse linear polymers around their terminal time.

4
More Complex Topologies

The recognition of the two fundamental mechanisms of reptation and arm fluc-
tuation for linear and branched entangled polymers respectively allows theoret-
ical treatment of the linear rheology and dynamics of more complex polymers.
The essential tool is the “renormalisation” of the dynamics on a hierarchy of
timescales, as for the case of star polymers. It is important to stress that experi-
mental checks on well-controlled architectures of higher complexity are still
very few due to the difficulty of synthesis, but the case of comb-polymers is an
example where good data exists [7].
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4.1
Combs and H-Polymers

These polymers possess a high molecular weight “backbone” to which are at-
tached a number, q, of side arms (see Fig. 11). The structure most amenable to
our theoretical development are those in which the arms are all of the same mo-
lecular weight Ma and regularly spaced along the backbone of molecular weight
Mb. We assume all molecules are identical. The case of interest to us in the con-
text of topological interactions has both arms and backbone initially entangled.
For if on the other hand Ma/Me<1, the backbones behave for all times like linear
polymers, with a slightly modified friction factor and entanglement length since
the arms just act as diluent. However for Ma/Me>1 the behaviour is predicted to
be quite different [43]. Now the backbones are quite immobile for early times
since the side arms behave almost like the arms of star polymers, and do not re-
lease the diffusion of their branch points until the timescale for full retraction.
On the other hand the retraction of the side arms is slower than in a melt of stars
of identical Ma because of the presence of the backbone material, which acts as
permanent network for the side arms throughout their retraction. This reduces
the extremely efficient process of dynamic dilution considered in the previous
section, so that the effective potential for relaxation times for the arms is now

(33)

(compare Eq. 22), where farm is the volume fraction of arm-material
qMa/(qMa+Mb). In this discussion we retain a=1 for simplicity, but the more
general case poses no difficulty [46]. This renormalised potential is calculated in
exactly the same way as for star polymers in in Sect. 3.2.1, except that the effec-
tive entanglement molecular weight as a function of the curvilinear co-ordinate
for arm retraction s is now Me(s)=Me0/(1–farms/L). This interpolated behaviour
for retracting arms, intermediate between the star-network and star-melt cases,
also arises in a blend of star polymers with long linear chains [42, 44].

Now at times t>tarm, the longest retraction time of the side arms, the back-
bone is free to move, controlled by the effective frictional drag of the branch-

Fig. 11. The schematic structure of a comb polymer; q arms of molecular weight Me are at-
tached with regular spacing to a backbone of molecular weight Mb
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points, which typically far outweighs the monomeric frictional drag from the
backbone itself. Each branch point takes a random step of size a* with a rate
tarm

–1 so the effective friction constant of the branch point zbr~kTtarm/a*2. Here
a* is the diluted value of the tube diameter at the relaxation time of the dangling
arms. At the timescales for backbone motion, all the arm material has disentan-
gled (typically at much shorter timescales) so, just as in the mutual dilution of
star polymers, acts as unentangled solvent for the backbone. The melt thus be-
haves like a melt of linear polymers at long times, with a degree of entanglement
per chain of Mb(1–farm)/Me and a total frictional drag of qzbr. In this way it is
possible for a highly branched polymer to behave like a linear polymer for some
range of timescales. Whether the long-time dynamics of the backbones is effec-
tively entangled or not depends on the renormalised degree of entanglement,
which is reduced as the amount of material in the side arms increases. Thus even

Fig. 12. The rheological functions G'(w) and G"(w) for an H-shaped PI of arm molecular
weigh 20 kg mol–1 and backbone 110 kg mol–1 [46]. The high-frequency arm-retraction
modes can be seen as the “shoulder” from w~100 to w~103 together with a low-frequency
peak due to the “cross-bar” dynamics at w~10–2. The smooth curves are the predictions of
a model which takes Eq. (33) as the basis for the arm-retraction times and a Doi-Edwards
reptation spectrum with fluctuations for the backbone. The reptation time is correctly pre-
dicted, as is the spectrum from the arm modes, though the low frequency form is more
polydisperse than the simple theory predicts
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if the backbones are originally entangled with other molecules' arms, the final
motion may be a slowed-down Rouse motion if mutual entanglements between
backbones are not sufficient to force them to reptate (this is just the case of
Mb(1–farm)/Me£1). Both cases of renormalised Rouse and renormalised repta-
tion have been observed in model materials [7, 42].

The simplest case of comb polymer is the H-shaped structure in which two
side arms of equal length are grafted onto each end of a linear “cross-bar” [6]. In
this case the backbones may reptate, but the reptation time is proportional to the
square of Mb rather than the cube, because the drag is dominated by the dumb-
bell-like frictional branch points at the chain ends [45, 46]. In this case the de-
pendence on Mb

2 is not a signature of Rouse motion – the relaxation spectrum
itself exhibits a characteristic reptation form. The dynamic structure factor
would also point to entangled rather than free motion.

Experiments on both combs and H-polymers show rheological spectra with
two distinct regions at frequencies typical of entangled modes: a high-frequency
“shoulder” attributable to the arm retractions, and a low-frequency region
which may be of the form w1/2 in the case of unentangled backbones, or exhibit
a characteristic time via a maximum in G"(w) for mututally entangled back-
bones (see Fig. 12).

Combining the predictions for the reptation time of the H cross-bar and the
effective modulus when the arms are acting as solvent gives a prediction for the
scaling of the viscosity of a melt of H-polymers on their structural parameters:

. (34)

A full analytical expression for the relaxation spectrum is straightforward to
calculate at the level of Sect. 3.2.1 for stars. Timescales tarm(s) and tbb(s) are cal-
culated from the appropriate renormalised potentials for activated fluctuation,
crossing over to free Rouse for the arms at short timescales. The backbone of an
entangled H-polymer relaxes stress by ordinary Fickian diffusion of its extrem-
ities at the “early” times immediately following complete relaxation of the arms,
because its renormalised structure is a simple dumbbell, not a Rouse chain. It
has only one internal “fluctuation mode” which strongly interferes with its rep-
tation mode at the terminal time. Such an approach has proved quantitative for
linear rheological response of entangled model H-polyisoprenes (see Fig. 12).
However, the terminal region is highly sensitive to polydispersity in the arm mo-
lecular weight. This is because the effective friction constant of the branch
points (and so the reptation time of the “cross-bar”) is exponentially dependent
on Ma. This has a very much greater broadening effect on the relaxation spec-
trum than in the case of simple linear polymers.

