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We studied the crystallization of semiflexible polymer chains in melts and poor-solvent solutions with

different concentrations using dissipative particle dynamics (DPD) computer simulation techniques. We

used the coarse-grained polymer model to reveal the general principles and microscopic scenario of

crystallization in such systems at large time and length scales. It covers both primary and secondary

nucleation as well as crystallites’ merging. The parameters of the DPD model were chosen appropriately

to reproduce the entanglements of polymer chains. We started from an initial homogeneous disordered

solution of Gaussian chains and observed the initial stages of crystallization process caused in our model

by orientational ordering of polymer chains and polymer–solvent phase separation. We found that the

overall crystalline fraction at the end of the crystallization process decreases with the increasing polymer

volume fraction while the steady-state crystallization speed at later stages does not depend on the

polymer volume fraction. The average crystallite size has a maximal value in the systems with a polymer

volume fraction from 0.7 to 0.95. In our model, these polymer concentrations represent an optimal

value in the sense of balance between the amount of polymer material available to increase the

crystallite size and chain entanglements, that prevent crystallites’ growth and merging. On large time

scales, our model allows us to observe lamellar thickening linear in logarithmic time scale.

1 Introduction

Crystallization of polymer materials influences strongly their
macroscopic properties and plays an important role in many
applications. Understanding the microscopic mechanisms of
crystallization in particular semi-crystalline polymers represents
one of the most challenging unsolved problems in modern
polymer physics.1–3 From the microscopic point of view, the main
difference between polymer crystallization and low-molecular
inorganic crystallization results in constraining monomers by
connecting them in chains. The concepts of polymer chain
conformation and ‘‘chain folding’’1–3 become important. In the
polymer system, long non-phantom chains form a network of
entanglements, and this fact dramatically slows down the
dynamics4 and makes impossible the complete crystallization in
systems with long polymer chains, so that polymers which are
able to crystallize always remain semi-crystalline.1–3

Polymer crystallization includes many different aspects: one
should distinguish crystallization from solutions and melts,

primary and secondary nucleation processes, homogeneous vs.
heterogeneous nucleation, consider evidence for nucleation-
and-growth and spinodal decomposition scenarios on different
time scales, the possible presence of ‘‘precursors’’ (preordered
mesomorphic structures and maybe even a mesomorphic
phase), take into account the influence of the chain length
and supercooling value, etc.1–3

Crystallization belongs to the 1st order phase transitions.
One should not expect a uniform description of the crystal-
lization process for all crystallizable polymers. However, there
are universal properties of all polymer systems – connectivity of
monomer units in chains, intrachain stiffness, topology (entan-
glements) – and therefore one could expect some general
features (i.e., some similarity) in the crystallization behavior
of particular classes of polymers. Such general features could
be, e.g., a particular scenario of crystallization, initial sponta-
neous thickness of a lamella, its dependence on temperature,
lamellar thickening with time, etc.1–3

We note here only a few open problems in understanding the
crystallization of polymers. For a process from solution, the
dependence of mechanisms and properties on molecular weight
and on polymer concentration is still partially understood and
various explanations coexist.3,5 For early stages of polymer crystal-
lization (both from solutions and from melts), the nucleation and
growth (NG) scenario is generally considered as being realized in
most polymer systems, and some mesomorphic preordered
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structures, like ‘‘baby nuclei’’,6 bundles,7 precursor layers8 are
formed. Mechanisms of growing and merging of such nuclei are
still poorly understood.3 Moreover, there is still a confrontation in
the literature regarding the dominance of various scenarios, i.e.,
nucleation and growth (NG) versus spinodal decomposition (SD),
at early stages of primary nucleation.2,3,9 In the present study, we
addressed these questions for a particular class of polymer
systems.

