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Chuanfu Luo,*,†,‡ Martin Kröger,§ and Jens-Uwe Sommer†

†Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
‡Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
§Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland

ABSTRACT: We carried out molecular dynamics simulations to
study the crystallization of long polymers in a concentrated
solution made by an explicit solvent of short chains. The weight-
averaged entanglement length in the concentrated solution is
found to exhibit power-law behavior with respect to the polymer
volume fraction. The crystalline stem length obtained by
quenching the solutions below melting temperature displays a
linear relation with the entanglement length in the homogeneous
solution above the crystallization temperature. Chain folding
numbers are found to be very close to those in pure melts at
different initial temperatures, and they tend to moderately decrease with increasing concentration of the long polymers. While
our results are directly obtained from a coarse-grained model, they seem to suggest that the topological restriction of
entanglements is a universal property to control the thickness selection during polymer crystallization.

■ INTRODUCTION

More than 60% of industrial plastics are in the semicrystalline
state, and the functional properties of these materials are
directly related to their crystalline morphology.1,2 The building
blocks of crystalline morphologies are nanometer thin lamellae
formed by more or less regularly folded chains which
themselves can participate in several lamellae. Even at high
supercooling, amorphous parts coexist with crystalline lamellae.
This so-called semicrystalline state is important for the
toughness and flexibility of polymer materials. Polymer
crystallization processes take place under nonequilibrated
conditions accompanied by transitions between metastable
states.3 The complete understanding of polymer crystallization
is a still unsolved problem.2,4,5 One of the fundamental
questions concerning polymer crystallization is what controls
the lamellar thickness. The classical Lauritzen−Hoffman (LH)
theory6−8 based on concepts of secondary nucleation was
challenged with respect to recent experiments on early stages of
polymer crystallization.9 Several alternative models have been
proposed to capture different aspects of the polymer
crystallization.9−13 Computer simulations such as Monte
Carlo (MC) and molecular dynamics (MD) have also provided
insights into a further understanding of this process and to the
issue of lamellar thickness.10,14−39

Upon adding solvents, the crystallization behavior of polymer
chains can be changed, and the morphology of crystalline state
can be affected drastically. For example, polymer single crystals
can be obtained by slow growth from dilute solutions1 as
compared to the semicrystalline state one finds in melts.
Generally, polymers crystallize slower from solutions with
enhanced crystalline properties reflected by larger lamellar

thickness. This effect is usually interpreted by a growth rate that
is sensitive to the degree of undercooling and thus slower in
solution.1,4,5,8,11 As shown in some experimental studies40−44

and in our recent works,45−47 entanglements in the melt state
play an essential role for the selection of morphology and
crystal thickness. This is in contrast to solutions, where polymer
chains are sparsely distributed and the effective interactions
between chains are weak. The degree of entanglement of
polymer chains in a dilute solution is very low, and the
topological restriction of entanglements to the crystallization
might be considered as a minor effect. For the intermediate
case of concentrated solutions, polymer chains are still highly
entangled, and the effect of entanglements cannot be ignored.
Even for crystallization from dilute solutions, the concentration
of polymer chains is enhanced in the surface regions close to
the preformed crystals, and the entanglement effect should also
be considered. It is therefore interesting to study the effect of
entanglements on the crystallization in concentrated solutions
under variation of the polymer volume fraction. Using a
polymer-like solvent, dilution allows us to vary the entangle-
ment density without changing other parameters of the
polymer system.
We begin by introducing the model and its implementation

details, which includes a description and test of the
equilibration protocol. Next, we present simulation results of
concentrated polymer solutions. We calculate the entanglement
lengths at different polymer volume fractions and discuss the
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entanglement-related crystallization process. We are going to
provide another evidence for a simple and universal concept to
understand polymer crystallization that involves the topological
restriction of entanglements.