The experiments on H-polymers confirm another aspect of the dynamic di-
lution theory for constraint release in branched polymers: the range of relaxa-
tion times clearly attributable to the arms of the H-polymers is typically much
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wider than for a melt of star polymers whose arm molecular weight matches
those of the Hs (compare the width of the “shoulder” region of G²(w) in Fig. 12 –
about three decades – with that of the second smallest star polymer in Fig. 9 –
less than two decades). This is because now the slow cross-bar segments expo-
nentially increase the slower relaxation times of the arms. They behave like a
permanent network for all timescales earler than that of crossbar reptation (see
Eq. 32).

4.2
Dendritic Polymers

If combs represent one extreme of the topological family of branched polymers,
then another extreme is given by the case of dendritic polymers, which retain a
branched structure at all timescales. The study of tree-like branched architec-
tures is also motivated by the important commercial low density polyethylene
(LDPE), which has remarkable rheological properties making it suitable for
many processing operations [3].

4.2.1
Cayley Tree

A useful “toy” theoretical model which captures the essential features of self-en-
tangled dendritic polymers is the monodisperse Cayley tree in which each chain
segment branches with a fixed functionality z at each of its ends, except those at
the extremity of the molecule (see Fig. 13). Smaller versions of these structures,
too low in molecular weight to be entangled, have been synthesised and are usu-
ally referred-to as “dendrimers” [47].

The application of tube-theory incorporating a “dynamic dilution” model for
constraint release proceeds as for the comb-polymers [48], but in this case there
are as many distinct stages in the dynamic renormalisation of the molecular
structure as there are levels of branching in the molecule. When there are many
levels, a further approximation can be taken by working in discrete, rather than
continuous, timescales – the relaxation times of the successive layers of branch
points, ti. Considering the entangled segment connecting the i-th to the (i+1)-th
level of the molecule as a star-arm retracting in an entanglement network whose
concentration is at all times given by the concentration of unrelaxed segments,
gives a recursion relation for the ti:

(35)

where Mx is the molecular weight between the branch points and N here the
number of levels in the Cayley tree. The constant n is 15/8 as for star polymers.
The z-dependent function in the square brackets of Eq. (35) is just the effective
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concentration of entangled segments Fi operative at level i which dilutes the en-
tanglement molecular weight just as for star polymers.

The hierarchy of relaxation times ti as a function of level i can be inverted to
give an approximate form for G(t) (since G(t)~Fi

2(t=ti)), which in the physical
case of z=2 becomes

(36)

where tmax~t0exp(2nMx/Me) is the longest entangled relaxation time of the tree.
q is a “topological exponent” which in the case of the Cayley tree is 2, but as-
sumes other values for more irregular trees (see below).

A feature of theories for tree-like polymers is the “disentanglement transi-
tion”, which occurs when the tube dilation becomes faster than the arm-retrac-
tion within it. In fact this will happen even for simple star polymers, but very
close to the terminal time itself when very little orientation remains in the poly-
mers. In tree-like polymers, it is possible that several levels of molecule near the
core are not effectively entangled, and instead relax via renormalised Rouse dy-
namics (in other words the criterion for dynamic dilution of Sect. 3.2.5 occurs
before the topology of the tree becomes trivial). In extreme cases the cores may
relax by Zimm dynamics, when the surroundings fail to screen even the hydro-
dynamic interactions between the slowest sections of the molecules.

4.2.2
Mean-Field Gelation Ensemble

Perhaps a more appealing model for a randomly branched structure such as
LDPE is given by a stochastic tree in which branch points have a probability p of

Fig. 13. The Cayley-tree model structure
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occurring at the end of chain segments, and (1–p) of termination [49]. This mod-
el, which leads to a naturally-polydisperse set of branched structures even when
the segments between branch points are monodisperse (Mx) is also known as the
Flory-Stockmayer gelation ensemble [50, 51]. It models a cross-linking ensem-
ble of chains, but without loops, and has a gelation transition at p=pc=(z–1)–1,
when a polymer of infinite molecular weight appears.

To model a polydisperse branched polymer melt, it suffices to keep p below pc
and to generate the concentrations of segments at each level of the disentangle-
ment hierarchy. The term “seniority” has been coined for the effective topologi-
cal level of a segment – within retraction dynamics in a polymer melt all seg-
ments of equal seniority relax on the same timescale. Conversely the concentra-
tion of segments at all higher seniorities controls the effective dilution of the en-
tanglement network on that timescale. Because the relaxation by fluctuation of
an arbitrary segment may come from either of the sub-trees it links, the senior-
ity is controlled by the shorter of the longest paths to a free end in each sub-tree.
Such a statistic can be calculated from the branching rules of any ensemble of
branched polymers [49].

The result of treating the Flory-Stockmayer ensemble in this way and at the
same level of approximation as that of the Cayley tree sketched in the previous
section, is that a very similar relaxation spectrum to Eq. (36) is predicted, but
with a value for the exponent q of 4 rather then 2. A disentanglement transition
is also found, as well as the appealing feature that at each seniority a fixed frac-
tion of the molecules still entangled actually renormalise into linear polymers
(like the comb topology) and relax by reptation rather than by further fluctua-
tion [49].

The rheology of cross-linking polymer solutions and melts at the gel-point is
a wide field of great interest [52] whose detail is beyond the scope of this article.
However there is clear experimental evidence on the few entangled systems
studied that they differ qualitatively from the universal features observed for un-
entangled systems at the gel point [53]. In particular, it is often reported that at
the gel-point the rheology exhibits “dynamic scaling”: G(t)~t–u for some dynam-
ic exponent u. Unentangled systems follow a universal value of u=0.67, which
can be understood via a Rouse theory for branched polymers. Scaling between
cluster-size and its terminal time (which emerges from the local friction as-
sumption), coupled with the scaling in the distribution function for cluster sizes
(which is a property of both mean-field gelation and three dimensional “perco-
lation”) combine to give dynamic scaling [54]. On the other hand, there is grow-
ing evidence that for entangled systems u=u(Mx/Me) and takes in general much
smaller values. Although the functional form Eq. (36) is not a power law, it may
approximate closely to one over as wide a range of frequencies as used in exper-
iments. If a power law is fitted to the exact function, the theory is then able to
produce effective values for u, together with their dependence on Mx. An impor-
tant prediction of such a procedure is that the exponent u should decrease as
(Mx/Me)

–1. A good deal of data on model systems is still lacking here, which
would serve both to sharpen the theory of the gelation ensemble proper, and ex-
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plore the appropriateness of the pre-gelation Flory-Stockmayer model for the
structure of LDPE. In Sect. 6 we will see that experiments in non-linear response
have begun to suggest that the approximation may be a poor one. First we exam-
ine the role of polydispersity in entanglement relaxation times in a more con-
trolled way – via the blending of model materials of different architectures and
molecular weights.