Microscopic computer models can shed light on many aspects
of polymer crystallization. Microscopic models can be atomistic or
coarse grained (CG), depending on the aspects of the real system’s
behavior that need to be investigated. The advantages and dis-
advantages of the atomistic and computational approaches are
well-known, and today, multiscale modeling is required to solve
most of the problems.10,11 Atomistic and ‘‘united atom’’ (UA)
models are suitable to reveal the microscopic mechanisms of
crystallization in a particular polymer systems, however, such
models have been developed so far only for a few polymers: for
polyethylene (PE), polyvinyl alcohol (PVA) and poly(vinylidene
fluoride) (pVDF).9,12–20 More rough or ‘‘larger-grain’’ CG models
imply that one bead contains several monomer units of the
polymer chain. Such models are designed to reveal general
patterns of crystallization in a broad class of polymer systems,
e.g., in semiflexible or comb-like polymers. A common way to
induce crystallization of polymers in various CG models is to
increase the chain stiffness using torsion and/or bond angle
potentials. It stimulates chains being packed into lamellae. CG
models may be sufficient to reflect some properties of real
polymers, but sometimes they cannot describe other important
features: the stability of the rotator phase in the UA model of the
PE,12 while the orthorhombic phase cannot be obtained using this
model.12,21 Computer simulations of polymer crystallization using
various models have been performed by several groups using
molecular dynamics (MD) and Monte Carlo (MC) methods.13–36

The general theoretical concept of folded chains in crystallized
lamellae from both solutions and melts is now well-known.3 In
computer simulations, chain folding in the course of polymer
crystallization was also studied both in melts13,17,18,26,27 and
solutions.6,14,22,23,25 Possible precursors of crystalline lamella were
also studied,8,18 as well as crystallization from solutions of
different solvent quality.35

The folding of a polymer chain in a lamella is in some sense
similar to the formation of a crumpled globule37 during the
collapse of a single chain. However, this analogy with crumpled
globule conformation has not yet been raised in the literature, with
the exception of our previous work.38 Although it is closely related
to the intramolecular nucleation model developed by Hu et al.39–41

Folded conformations of the polymer chain were observed in the
simulations (coarse-grained on the united atom level), including
both adjacent and random reentry.8,26,33,41 In most cases (with the
exception of a few works36), folded conformations were studied for
only one lamella and using some special techniques such as self-
seeding, the presence of a nucleation surface and a template
layer8,26,33,41 (due to computational limitations).

In computer simulations, we observed the appearance of
folds in crystallizing polymers and their distribution between

different seeds of crystalline lamellae during crystallization.
This process starts from the state of a homogeneous solution/
melt and takes quite a long time. We are interested in large
length and time scales, so we need a coarse-graining going
beyond the UA level. Running ahead of the story, we observed
the nucleation and growth of several lamellar seeds.

Our purpose is to reveal a general scenario of initial stages of
crystallization in a particular class of polymers (long semiflexible
chains) under particular conditions (poor-solvent solutions, i.e.,
fast precipitation accompanied by crystallization). Studying the
crystallization scenario means studying both the primary and
secondary nucleation, both the structure and size of crystallites
as well as conformational properties of single chains, i.e., we
need large length and time scales. What such a CG model
(beyond UA level) should take into account? It should definitely
take into account the steric repulsion between CG beads
(excluded volume interactions) and the intramolecular stiffness,
while a particular choice of intermonomer attraction is not
crucial for our goals (van der Waals interactions or specific
interactions like, e.g., hydrogen bonds). These assumptions are
based on the general understanding of crystallization mechan-
isms in UA models of PE and PVA,8,27,28,31,33 intermonomer
attraction plays the major role only at later stages of crystal-
lization. During initial stages of crystallization the orientational
(nematic) ordering42,43 of chain segments plays the most important
role due to the excluded volume effect. It leads to chain extension
and an increase of local concentration, and finally to
crystallization.33

We used a coarse-grained model and the dissipative particle
dynamics (DPD) technique44,45 for the simulation of polymer
crystallization in poor-solvent solutions and melts of semiflexible
polymers. Soft potential in the DPD scheme allows the increase of
the integration time step and also the decrease of the relaxation
times, and these two factors make DPD in general faster than the
standard MD scheme for studies of condensed polymer materials
on large time scales. The DPD method is well suited for studying
the equilibrium properties such as, e.g., microphase separation of
block-copolymers.45–47 Due to the softness of the potentials used,
there are no explicit restrictions on the value of the repulsive
potential, which can make the chains partially phantom. The set
of DPD parameters from the original paper44 is not suitable to
study crystallization; they are too soft. But one can choose DPD
parameters to keep chains non-phantom48 and at the same time
uses the large integration step. Using our DPD model we were able
to study quite large systems for long times and observe the
nucleation and growth of multiple crystallites (lamellae).