■ MODEL AND SIMULATION DETAILS

The simulation of polymer crystallization requires considering a
coarse-grained representation of the components. The
computational cost is otherwise prohibitive, as the crystal-
lization process is slow, particularly in the presence of an
explicit solvent. As shown in previous works by two of
us,45,46,48−50 the coarse-grained poly(vinyl alcohol) (CG-PVA)
model proposed by Meyer and Müller-Plathe24 is very suitable
to study polymer crystallization. For the details of the model we
refer the reader to previous works.24,48,50 Reduced units are
used in simulations, but we report the results with real units in
the following discussions. For the CG-PVA model, the reduced
length unit corresponds to the effective diameter (0.52 nm) of
one PVA monomer, and the bond length is b0 = 0.5 (0.26 nm).
The monomer mass m and Boltzmann constant kB are both
unity in reduced units. The reduced temperature T = 1
corresponds to 550 K. Because of the simplification of coarse-
graining, the dynamics in coarse-grained models is accelerated,
particularly for short chains.51 It was found previously that the
reduced time unit corresponds to ≈3.5 ps by comparing the
effective Rouse time of N = 20. The accelerated dynamics of

short chains may slightly affect the crystallization rate but not
the entanglement length or lamellar thickness.
All MD simulations were carried out using the LAMMPS52

package with our patch code for the CG-PVA model. The
Verlet algorithm is used with a time step of 0.01 (≈35 fs) to
integrate Newton’s equations of particle motions. The
temperature is controlled by a Nose−́Hoover thermostat with
a damp time of 100 MD steps (≈3.5 ps). The pressure is
controlled at 1 atm by a Berendsen barostat with a damp time
of 1000 MD steps. The studied polymer system consists of 100
long chains with a polymerization degree N = 1000. Short
chains with N = 5 monomers per chain are used to model the
explicit solvent. Both types of polymers are made of identical
monomers. For concentrated conditions, different volume
fractions of long chains are studied.
A primitive path analysis (PPA), following Everaers et al.,53

and its geometric analogue, the Z1 method,54 are used to
calculate the primitive path network and the entanglement
states of our simulated systems. Both PPA and Z1 methods
operate on snapshots extracted from the MD trajectories and
return lengths of the primitive path, and also entanglement
kinks for the case of Z1, via annealing or geometric
minimization of the sum of primitive path lengths. A primitive
path shares its chain ends with the polymer, and primitive paths
cannot cross each other. As the conformations of polymer
chains are no longer Gaussian in melts near crystallization
temperature,45 we use the directly measured number of

Figure 1. Conformational properties of the long polymer chains during equilibration for different polymer weight fractions (w). (a) Autocorrelation
function Xee(t) of end-to-end vectors for the long chains. (b) Mean-square gyration radius ⟨Rg

2(t)⟩. (c) Ratio of mean-square end-to-end distance
⟨Ree

2(t)⟩ over the mean-square gyration radius. (d) Weight-averaged entanglement length Ne*(t) calculated by PPA and Z1 methods. Different
weight fractions w are marked by identical colors in all panels, as described in the legend of (a).
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monomers in a straight primitive path segment between two
adjacent kinks55 as the entanglement “length”. All monomers in
the same straight segment share the same value of
entanglement length, denoted as Nei for the ith monomer.

We will use weight-averaged values (Ne = ∑i=1
N Nei/N) for the

whole system in our following discussions. The effect of fixed
chain ends to the calculated entanglement length can be
corrected, e.g., by54,56

* =
−

N
N

N N/ 1e
e (1)

where Ne* is the normalized entanglement length (length-
independent), and we took the approximation of N/(N − 1) ≃
1 when N ≫ 1.
We are going to investigate systems with volume fractions

(ϕ) ranging from ϕ = 1.0 (pure melt) to ϕ = 0.469. Details will
be given in next section. To study the crystallization behavior,
we define the instantaneous stem length d by the number of
successive trans−trans monomers along the long chain at a
given time.50 The trans−trans state is determined by the
bending angle θ formed by a monomer with its two adjacent
monomers, and not by a dihedral angle, due to the peculiar

bending potential as part of the CG-PVA model that exhibits
three local minima. A monomer is considered to be in a trans−
trans state if its corresponding angle satisfies θ ≥ 150°. A
monomer is considered as crystallized if d ≥ 15.50 Both the
criteria of θ ≥ 150° and d ≥ 15 are obtained from histograms of
statistical results at various temperatures from T = 0.5−1.0 and
work fairly well compared with other methods. We do not find
qualitative differences by varying the threshold over the range
of d = 13−18.50 Every monomer i thus carries its value of the
corresponding stem length, di. The weight-averaged value, d =
∑idi/N, will be used in the following discussion. The
crystallinity of the whole system, denoted by χ, is then
obtained directly from the fraction of long chain monomers
belonging to crystalline stems, i.e., by the probability that di
exceeds 15. We note that this crystallization criterion works
well for the quantification of the crystalline state but is
unsuitable for the characterization of the early stage of
nucleation where d is increasing to 15.