5
Experiments and Calculations on Model Blends

From the foregoing it will be clear that whenever entanglements and long chain
branching are both present the dynamics in a polymer melt are highly co-oper-
ative. The orientational relaxation time of chain segments is exponentially de-
pendent on both the contour distance to the nearest effective free end and on the
effective entanglement density of its environment at all previous timescales.

A strong test of this theory is presented by a blend of two dynamically differ-
ent components (but of identical local chemistry) such that the volume fraction
of both is large. Two cases of especial interest suggest themselves: blends of lin-
ear with star polymers [42, 55] and blends of star polymers with widely separat-
ed molecular weights [56]. Recent work on both these systems has shed further
light on the nature of co-operative constraint release and the remarkable power
of the theoretical tools we now have at hand.

5.1
Star-Star Blends

A recent set of data compares the linear rheology of two monodisperse polyiso-
prene 3-arm stars of arm molecular weight of 28 kg mol–1 and 144 kg mol–1 to-
gether at three blend compositions [56]. The data are very remarkable: the ter-
minal times of each component of the blend are separated by more than six dec-
ades, yet no relaxation process is identifiable with either of the two component
terminal times in blends of composition 0.2, 0.5 and 0.8. Instead entirely new re-
laxation times emerge, between the two original terminal times, together with a
great variety of relaxation spectra (see Fig. 14). Many phenomenological “blend-
ing laws” for relaxation moduli fail immediately, for they frequently work by try-
ing to combine the two original functions Gi(t) in some form at the same times-
cale [57]. Instead, new cooperatively determined timescales seem to arise in the
blend.

Of course from a molecular point of view this is no longer surprising – we
know that dynamic dilution is a highly cooperative process. However the quan-
titative prediction of the dynamic moduli of Fig. 14 is clearly a very demanding
task for a theory with essentially no free parameters! We outline here how the
tube model calculation is done in this case; for details see [56].

The initial problem arises from the fundamental “Ball-McLeish” [27] equa-
tion for the relaxation timescales along the star arms, which we write here from
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Fig. 14. Data (points) for G'(w) and G"(w) for a range of compositions of a blend of two
polyisoprene stars of molecular weights 28 and 144 kg mol–1. The fractions of the bigger
star are in order 0.0, 0.2, 0.5, 0.8 and 1.0. Curves are theoretical predictions of the tube mod-
el with co-operative constraint release treated by dynamic dilution [56]. The choice of 2.0
rather than 7/3 for the dilution exponent b is compensated for by taking Me= 5500 kg mol–1
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Eq. (21) in the dimensionless arc-length co-ordinate x for each star polymer spe-
cies:

(37)

These two equations (one for each component) cannot be integrated simply
as before because they are coupled by the dependence of the unrelaxed volume
fraction F on both fractional primitive path coordinates xi: F(x1,x2)=f1(1–x1)+
f2(1–x2) while both stars are still relaxing. A solution is to identify a “relaxation
coordinate” which is universal to both blend components. In this case, substitu-
tion of the variable z=Mi

1/2xi into Eq. (37) removes all explicit dependence on
the arm molecular weights Mi in each equation. So z must be just such a “uni-
versal” variable (in fact such a variable can always be found – any single-valued
function of the maximal free-energy explored at time t will do). Integration, tak-
ing care to respect the change in the effective entanglement network when the
smaller star has completely relaxed, gives the effective potentials for each com-
ponent. From this point it is straightforward to calculate the first-passage times
in terms of the arclength co-ordinates, including the rapid Rouse retraction at
short times, just as for the monodisperse star melt. The explicit dependence of
F on each star's arc co-ordinate individually is used finally to calculate the relax-
ation modulus via the generalisation of Eq. (26):

. (38)

To simplify the calculations the approximation a=1 was used for the dilution
exponent. Experience with monodisperse melts indicates that the effect of chang-
ing a is almost indistinguishable from an equivalent increase to the value of Me,
so the approximation was compensated for by choosing Me=5500 kg mol–1.

Results are shown against the data in Fig. 14 using parameters fixed by the
chemistry and composition. The agreement is astonishingly close. The theory
has predicted naturally a “motional narrowing” that arises from the blending of
star polymers: while the smaller star relaxes much more slowly in the environ-
ment of the larger star arms than in its own melt, the larger star is plasticised via
dynamic dilution by the smaller stars in the same blend and relaxes much faster
than in its own melt. In the intermediate blend ratios, it is even possible to iden-
tify the provenance of features in the relaxation spectra by plotting the contribu-
tions from each component [56]. Checking such predictions of partial relaxation
spectra would make interesting experiments on deuterated blends using IR di-
chroism or similar techniques.
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5.2
Star-Linear Blends

Perhaps a more challenging, model system is the blend of linear and star poly-
mers. This is a very sharp test of the physics of entanglements because typically
the two fundamental processes of entanglement loss, reptation and arm fluctua-
tion, will occur on similar timescales. We know that dynamic dilution is a valid
way of treating constraint release in the presence of the second, but not the first
process. What will happen in such a blend? Two data sets exist of the rheology of
star-linear blends at intermediate concentrations, one for polybutadiene [58] and
one for polyisoprene [42]. Both compare star polymers with linear chains of mo-
lecular weight about twice that of the star arm, but with different degrees of en-
tanglement (Ma/Me»19 and 13 respectively). Of course the pure star melts in both
cases have considerably higher viscosity than the linear melts due to their much
longer terminal times. Other studies have concentrated on self-dilute stars dis-
persed in a linear matrix at low concentration [59,60] and have seen the expected
“tube Rouse” viscoelasticity of unrelaxed star arms at long times following the
reptation of the linear chains. An important observation on the higher concentra-
tion blends (both components self-entangled) is that the viscosity depends ap-
proximately exponentially on the volume fraction of star polymer from concen-
trations of a few percent to fstar=1. We now give a brief résumé of how a tube
model for this system would describe the dynamics on a hierarchy of timescales.