We performed DPD computer simulation of poor-solvent
solutions and melts of semiflexible polymers. Chain stiffness is
introduced by applying stiff spring potential on bonds between
beads successive along the chain, like in the tangent hard
spheres model.49 This potential can reestablish steric interactions
even in the model with soft-core repulsion potential. It stimulates
chain segments to undergo liquid crystalline (nematic)
transition42,43 which is the first stage of crystallization in our
systems. Connectivity of monomer beads in chains, intrachain stiff-
ness and topological restrictions (entanglements of non-phantom
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chains) are the three ‘‘whales’’ on whom the crystallization
behavior in our model ‘‘rests’’. Although individual features
of the crystallization process in a specific polymer can be
different, we believe that general trends and several common
regularities of the melt and poor-solvent solution crystallization
process should be the same for all semiflexible polymers, and
our model is able to grasp the essence of this process. Our
model is closely related to the crystallization of semiflexible
polymers caused by their fast precipitation from a poor-solvent
solution35,50 accompanied by orientational ordering of chains,
which is typical for many polymer processing schemes, includ-
ing fiber formation.51 In this study, we tried to reveal some
general features and molecular mechanisms of crystallization
in solutions and melts of semiflexible polymers, which do not
depend on the polymer chemical structure, but are associated
with the universal polymer properties, chain connectivity,
stiffness and entanglements.

This paper is organized in a traditional way: we start with the
description of our model and simulation techniques, then
present our results and finish with conclusions.

2 Simulation methodology

DPD is a method of a coarse-grained molecular dynamics with a
stochastic DPD thermostat conserving total momentum and
angular momentum and with soft potentials mapped onto the
classical lattice Flory–Huggins theory.44,45 Macromolecules are
represented in terms of the bead-spring model, with particles of
equal mass (chosen to be the mass unity) and equal size. One
polymer bead in our model resembles a part of a polymer chain
consisting of several monomer units, and one bead of a solvent
includes several solvent molecules. Beads are interacting by pair-
wise conservative force, dissipative force and random force:

f i ¼
X
iaj

ðFb
ij þ Fc

ij þ Fd
ij þ Fr

ijÞ; (1)

where fi is the force acting on the i-th bead, and the summation
is performed over all neighboring beads within the cut-off radius
rc, which is chosen to be the length unity, rc = 1. The first two
terms in the sum are conservative forces. The term Fb

ij is the
spring force describing the chain connectivity of beads:

Fb
ij ¼ �kðrij � l0Þ

rij

rij
; (2)

where rij = rj�ri, ri is the coordinate of the i-th bead, rij = |rij|, k is
the bond stiffness parameter, and l0 is the equilibrium bond
length. If beads i and j are not connected by bonds, Fb

ij = 0. The
term Fc

ij is the soft core repulsion between beads i and j:

Fc
ij ¼

aijðrc � rijÞrij=rij; rij � rc

0; rij 4 rc

(
; (3)

where rc � 1, aij is the maximal repulsion force between beads i
and j for rij = 0. This repulsion force acts also between beads
connected by bonds. Since Fc

ij has no singularity at zero distance,
a much larger time step than in the standard molecular
dynamics can be used without loosing the stability of a

numerical scheme for integrating the equations of motion,
and this makes it possible to access larger time scales when
complex polymeric systems are studied.44,45 Other constituents
of fi are random force Fr

ij and dissipative force Fd
ij acting as a heat

source and the surrounding media friction, respectively.44 The
parameters for these forces are: noise parameter s = 3, friction
force parameter g = 4.5. More detailed description of our
simulation methodology can be found elsewhere.46,47

We study systems with different polymer volume fractions
j = 0.2, 0.5, 0.7, 0.8, 0.9, 0.95 and 1.0. This total polymer
volume fraction is constant during the simulation, but the local
polymer concentration can change significantly. Since the DPD
scheme uses explicit solvent particles, for systems with j o 1
the rest of simulation box is filled by solvent beads. We
performed simulations at constant density and constant tem-
perature (in our simulations kBT = 1). The total number density
of DPD particles in our systems was r = 3 (in units of rc