■ GENERATION OF START CONFIGURATIONS

The initial configuration is taken from a pure melt of 100 long
chains (N = 1000) at T = 495 K after a relaxation of 3.5 μs (108

MD steps) at 1 atm. We randomly insert different amounts of

Figure 2. Equilibrium chain properties at different weight fractions w at T = 495 K. (a) Average specific volume (v) versus weight fraction w of the
high molecular weight component. Here, two horizontal dashed lines (v5 and v1000) denote the values for the specific bead volumes of pure solvent
(N = 5) and pure long chains (N = 1000). The red solid dots are the simulation data for the average specific volume v, and the blue dashed curve is
the corresponding ideal result for w-independent specific volumes of the components, v = v5 + (v1000 − v5)w. (b) Mean-square gyration radius Rg

2 of
the long chains versus volume fraction ϕ, employing eq 2. (c) Ratio of mean-square end-to-end distance Ree

2 over square gyration radius versus ϕ.
(d) Weight-averaged entanglement length Ne* calculated by PPA (upper) and Z1 (lower panel) versus ϕ. The red solid dots are the calculated values,
and the blue dashed curves are the fitting functions of Ne*(1)ϕ

−α with α = 1.25 and 1.12, respectively, where Ne*(1) = 31.1 ± 1.1 (PPA) and Ne*(1) =
43.3 ± 1.4 (Z1) are the entanglement lengths of the pure long chain melt (ϕ = 1) at T = 495 K.
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solvent composed of short chains (N = 5) into the initial
configuration and then relax the systems to obtain equilibrated
solutions at the fixed pressure of 1 atm. As the monomer beads
of the short chains are identical to those of long chains, the
amount of solvent, s, can be characterized by the number of
solvent beads divided by the number of solute beads. The
weight fraction of the high molecular weight component is w =
1/(1 + s). During the insertion procedure, we steadily increase s
by randomly inserting 200 short chains and then run a short
relaxation of 3.5 ps (105 MD steps) with a reduced time step of
0.035 fs to remove overlaps of some monomers and to perform
a slight enlargement of the simulation box.
Having added short chains to the melt, ten selected initial

configurations were chosen (s = 0.1, 0.2, ..., 1.0 corresponding
to weight fractions w = 10/11, 5/6, ..., 1/2) to do relaxation of
2.8 μs (8 × 107 MD steps). We show the properties of three
representative systems with w = 1 (s = 0), 2/3 (s = 0.5), and 1/
2 (s = 1.0) during relaxation in Figure 1. In Figure 1a, we
display the autocorrelation function of end-to-end vectors
(Xee(t)) of the long chains, which is defined by Xee(t) =
⟨Ree(τ)·Ree(τ + t)⟩τ/⟨Ree(τ) Ree(τ + t)⟩τ, where Ree(t) denotes
an end-to-end vector at time t, Ree(t) = |Ree(t)| is its norm, and
the symbol ⟨ ⟩τ stands for average over all chains and all time
offsets τ. We can see that Xee(t) decreases to about 0.3 after
2800 ns and that the relaxation is slightly faster for higher
diluted solutions.
The short chains act as a good solvent, and the

configurations of long chains are swollen during the steady
inserting of short chains.57,58 The mean-square gyration radius
⟨Rg

2(t)⟩ and the ratio of mean-square end-to-end distance over
square gyration radius ⟨Ree

2(t)⟩/⟨Rg
2(t)⟩ of long chains are

shown in Figure 1b,c. From Figure 1b, we can see that ⟨Rg
2(t)⟩

stabilizes after about 1400 ns. The ratios of ⟨Ree
2(t)⟩/⟨Rg

2(t)⟩
are slightly above 6 (of ideal Gaussian chain conformations), as
shown in Figure 1c. We note that the gyration radius is smaller
than the half of box size to avoid finite size effects.
The relaxation of long chains is very slow and a small change

of ⟨Rg
2(t)⟩ does not necessarily signal an equilibrated state.