The dynamical history of stress-relaxation in a star-linear blend begins life in
just the same way as a star-star blend, because when t<<trep the linear chain re-
laxation is dominated by pathlength fluctuation and behaves as a two-arm star
with Marm=Mlin/2. So very early Rouse fluctuation (Eq. 25) crosses over to acti-
vated fluctuation in self-consistent potentials. These are calculated via the coor-
dinate transformation used in the star-star case above. For example, the effective
potential for the star component in this regime is

(39)

The correction to the coefficient of fl in the dynamic dilution (cubic) term in
the potential (compare Eq. 22 for the pure star case) arises from the way the dif-
ference in “arm” molecular weights affects the fraction of unrelaxed arm at the
same timescale.

Unless the molecular weight of the star arm is rather low, this period of relax-
ation by fluctuation is generally interrupted by the reptation of the linear poly-
mers. This happens when the centre of mass diffusion of the linear chains is able
to renew the tube of all (central) portions of the chain not relaxed by the star-like
modes. So the reptation time is given by

(40)
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where the xd is the fraction of star arm relaxed at the reptation time, itself calcu-
lated self-consistently using Eq. (40) with Eq. (39). The stress carried by the lin-
ear polymers is lost at this timescale, but equally so are the entanglements from
linear chains that contributed to the tube diameter for the stars. The unrelaxed
volume fraction F  jumps suddenly from fs(1–xd)+fl(1–xd(2Ma/Ml)

1/2) to fs(1–
xd). This will induce an equally sudden jump in the tube diameter since a~F–a/2.
Immediately, the criterion for dynamic dilution tube retraction (Sect. 3.2.5) is
violated. Now the star arms are free to relax via the “constraint release Rouse”
process we have discussed before in the contexts of bimodal linear blends, comb
backbones and terminal relaxation for star cores. The tube as it stood at trep ex-
ecutes local Rouse hops driven by the reptation of the matrix of linear chains un-
til a later time tc at which its exploration of the melt encounters the larger inflat-
ed tube created by entanglements with other star arms only. During this period
of renormalised Rouse motion, the stress relaxation will be of the standard
Rouse form G(t)~t–1/2. If the star volume fraction is very low, the larger tube may
never be encountered, but if it is, arm fluctuation resumes in a new diluted po-
tential of

(41)

This looks very similar to the pure star result, except for the dilated effective
value of Me via the fs factor. Additionally, the prefactor to the derived expression

Fig. 15. Plot of G²(w) data on PI star-linear blends superposed at 25 °C, together with theory
from [42]. Fractions of star polymer fs are 0, 0.4, 0.65, 0.9 and 1.0
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for relaxation times t(x) in this long-time regime needs to honour the delayed
time at which dynamic dilution is regained, and so picks up an effective extra
friction in this slowest regime. This extra friction just reflects the physics of the
sluggish “solvent” of reptating linear chains.

The explicit appearance of the star fraction in the potential of Eq. (41) is
promising – it naturally confers an exponential dependence of the terminal time
and viscosity on fs as seen in the experiments. Figure 15 shows results on the PB
blend for G²(w) together with the predictions of the theory outlined above using
parameters determined by synthesis and values for Me and te consistent with the
literature (though again as a=1 in this calculation a slightly higher value for Me
was used). Again the agreement is very good – if for example the intermediate
constraint release Rouse process is omitted there is a substantial discrepancy.
The experiments confirm an important intuition about the effective tube diam-
eter for arm retraction: throughout the renormalised Rouse regime, arm retrac-
tion continues within the tube whose width remains as it was at trep. This gives
an insignificant contribution to stress relaxation when compared to that from
the Rouse motion of the tube. Such would not be the case if retraction were al-
lowed in gradually widening tube – this latter process would be much more ef-
fective in relaxing entanglements during the Rouse regime than the experimen-
tal data permit. But the tube diameter relevant for fluctuation is the one in which
the chain has time to make unentangled loops. This takes rather longer than the
time taken simply to explore the tube – so strengthening the criterion in Sect.
3.2.5 to a strong inequality [59].

6
Response to Large Deformations and Flows

It became clear in the early development of the tube model that it provided a
means of calculating the response of entangled polymers to large deformations
as well as small ones [2]. Some predictions, especially in steady shear flow, lead
to strange anomalies as we shall see, but others met with surprising success. In
particular the same step-strain experiment used to determine G(t) directly in
shear is straightforward to extend to large shear strains g. In many cases of such
experiments on polymer melts both linear and branched, monodisperse and
polydisperse, the experimental strain-dependent relaxation function G(t,g) may
be written

G(t,g)=G(t)h(g) (42)

for all times t>tk, a material time constant [61]. So for the longest relaxation
times of the material, the non-linear viscoelastic response factorises into a time-
dependence identical to that of linear deformations, and a strain-dependence
h(g), which is known as the damping function. In particular, linear polymer
melts have a rather weak non-linear elasticity, in which the effective modulus
falls rapidly with strain in a universal way. In fact it was the success in accounting
for the universal damping function that drew attention to the tube model as a
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powerful simplifying tool, rather than the linear rheological response. This, as
we have seen, requires a rather subtle treatment of fluctuations to operate quan-
titatively.

The challenge within our programme is to follow up the consequences of the
tube model for the non-linear rheology of branched polymers – would such a
theoretical framework lead to any understanding of the special behaviour of, for
example, LDPE in complex flows? We build up our tools as before in the context
of linear polymers.

6.1
Retraction on Step-Strain in the Tube Model

When large non-linear deformations are made, we need to make additional as-
sumptions within the tube model on how the tube itself deforms with the bulk
strain. The simplest, and original assumptions are that:
(i) the tube contour (primitive path) deforms affinely;
(ii) the tube diameter remains unchanged;

although other assumptions are possible [62, 63] (and see below). The first may
be justified on the grounds that, by definition, the tube diameter sets the scale
below which non-affine deformation of chains dominates – this concept just
needs to extend into the nonlinear region. The main challenge to such an exten-
sion is the possible increased significance of elastic inhomogeneities at large
strains. The second assumption is less compelling, but is motivated by the ob-
servation that the local configuration of chains is not greatly different from that
at equilibrium even at large strains due to the fact that Ne>>1.

When these assumptions are made, an additional mechanism for stress-re-
laxation arises – that of retraction (see Fig. 16). When a chain is embedded ran-
domly in a deforming incompressible medium, the contour length of both chain
and tube is initially increased by the rapid strain. However, when the strain
stops, the stretched chain now supports a greater curvilinear tension at its centre
than the equilibrium tension feq still applied to its ends by their entropic explo-
ration of the surrounding entanglement network. So the chain retracts back
along the deformed tube until its curvilinear tension returns to equilibrium,
which will be achieved when it regains its equilibrium contour length. This proc-
ess happens much faster than reptation for long chains because no diffusion of

Fig. 16. Chain retraction in a tube under non-linear strain
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the centre of mass of the molecule is required. Instead the retraction dynamics
take the form of curvilinear Rouse motion (local friction on a connected linear
object) so the contour length relaxation follows the Rouse form – t–1/2 cut-off at
the Rouse time tR~tmonN2.

We now use this to calculate the stress in the melt after the retraction has oc-
curred. The deformation is described by the tensor E defined so that an arbitrary
vector v in the material is deformed affinely into the vector E.v. For example, in
simple shear of shear strain g, and in uniaxial extension of strain e, the tensor E
takes the forms

When applying Eq. (7) to calculate the stress, the length of an entanglement
strand is increased by a factor |E.u| where u is the unit vector along the strand.
This needs to be inserted inside the average over all initial orientations u. The
unit vector itself changes naturally only in direction to E.u/|E.u|. The other mod-
ification is to the concentration of entanglement strands ca. The retraction proc-
ess means that the same proportion of original entanglement strands are lost as
the length retracted, so ca is reduced along each chain by the factor <|E.u|>–1.
Note that we may pre-average because a well-entangled chain explores all orien-
tations in its tube segments.
The final result for the stress-tensor is that

ssss=kT ceq Q(E) (43)

where ceq is the equilibrium value of ca and the geometric tensor Q is defined by
the orientational averages over the unit vector u:

(44)

The averages may be written in spherical polar co-ordinates as angular integrals,
which are simple to evaluate numerically, and in some cases have analytic forms.

6.1.1
Properties of the Q-Tensor and Consequences

In the two classic viscometric deformations of simple shear and extension, the
appropriate components of Q have very different behaviour. For small shear
strains, the shear stress depends on the component Qxy, which has the linear as-
ymptotic form 4g /15. This prefactor is the origin of the constant n in the tube
potential of Sect. 3. For large strains, however, Qxy~g –1, and therefore predicts
strong shear-thinning. Physically this comes from the entanglement loss on re-
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traction and the alignment of the remaining tube segments into the plane of the
shear – away from the “x-y” direction in which they contribute maximally to the
shear stress. In extension the relevant experimental component is the difference
Qxx–Qyy. This is linear with extensional strain e at low strain, but in this geome-
try asymptotes to a constant (15/4) at high strains because segments orient into
the direction in which they contribute to the stress.

The behaviour of the Q-tensor in shear gives directly the damping function
from its definition in Eq. (42) so that h(g)=(15/4)Qxy(g)/g. This function is plot-
ted in the usual convention in Fig. 17. It is very close to results on monodisperse
entangled solutions and melts [64].

6.1.2
Damping Functions for Branched Polymers

The process of chain retraction can be applied to more complex topologies of
entangled polymers under the same assumptions discussed for linear polymers

Fig. 17. Damping functions in shear from the tube model for linear polymers (lowest curve)
and various branched architectures. In the cases of comb and tree, the lower curves give the
case of the structure with four levels of branching, the upper the limit of large structures
hatched area covers published results on LDPE
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[65]. In the case of star polymers retraction may proceed just as for linear chains,
and the damping function is expected to be of the universal “Doi-Edwards” type.
This has been confirmed experimentally [61]. However for polymers with high-
er levels of branching the situation is different. In spite of being stretched along
its contour by a large bulk strain, a segment one level further into a branched
molecule than the outermost arms cannot in general retract, because this would
mean drawing those outer segments into its tube. It may only do this when its
tension exceeds the sum of the (equilibrium) tensions in the impeding arms – a
criterion only met beyond a critical strain. This strain will be proportional to the
number of arms attached at the outermost branch point, because of the Hookean
elastic response of the chain's entropic tension. This process is illustrated in
Fig. 18 for a polymer composed of two three-arm stars joined by a long linear
“cross-bar”. When the tension in the cross-bar is increased via a bulk strain to
the sum of the equilibrium tensions of the dangling arms, and not before, the
arm configuration may be partially collapsed and the branch points withdrawn
into the tube originally occupied by the cross-bar.

In a manner akin to the hierarchical relaxations in a highly branched poly-
mer, this new form of retraction via “branch point withdrawal” also happens hi-

Fig. 18a–c. Tube-model diagrams of the low-frequency model for the “pom-pom” architec-
ture: a the unstretched molecule; b under deformation such that the cross-bar has been
stretched by a factor less than the number of arms; c under deformation such that the back-
bone has been stretched by a factor greater than the number of arms, initiating “branch-
point-withdrawal”
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erarchically, though as a function of strain rather than time. A segment two lev-
els into the molecule may only retract when its tension exceeds that of all the first
level segments attached to it, and so on. As a consequence of this balance of en-
tropic tensions, the strain at which any segment withdraws its outermost branch
point (and so the functional form it contributes to the strain dependence) just
depends on the number of free ends at the edge of the tree it is connected to that
withdraws first (we recall that any segment in a branched polymer is connected
to two trees). This statistic (of the lesser number of free ends of the two trees)
has been termed the “priority” distribution [65], in analogy with the “seniority”
distribution which controls the relaxation times. In general a branched molecule
has different seniority and priority distributions – a knowledge of the former is
required to predict the linear stress-relaxation function, of the latter to predict
the non-linear strain response. A general formula giving the damping function
in terms of the priority distribution of an arbitrary branched melt is given in
[65].

Predictions of the damping function (defined now as the effective modulus
after all rapid (Rouse) retractions have occurred) for both Cayley tree and comb
architectures are shown alongside the Doi-Edwards function in Fig. 17. It is im-
mediately apparent that the damping functions are only “universal” for a partic-
ular topology of polymer, and may eventually be useful in characterising
branched melts. Results on LDPE are also shown, indicating that the structure is
more likely to be tree-like than comb-like within this picture. Though very ap-
pealing, this is probably pushing the tube model as far as one ought to, if not a
little further.