Therefore, we calculated the entanglement lengths to test the
equilibration of all the solutions. The weight-averaged
entanglement lengths Ne*(t) during the relaxation are shown
in Figure 1d, by both PPA and Z1 methods. The relaxation of
Ne*(t) is slower than that of both ⟨Rg

2(t)⟩ and ⟨Ree
2(t)⟩/

⟨Rg
2(t)⟩. The values of Ne* calculated by PPA or Z1 methods

can be compared with experimental measurements. From
literature we only found an estimated value of Ne* ≈ 85 for
aqueous PVA solutions,59 in rough agreement with our Ne*
values. For solutions, the Ne*(t) seems to stabilize slower. The
reason for this might be that the initial states generated by
randomly inserting short chains deviate more from their
equilibrium ones. From Figure 1d, we can see that the systems
are close to their equilibrated states after 2100 ns for all weight
fractions studied, as also the Ne*(t) values stabilize after that
time. It is important to note that these relaxation times
represent both certain relaxation of the mixture and the
distance of our start configurations from an equilibrium state.

■ RESULTS AND DISCUSSION
Results are obtained using the equilibrated start configurations,
and averages are sampled during subsequent MD simulations
for a duration of 2100−2800 ns at T = 495 K. Long chain
conformational properties at different polymer weight fractions
are presented in Figure 2. The system volume decreases with

increasing w, and the average specific monomer volume (v) can
be extracted from the simulation by the total volume over the
total number of monomers (red bullets in Figure 2a). Because
of end effects, the specific monomer volumes are v1000 =
0.064 96 and v5 = 0.073 40 nm3, for the pure long and short
chains, respectively. Here, v1000 and v5 are calculated from
simulations of long chains (pure melt) and short chains (pure
solvent) at T = 495 K and a constant pressure of 1 atm; see the
two dashed horizontal lines shown in Figure 2a. The blue
dashed line in Figure 2a shows the average specific volume v5 +
(v1000 − v5) w that corresponds to the ideal situation, where the
specific bead volumes v5 and v1000 of the pure phases are
preserved in the mixture. Accordingly, the volume fraction of
the long chains (ϕ) can be expressed in terms of the weight
fraction:

ϕ = ≈
−

v
v

w
w

w
7.7

8.7
1000

(2)

The investigated volume fractions range from ϕ = 1.0 (pure
melt) to ϕ = 0.469 (w = 0.5). In the remainder of this article we
will use ϕ instead of w to characterize the mixture, as most
physical quantities are more closely related to ϕ.
Equilibrium values for Rg

2 and Ree
2/Rg

2 versus ϕ are shown in
Figure 2b,c, where Rg

2 and Ree
2 are time-averaged mean-square

quantities. While the long chains are swollen, their
conformations remain nearly Gaussian as the values of Ree

2/
Rg

2 almost do not change with ϕ; they are all only slightly
above the 6 of ideal Gaussian chains.
In general, the entanglement length in polymer solutions can

be written as60

ϕ ϕ* = * α−N N( ) (1)e e (3)

where Ne*(1) denotes the entanglement length of the pure melt
and the dilution exponent, α, is a constant. There is no
consensus about the exact value of α in the literature; its value
seems to depend on the model of data analysis, the architecture
of the polymers, and also the definition of entanglements.60−62

The blob model of de Gennes suggests a range of α values,
from 1.31 for good solvents to 2.0 for Θ solvents. The Colby−
Rubinstein conjecture yields α = 4/3 = 1.33 for Θ solvents.60,63

For concentrated solutions, the predicted values vary from 1 to
4/3 and experimental values of α vary from 1 to 1.7.60 For
example, the PS/OS-2k concentrated solutions indicate α ≃
1,61 while the scaling of PBD/PhO concentrated solutions is
captured by α ≈ 1.29.60

Figure 2d shows the weight-averaged entanglement lengths
at different ϕ via PPA (upper) and Z1 (lower panel). From the
fitting curves, we obtain the dilution exponent value as α = 1.25
for PPA and α = 1.12 for Z1; both values are within the scope
of 1 and 4/3. Actually, the volume fractions ϕ in our cases are
in concentrated regime and the Colby−Rubinstein conjecture
should theoretically work and give α = 1.33,60 and thus Ne* ≈
80 ± 3 (PPA) and Ne* ≈ 101 ± 3 (Z1) for the smallest ϕ
considered here. Our fitted exponents can thus not rule out this
conjecture. Moreover, the chain conformations slightly deviate
from ideal Gaussian as shown in Figure 2, which may affect the
precise value of α.
We carried out simulations of isothermal crystallization by