An important, and startling, prediction is that for most monodisperse
branched structures, time-strain factorability will be lost. Hence the careful def-
inition of the damping function we adopted above. As we already saw for the re-
lated H-polymer structure, a melt of the model polymer in Fig. 18 will behave as
a diluted and slowed down system of entangled linear chains at times much
longer than the longest relaxation time of the arms. So the non-linear response
in step strain at these timescales must be described by the (much more thinning)
Doi-Edwards damping function! The strain response exhibits a higher effective
modulus at short times than at long times in nonlinear step strain.

Very recent experiments on H-polymer melts have confirmed this expecta-
tion [46], together with a subtle and interesting feature: the stretch relaxation
time depends itself rather strongly on strain. The higher the strain, the sooner is
the transition from a rubbery to a Doi-Edwards strain thinning. For high strains
beyond the level at which branch point withdrawal occurs this is not difficult to
understand as the dangling segments which control the effective drag on the
branch points are smaller. However, even at smaller strains the branch point will
tend to withdraw the dangling arms by up to one entanglement length. This is
not a minor perturbation to the effective drag on the branch point because of its
exponential dependence on the dangling primitive path length (the underlying
dynamics are those of an entangled star arm). This partial retraction is however
the sort of assumption that requires more than rheological measurement to con-
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firm satisfactorily. In this case, small angle neutron scattering on quenched
strained samples was able to contribute direct structural evidence that small
translational rearrangements of branch points do occur for all strains [46].

Given the clear observation of non-factorable G(t,g) in model monodisperse
branched polymers, the puzzle which then arises is to explain why the highly
branched LDPE does exhibit time-strain factorability. Experiments and calcula-
tions on branched melts with controlled polydispersity will be the next stage,
since it is known that summing the response of intrinsically-nonfactorable rhe-
ological models with a sufficiently broad range of relaxation times can lead to an
overall response that is indistinguishable from a factorable one [66]. This would
explain the factorable behaviour of LDPE.

6.1.3
Strain Dependence of the Tube

It is of interest to think about relaxing the assumptions (i) and particularly (ii)
introduced at the beginning of Sect. 6.1, although hard experimental tests for
specific assumptions of the deformation of the tube constraint itself can never be
confined to rheology alone, but will involve at least careful analysis of neutron-
scattering experiments [46, 63]. Not only might the tube diameter depend on the
local strain, the localising field described by the tube may well take on an anisot-
ropy consistent with the symmetry of the bulk strain. For discussions of how
tube variables deform with strain see [67, 68]

Reasons have been advanced for both an increase and a decrease of the tube
diameter with strain. A justification of the former view might be the retraction
process itself [38]. If it acts in a similar way to the dynamic dilution and the ef-
fective concentration of entanglement network follows the retraction then
ceff~<|E.u|>–1 so that a~<çE.uç>1/2. On the other hand one might guess that at
large strains the tube deforms at constant tube volume La2. The tube length must
increase as <çE.uç>, so from this effect a~<çE.uç>–1/2. Indeed, Marrucci has re-
cently proposed that both these effects exist and remain unnoticed in step strain
because they cancel [69]! Of course this is far from idle speculation because there
is another situation in which such effects would have important consequences.
This is in conditions of continuous deformation, to which we now turn.

6.2
Constitutive Equations for Continuous Flow

The step-strain experiments discussed above furnish the simplest example of a
strong flow. Many other flows are of experimental importance: transient and
steady shear, transient extensional flow and reversing step strains, to give a few
examples. Indeed the development of phenomenological constitutive equations
to systematise the wealth of behaviour of polymeric liquids in general flows has
been something of an industry over the past 40 years [9]. It is important to note
that it is not possible to derive a constitutive equation from the tube model in
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closed form without making rather uncontrolled mathematical assumptions –
indeed this suggests that the space of non-Newtonian constitutive behaviour is
rather larger than that spanned by compact sets of differential or integral equa-
tions. However, the behaviour of the tube model for linear polymers in steady
shear flow has recently become very important in the study of “living” polymers
(whose chains continually break and reform in dynamic equilibrium), and in
particular wormlike surfactant micelles [70, 71]. A further challenging area is in
the special elongational behaviour of highly branched polymers [3].

6.2.1
Linear Polymers in Continuous Flow

The essential picture of stress arising from occupied and deformed tube segments
carries over naturally to the case of continuous flow. Tube segments are born at
chain ends, are carried by diffusion along the chain during which time they are
stretched and oriented, and die when they are passed again by a chain end. Thus
to calculate the stress a knowledge of the survival probability function p(s,t) just
as in Eq. (11) is required in the form of p(s,t,t'), the probability that a segment
born at time t' still exists at time t at contour co-ordinate s along the occupying
chain. Equation (9) for p is now modified by the convection of the chain past the
tube segment by the flow as well as by the curvilinear diffusion. We assume that
the flow rates are less than the inverse retraction time so that the chain length is
constant. If v(s) is the relative velocity of tube and chain (due to the extension of
the tube by the flow past the constant-length chain), then Eq. (9) becomes

(45)

where v(s,t) arises from the extension rates of all the segments from the centre
of the chain to the point s. If any segment has an orientation u then its local rate
of increase in length if deformed affinely in the flow is K:uu where K is the veloc-
ity gradient tensor. So v(s,t) in Eq. (45) is itself given by

(46)

The probability distribution f(u,s,t) for the local segment distribution is relat-
ed to the contribution from the ensemble of segments at s to the total stress. It is
calculated self-consistently from the survival probability function by letting the
surviving tube segments be deformed by the total deformation tensor over their
lifetimes, E(t,t'):

(47)
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The stress tensor can now be written as

(48)

This full set of self-consistent equations is clearly very difficult to solve, even
numerically. However, good approximations of closed integral type have been
proposed. These essentially ignore the s-dependence of the survival and orien-
tation functions, which makes them a physically appealing approach in the case
of wormlike surfactants [71, 72]. For ordinary monodisperse polymers the fol-
lowing approximate integral constitutive equation results:

(49)

where mDE(t) is the Doi-Edwards relaxation function of Eq. (12). The remarkable
feature shared by this constitutive set and its approximations is that the stress in
steady shear is non-monotonic. This has been used to explore the unstable and
inhomogenous flows in both Poiseuille (“spurt effect”) [73] and Couette (“shear-
banding”) [71, 74] flows. The non-monotonic behaviour in ordinary polymer
melts is still debated, but it now seems clear that this phenomenon does exist in
entangled solutions of living polymers, thanks to flow-field visualisation by
NMR-imaging [75] and birefringence [76]. The consequences of such a consti-
tutive instability for an apparent multiplicity of possible bulk flow fields under
the same imposed conditions still represents a severe current challenge to theo-
ry [77].

If the ideas of Marrucci [69] are correct and the non-monotonic predictions
of the simple Doi-Edwards theory need to be modified in the case of polymer
melts (for a recent development see [78]), then an explanation will be required
for the apparent difference at high shear rates between melts and wormlike mi-
celle solutions. There is also evidence that ordinary entangled polymer solutions
do exhibit non-monotonic shear-stress behaviour [79]. As in the field of linear
deformations, it may be that a study of the apparently more complex branched
polymers in strong flows may shed light on their deceptively simple linear cous-
ins.

6.2.2
Constitutive Equations for Branched Polymer Melts

A current challenge for molecular rheology is the continuous flow of highly
branched polymers [3, 66]. The central issue is that in both uniaxial and planar
extensional flows, LDPE is strain-hardening [12] (stress grows faster than line-
arly with strain over some range of strain and time in a time-dependent flow),
while retaining a softening characteristic in shear. It has proved impossible to fit
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simultaneously all the flow behaviour of LDPE with existing integral-type phe-
nomenological constitutive equations (of similar form to Eq. 49 above), even
qualitatively [80]. This is because such equations rely on employing restrictive
functionals of the flow history to calculate the stress, considered as the primary
dynamic variable. Although this approach guarantees frame-invariance by mak-
ing their kernel functions depend only on invariants of the strain history; planar
extension and shear possess the same invariant structure arising from the 2-di-
mensionality of the flows. However, the insights of the special molecular features
of long-chain-branched polymers under high strain, and in particular the de-
layed retraction and branch-point withdrawal processes, make a molecular ap-
proach doubly appealing.

Very recently, the continuous flow theory of this section and the theory for
branched molecules in Sect. 4 have been combined in a constitutive theory for a
class of model branched polymers related to the H-structure, but now with an
arbitrary number of arms, q, attached at each end of a cross-bar [81] (Fig. 18).
For a wide range of flow rates, the cross-bar may be oriented and stretched, while
the dangling arms remain isotropic due to their much faster relaxation dynam-
ics. Thus important contributions to the stress arise only from the cross-bars.
However the arms play an important role: when the cross-bar becomes highly
stretched as in an extensional flow, branch-point withdrawal diminishes the size
of the frictional “blob” of dangling arms, which in turn reduces very rapidly the
effective frictional drag of the branch points. The result, after some simplifica-
tion, is that the average stretch of the cross-bar, l(t), and its averaged orienta-
tion-tensor, S(t), each follow coupled dynamic equations, with a characteristic
relaxation time for each: ts and tb respectively [45]. These may be thought-of as
the Rouse and reptation time for the cross-bars as renormalised linear poly-
mers.

(50)

The relaxation times vary with time itself only when the backbone becomes
full-stretched (l=q), and then in such a way as to maintain this maximum
stretch until the flow no longer tends to stretch the molecules further. The his-
tory of relaxation time tb needs to be taken into account in the integral part of
the dynamic equations, just as for wormlike micelles [72]. The stress itself is a
function of both molecular variables:

ssss(t) = (15/4)G0 fb
2  l2(t) S(t) (51)

with corrections arising from the configuration of the dangling arms in a more
refined version [81]. In the set of Eqs. (50) and (51) we have the pleasing struc-
ture of a stress calculated at each time from a number of molecular variables,
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each following their own (coupled) dynamics. This feature gives such a consti-
tutive formulation the same qualitative features of extensional and shear flows
of LDPE (see Fig. 19), and succeeds in combining extreme shear-softening in
shear together with large strain hardening in extension. Moreover the three im-
portant geometries of flow are correctly ordered, with both planar and uniaxial
extension exhibiting similar behaviour, while shear belongs with the data in a
special class of its own.

How has the molecular model managed to escape from the straightjacket of
frame-invariance which seemed to force the most general phenomenologies to
predict similar responses in planar extension and shear? The answer lies in the
separation of timescales: the molecular picture does not see the stress itself as a
fundamental variable, but reveals it as the natural product of a scalar and tensor
(the latter of unit trace) with the physical interpretations of segmental stretch
and orientation respectively. It is then possible to endow these two variable with
different relaxation times; the tradition in phenomenological theories has been
to treat the stress tensor as a whole, possessing a single relaxation time. Moreo-
ver, it is the entangled nature of the high-priority segments which provides the

Fig. 19. a Predicted “startup-flow” in extension and shear for the constitutive equation de-
rived for a “pom-pom” polymer with q=5. Stress divided by the strain-rate is plotted (so
that early time response is rate-independent) against time after initiation of the flow for a
range of dimensionless rates from 0.001 to 3. Both axes are logarithmic
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separation in timescales. When the cross-bar of the model molecule is only one
entanglement long, ts and tb become equal, and the model is indistinguishable
from simple “elastic dumbbell” [9] theories, except for the existence of a maxi-
mum permitted stretch. However, as the degree of entanglement increases, so
does the ratio tb/ts since the former arises from reptation – a diffusive motion in
the tube, and the latter from forced drag, a Rouse motion. More complex topol-
ogies of branched polymer will have the orientation of “deep” segments (of high
priority) controlled by activated diffusion like star-arms, which will lead to an
even sharper separation in timescales as a function of degree of entanglement.

Initial indications are that a multi-mode version of Eqs. (50) and (51) can be
useful at a quantitative level in modelling an extensively-investigated LDPE for
all geometries of flow [82]. Matching only the linear viscoelastic relaxation spec-
trum, and adding a segment priority distribution consistent with that derived

Fig. 19. b Experimental results in startup flow in shear and extension on branched LDPE
from Meissner [3]. The qualitative nature of the response in the two flows is remarkably
similar to the pom-pom model in (a)
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theoretically from a random branching model [65] (which gives f(m)~m–2) al-
ready gets the shape of the time-dependent hardening in extension correct over
extension rates which vary over three orders of magnitude. As the segment pri-
ority increases, so the ratio of timescales for stretch and orientation approaches
unity. This is also anticipated physically as a consequence of the greater dynamic
dilution of the slowest relaxing segments – they possess a higher effective value
of Me at the timescales of their own relaxation than are the faster segments. Nat-
urally, there is as good an agreement with the data in planar as in uniaxial flows
but an unassured surprise is that the entire field of transient shear data is cor-

Fig. 20a,b. Transient data in: a extension; b shear on LDPE from [81] modelled with a multi-
mode version of the “pom-pom” constitutive equation. The linear modes (of weights and
relaxation times tb) have been “decorated” with the structure of pom-pom elements (add-
ing values of ts and q to each mode)
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rectly predicted by such a model after all choice of free parameters has been ex-
hausted (see Fig. 20). It is too early to say how far such a quantitative programme
can be taken, or whether a more nuanced theory of coupled interactions be-
tween segments at different priorities within the same molecule will be essential.