instantaneous cooling systems to target quench temperatures,
denoted by Tq. As shown in our previous work, the apparent
crystallization temperature of pure CG-PVA long chain melts
during continuous cooling is about Tc = 429−434 K, depending
on the cooling rate. However, at Tq = 429 K, we did not
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Figure 3. (a) Crystallinities (χ) for different volume fractions of long chains (ϕ) during the quench at Tq = 412.5 K. (b) Stem length (d) during the
quench at Tq = 412.5 K. Here the values are weight-averaged over the whole systems. (c) Weight-averaged stem length (d) in the crystalline state
formed by supercooling at Tq = 418, 412.5, and 385 K for different volume fraction (ϕ). Here, the values are averaged from tq = 1225 to 1400 ns. We
note that at Tq = 418 K the systems with ϕ < 0.639 cannot crystallize or reach stabilized crystallinities at the end of 1400 ns, and we only show the
results with stabilized crystallines. (d) Normalized probabilities (p) for number of crystalline stems in a folded bundle (ns) in the crystalline state
formed at Tq = 412.5 K. For a clear view, we only show some selected results of ϕ.

Figure 4. (a) Mean stem length d in the crystalline state formed by supercooling at Tq = 418 K (open circles), 412.5 K (full squares), and 385 K
(open triangles) versus entanglement length Ne* of the initially homogeneous solutions at T = 495 K, calculated by PPA (red) and Z1 (black)
methods. Here both d and Ne* are weight-averaged values. The blue dashed lines are linear interpolants, d = Ne*/f, taking into account the higher
concentrated regime, with fixed f = 2.51 for PPA and f = 3.35 for Z1. (b) Effective, ϕ-dependent folding factor, f = Ne*/d (black), and the average
value of number of crystalline stems in a bundle, n ̅s (red), versus volume fraction ϕ for Tq = 412.5 K.
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observe any crystallization for solutions with ϕ < 0.816 until
1400 ns. To compare results of different solutions, we used
lower quench temperatures with Tq = 418, 412.5, and 385 K.
We note that the crystallization in our simulations would be
comparable to the regime II of LH theory.
In Figure 3a,b, we show the crystallinity and the weight-

averaged stem length during the quench at Tq = 412.5 K. We
note that the crystallization degree at Tq = 418 K is similar to
Tq = 412.5 K for ϕ ≥ 0.596, but we did not observe
crystallization at Tq = 412.5 K for ϕ < 0.596 after 1400 ns. The
induction time of crystallization is increased, and the growth
rate is decreased with more solvent (decrease of ϕ), which can
be understood by a less degree of undercooling for systems
with smaller relative amounts of long chains. Here we just give
a qualitative result and the accurate analysis of growth kinetics
requires multiple simulation runs. The mean stem length d is
also decreasing with the increase of ϕ (see Figure 3c). One
might explain this by enhanced supercooling and a faster
crystallization rate with increasing ϕ. It is important to note
that changes of stem lengths at Tq = 418, 412.5, and 385 K for
ϕ > 0.639 are very small, as shown in Figure 3c. This small
difference of stem length cannot be explained by the degree of
undercooling. Also, from Figure 3b, we note that the maximum
growth rates of stem lengths (maximum slopes of d vs tq
curves) under such a supercooling do not differ significantly
between different dilutions, while the mean crystalline stem
length d changes substantially. To be more quantitative, the
former decreases by factor 1.3, while the latter decreases by
factor 2, when comparing ϕ ≈ 0.53 with ϕ = 1. These results
show a decoupling of stem length and growth rate and indicate
that the stem length (lamellar thickness) does not result
exclusively from a competition between thermal dynamics and
growth kinetics, as described by the classic LH theory.
A direct relation between the entanglement length in the

amorphous polymer melt at the onset of crystallization and the
resulting stem length in the crystalline phase had been revealed
earlier.46,47 Dilution with short, noncrystallizable chains leads to
a change of the entanglement length without changing other
properties of the system. Thus, it provides an ideal test of the
previously found topological principle for thickness selection.
In Figure 4a, we show the relation between the crystalline stem
length d and the initial entanglement length Ne* before the
quenches. We observe a linear relationship between the two
quantities for ϕ > 0.639:

=
*

≈
⎪

⎪⎧⎨
⎩d

N
f

f,
2.51, by PPA

3.35, by Z1
e

(4)