6.2.3
Molecular Constitutive Equations for Polymer Melts in Viscoelastic Flow Solvers

The constitutive behaviour discussed above in both weak and strong flows is
nonetheless restricted to “simple flows” in which the deformation rate tensor is
spatially uniform. Many important rheological applications of polymer melts of
course arise in flows that are far from simple: converging flows into dies, helical
flows in extruders, free-surface flows as in fibre or film production. A molecular
theory for rheological response is a necessary, but not sufficient, tool for predict-
ing and controlling the effect of molecular variables on complex flow phenomena.
A good example is found in the famous vortex growth in branched polymer melts
seen in Fig. 1. Another level of calculation is required, that takes the local physics
embodied in a molecular constitutive equation and computes the consequences
under the additional imposition of conservation of mass and momentum togeth-
er with the boundary conditions of a complex flow. This is not the place to review
the great range of methods which have been used to attack this challenging prob-
lem of non-Newtonian fluid mechanics, particularly as most of this work has
been directed to the solution of phenomenological models (but see e.g. [83]).
However, there have recently been a number of considerable advances in a partic-
ularly appropriate type of flow solver for molecular approaches, namely Lagrang-
ian solvers [84–86]. Rather than discretise the spatial domain by a fixed grid, the
lattice of finite elements moves and deforms with the flow. Careful application of
this technique seems to permit the attainment of high deformation rates (in
terms of the fluid relaxation time) without numerical instability, and compares
well with fixed-grid methods. A great advantage is that its data structure is easily
adapted to carry physical “hidden” variables (such as the orientation and stretch
of the pom-pom molecules) on the co-moving fluid elements themselves.

Of course it would be desirable to avoid all mathematical coarse-graining of a
constitutive equation in such an approach, carrying tiny Brownian simulations of
actual polymer molecules along with the flow. However this is numerically pro-
hibitive in computer time in the case of polymer melts. Some remarkable progress
has been made in the case of model polymer solutions [87], where the molecules
can be suitably sparsely spread in the flow. Conversely, large simulations have
been made of ensembles of linear entangled polymers [88], but these, while im-
pressive, have barely reached fractions of the reptation time of their model poly-
mers. While providing useful numerical calculations of the properties of the effec-
tive entanglement tubes, the regime of viscoelastic flow is still quite out of reach.

So in the world of polymer melts, the intermediary of a constitutive equation,
or equation set, albeit molecularly derived, would seem unavoidable at present.
The success of the branched-polymer model discussed above would suggest that
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the pom-pom Eqs. (50) and (51), with their physical branching parameter q,
would be good candidates for an attempt at contraction flow computations in
Lagrangian solvers. This has been attempted very recently, and has indeed dis-
covered a strong growth of recirculating vortices in a contraction flow [89]. Fig-
ure 21 shows streamlines and a representation of the spatial field of molecular
stretch, l, for a 4:1 contraction flow of a five-armed “pom-pom” melt. Not only
do we see vortex growth, but it becomes apparent that the high extensional
hardening of the stretching molecular cross-bars is responsible for it. Interest-

Fig. 21a–d. Flow from startup into a 4:1 contraction computed for the “pom-pom” model
with fixed total and cross-bar molecular weight and Weissenberg number (dimensionless
deformation rate) of 3[(a) and (b)] and 8 [(c) and (d)]. (a) and (c) show (colour coded) the
level of dimensionless stretch of the pom-pom cross-bar, l. (b) and (c) show the respective
streamlines. Note the “spur” of preoriented material joining the wall to the funnel and the
reduction of the corner vortex at high flow rates when extension thinning sets in. (Compu-
tations courtesy of Dr. T. M. Nicholson)
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ing transient overshoots in stretch are also predicted, as are initially counter-in-
tuitive predictions for the off-axis position of the maximum molecular stretch-
es. The latter phenomenon has actually been seen in birefringence measure-
ments in flowing polymer melts [90]. Via the molecular model we see that it
arises from the pre-orientation of molecules near the wall by the shear flow
there, which predisposes them to very rapid stretching by the extensional flow
into the contraction. This combination of steady shear and extension is more ef-
fective at stretching the cross-bar segments than the centreline history of benign
convection followed by brief but rapid extension. Clearly there is a need at this
point to apply hard tests to such calculations in complex flows in the same way
that has been possible in simple flows. The constraint here is really the double
one of restrictions in the quantities of well-characterised model materials vs the
engineering challenge of miniaturising flow devices. Progress on both fronts
may soon lead to a capability to perform some remarkable experiments of this
type.

7
Conclusions

This is probably a good point to conclude our account of this story to date. We
have made one iteration of a loop in the qualitative comparison of Figs. 1 and 20.
Clearly there is a long way to go before we can apply these tools and ideas to a
stochastically-branched and polydisperse polymer melt. However, the molecu-
lar approach to the dynamics of entangled polymers outlined here has proved
remarkably fruitful, and has accounted for a very wide range of phenomena,
some initially very puzzling. The central role of molecular topology continues to
grow in its appeal. There are still many open challenges of which a few might be
the following questions.
(i) Is the prediction of a stress-maximum in the shear flow of linear (and some

branched) polymers pathological in the case of melts, and if so what is the
correct molecular physics that is missing? What is the role of tube deforma-
tion?

(ii) Are our conjectures about the validity of dynamic dilution for constraint re-
lease valid, and how should they generalise to non-linear flows?

(iii) Is the extension to non-linear flows of branched polymers outlined here
valid and what experimental tests of it are the best to devise? Can the level
of quantitative success enjoyed by the tube model in linear deformation be
extended to highly non-linear deformations?

Finally, there lies the obvious challenge of employing these ideas in the design
of future commercial polymers. If this is at all successful in the future, and it will
only be so in an atmosphere of open partnership of industrial and academic sci-
entists and engineers, it will have proved a very satisfying and complex example
of the interaction of pure and applied science, as well as of physics, chemistry
and engineering.
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