The value of f reflects the average number of tight folds per
entanglement length. Interestingly, the folding factor f can be
related with the one recently observed in NMR experiments by
Miyoshi et al.,64−66 describing folded motifs consisting of
successively tightly folded stems. The breakdown of the linear
relation under more diluted conditions (ϕ < 0.639) probably
has two reasons. The first one is that the crystallization process
does not fully complete during the limited simulation time,
resulting in underestimated values of d, particularly for ϕ <
0.525. Another one is that longer untangled segments might
allow for larger folding numbers, as indicated by recent NMR
experiments.64−66 The difference between PPA and Z1 is that
PPA does dynamic energy minimization of the bead−spring
chains to find a configuration residing in an energetic
minimum, while Z1 does a geometrical minimization of

infinitely thin chains to find a configuration with shortest
disconnected path. We suppose that Z1 might shrink the
primitive path more drastically in diluted solutions as the
swelling of chain configuration increases the possibility of being
tracked into local minima (for the case of PPA).67

We note that the f value is consistent with previous results
for pure melts at different initial temperatures,47 where f = 2.48
for PPA was obtained if we we convert the reported value for
Ne to the normalized entanglement length Ne*. Therefore, the
degree of undercooling may affect the induction time and
crystallization rates, but the crystalline stem length seems
directly controlled by the initial entanglement lengths. Under
supercooling, entanglements are arrested by the high density of
nucleation in accord with a growth rate that is faster than the
ratio between gyration radius and the disentanglement time. If
we consider entanglements like physical cross-links, the
situation is similar to crystallization in a rubbery material as
discussed by Flory.68 In our previous studies we have shown
that disentanglement makes only a minor contribution under
supercooling. This finding remains clearly in contrast with the
reeling-in process as assumed by Hoffman and Miller.6,69

It is interesting to inspect the changes of chain folds upon
varying ϕ. In Figure 3d, we show normalized probabilities p(ns)
for the number of folding stems per crystallized bundle, ns.
Here, ns = 1 means an individual crystalline stem, ns = 2 stands
for a hairpin with two folded crystalline stems, and ns = 3
represents an arrangement composed of three crystalline stems
connected by two hairpin folds. We calculated ns by analyzing
the crystalline structure via the algorithm described in previous
work,50 which tracks the birth of a crystallized bundle. We can
see that under a strong supercooling the crystallization rate is
very high, and many individual crystalline stems (ns = 1) are
involved in the crystallites. The probability of individual
crystalline stems increases with decreasing ϕ due to the
decrease of crystallization rate and to the expense of the
formation of hairpin folds (see Figure 3d). This result indicates
that the chain folds are preferred in slower crystal growth, in
agreement with results for the growth of a single crystal from
melt by self-seeding.50 To see if there is a relationship between
the folding factor f = Ne*/d and the average value of the number
of stems in a crystalline bundle, n ̅s = ∑p(ns)ns, both quantities
are displayed in Figure 4b. The values of f and n ̅s do not differ
by more than a factor 2, and both slightly decrease with
increasing ϕ. The values of n ̅s in the range of 2.0−2.2 are almost
identical with those reported for pure melts quenched from
different initial temperatures.47 We note that the values of ns̅
and their trend to exhibit a slow decrease with increasing ϕ are
consistent with recent experimental NMR results: ns̅ ≥ 1.7−2
for melts and n ̅s ≥ 8 for dilute solutions.64−66 The behavior of
the folding factor f(ϕ) in concentrated conditions (ϕ > 0.639)
is in overall agreement with ns̅(ϕ). The larger qualitative
deviation between f and n ̅s at more diluted conditions (ϕ <
0.639) is eventually caused by the underestimation of d at the
limited quench time, while n ̅s is of course unaffected by the
quench time.
As reported in our previous works, entanglements are almost

preserved during the crystallization in melts. This observation
leads us to propose that the initial state of entanglement
directly controls the crystalline stem length (lamellar thick-
ness). For this conclusion it was important to recognize that the
entanglement length is reduced by stiffening of the chains in
the undercooled melt and that the temperature dependence of
the entanglement length follows the same empirical law with
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temperature as the stem length.47 It is therefore interesting to
follow the evolution of the entanglement length also for
concentrated solutions. In Figure 5, we display the ratios of
Ne*(tq) over Ne*(tq = 0) at Tq = 412.5 K. For the pure melt (ϕ =
1), the ratio approaches a value of 1.1, indicating a slight
disentanglement. The initial entanglements are thus almost
preserved. We observe that a part of the disentanglement is
caused by the reorganization after homogeneous crystallization
(tq > 350 ns), as the coarse-grained monomer beads can still
slowly slide in the crystalline state.50 The degree of
disentanglement is a little larger in less concentrated solutions.
For example, the ratio of Ne*(tq)/Ne*(0) is about 1.4 for ϕ =
0.525 at the end of the simulation. The decrease of Ne*(tq)
before crystallization is due to the temperature drop, as
discussed in our previous work for melts,47 and thus a key to
understand the temperature dependent thickness selection in
concentrated polymer solutions as well.
Snapshots taken during crystallization at Tq = 412.5 K for ϕ

= 1, ϕ = 0.639, and ϕ = 0.496 are shown for comparison in
Figure 6. One can see that the growth rate decreases with

decreasing ϕ, resulting in higher crystallinity, as already
quantified in Figure 3a. One can also see that the crystallization
within the pure melt proceeds form a larger amount of
nucleation sites and is thus apparently more homogeneous.
With the decrease of ϕ, the growth rate is reduced. The slower
growth rate allows more relaxation time for the formation of
chain folds and results in larger ns̅ as shown in Figure 4d. From
Figure 6, we can see that for ϕ = 0.496 there is only one
crystallite in the viewing section and there are only two
crystallites in the whole simulated system (another one is
invisible from the section view). A qualitatively analogous
behavior was found in the so-called elastic Lennard-Jones (LJ)
system,70−72 a permanently spring-connected network of LJ
particles. At sufficiently low spring coefficient and temperature,
crystalline LJ clusters tend to form due to short-ranged LJ
attraction, but the formation of both a single or an infinite
cluster is prevented by the spring-mediated connectivity
between clusters, which effectively serves as a long-range
repulsion due to periodic boundary conditions. In the present
condensed polymer solutions, the crystalline regions are

Figure 5. Entanglement length changes during the crystallization at Tq = 412.5 K, calculated by PPA (a) and Z1 (b). Here, the ratios of Ne*(tq) over
Ne*(tq = 0) are displayed to reflect the degree of disentanglement during crystallization.

Figure 6. Section views of snapshots taken during crystallization at Tq = 412.5 K for three different volume fractions: (top) pure melt, ϕ = 1, (center)
highly concentrated solution, ϕ = 0.639, and (bottom) concentrated solution, ϕ = 0.469. Here, monomers are colored by their bending angle (θ)
that is used to recognize trans−trans conformations and crystalline regions, to calculate the mean stem length and the degree of crystallization. The
color bar is shown at the right top corner. The system size increases with decreasing ϕ as we add solvent particles during preparation of the
equilibrium samples at T = 495 K. These configurations are shown at tq = 0, and the quench temperature Tq is kept constant at tq > 0.
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interconnected by long chains. Such bridging chains could
stabilize the network of crystalline regions, providing a direct
analogy to the elastic LJ model.

■ CONCLUSIONS
In conclusion, we presented MD simulation results for
concentrated solutions of long chains where the solvent is
composed of short chains of the same species. We followed the
dynamics and statistical properties of the crystallization process
of the high molecular weight component at different
concentrations. In particular, we have studied the entanglement
properties of these systems using two variants (PPA and Z1) to
calculate the primitive path and the entanglement length. The
equilibrium weight-averaged entanglement length in the
concentrated solution above the point of crystallization (Tc)
is found to scale with a power of volume fraction. Upon
crystallization, we show that there is a decoupling of stem
length and growth rate. A central result of our work is that the
weight-averaged stem length (lamellar thickness) is propor-
tional to the initial entanglement length in the homogeneous
solution, where the factor of proportionality, f, defines the
number of stems in tight folds formed in one entangled
sequence. The average value of f is found almost unchanged
compared to pure melts at different initial temperatures,47 while
it is moderately decreasing with increasing volume fraction of
the long chain component. Both the values of folding numbers
and the trend with respect to concentration are in agreement
with recent experimental results.64−66 Despite the different
crystallization rates and the amount and size of crystalline
regions, our previously proposed hypothesis that the
entanglement length directly controls the lamellar thickness
can explain our current results in concentrated solutions.46,47

The idea behind is to treat entanglements like physical cross-
links similar to crystallization in a rubbery material, as discussed
by Flory,68 rather than to assume disentanglement via reptation
as proposed by the LH theory.69 Our present results for
concentrated polymer solutions may help to shed light on the
open issue of a full understanding of polymer crystallization.
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