�3). The
repulsion parameter between polymer and solvent particles,
aps = 160, was chosen to be larger than polymer–polymer
interaction parameter, app = 150. Their difference equals Da =
aps � app = 10. Such a condition corresponds to a poor solvent
case, and the Flory–Huggins parameter of the polymer–solvent
interaction can be calculated as wps = 0.306Da (see ref. 44) and
occurs to be wps E 3. This mimics the situation of a fast
polymer precipitation from solution with simultaneous crystal-
lization, which is typical for many polymer processing schemes,
including fiber formation.51

The use of soft volume and bond potentials leads to the fact
that the chains are formally ‘‘phantom’’, i.e., their self-crossing
can happen in three dimensions. The phantom nature of
chains can significantly affect the dynamic properties of the
system. Chain ‘‘phantomness’’ greatly speeds up the equili-
bration of the system. As regards the dynamic properties, it was
shown that the original DPD method is consistent with the
Rouse dynamics52,53 which is relevant only for ideal polymers
and non-entangled polymer melts. When studying the crystal-
lization behavior, explicit entanglements between chains due to
steric interactions require consideration. One should introduce
some additional forces that forbid the self-intersection of the
chains. These forces are usually quite cumbersome and slow
down the computation significantly. Several methods were
developed to avoid the bond crossings in CG models (see,
e.q., the review11). Nikunen et al.48 described a method for
keeping chains to be non-phantom in DPD simulations without
any additional forces. We used this quite simple and fast
method48 which has been proven to reproduce entanglements
and polymer reptational dynamics reasonably well.38,45,48,54

This method is based on geometrical considerations (Fig. 1).
When the distance between any two non-bonded beads is
greater than rmin, every bead in the system effectively has an
excluded volume with radius rmin/2. Then, the chains are non-

phantom if the condition
ffiffiffi
2
p

rmin 4 lmax is satisfied at every step
during the simulations,48 where lmax is the maximum bond
length. Despite the fact that particles in DPD are formally point-
like objects, they have an excluded volume due to the presence
of repulsive potential determined by the value of aij, eqn (3).
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In this study, we used app = ass = 150, aps = 160, l0 = 0.2, and
k = 150, so the probability of chain intersection events is
negligibly small, see Fig. S1 in ESI.† The big value of repulsion
parameter app = ass = 150 and the integration time step
determine the smallest possible distance between particles.
The small value of equilibrium bond length l0 = 0.2 together
with stiff spring potential k = 150 brings bonded beads closer to
each other than non-bonded ones. When the chain crossing
events are rare, the entanglement behavior still persists in
polymer melts.55

Repulsive volume interactions between beads i and i � 2, i �
3. . . provide an effective chain stiffness, similar to the tangent
hard sphere model.49 A large value of bond stiffness k = 140 as
well as a small value of initial bond length l0 = 0.2 contribute to
the effective chain stiffness. We can still use a fairly large
integration time step Dt = 0.02.

Solutions of self-avoiding semiflexible chains demonstrate a
tendency to undergo lyotropic nematic ordering transition42,43

at high polymer concentrations only due to steric interactions.
This orientational ordering is often the first stage of a possible
crystallization transition.33,34,56 The obtained average distance
between bonded monomer units is hli = 0.48 (in units of rc), the
chain persistence length b is about 2.3 monomer units, i.e., b̃ =
b�hli = 1.1 in units of rc, as we have estimated using the bond
autocorrelation analysis.57,58 Calculation of the persistence
length was performed under y-solvent conditions, we averaged
the data over 5 independent runs. Note that the intramolecular
stiffness is actually rather small in our model, but additional
chain stiffening (increase in the persistence length) occurs due
to nematic ordering.59

We have used rather long chains of N = 103 beads. The initial
conformation of the system was prepared as sets of Gaussian
chains (random walks) with the step (bond length) l = 0.48 and
the polymer volume fraction j. Then, the system was filled with
solvent beads until the total number density r = 3 was reached.
Each system was equilibrated for 106 DPD steps in a y-solvent,
i.e., with the values of parameters equal to app = ass = aps = 150,

l0 = 0.2, and k = 150. At this stage of modeling, the formation of
a certain structure has already started due to the chain stiffening
and local orientational ordering of semi-flexible chains.43

Thereafter, the quality of solvent was instantly changed to
poor-solvent conditions corresponding to the Flory–Huggins
parameter w E 3, which is equivalent to a deep quenching, i.e.,
the value of polymer–solvent interaction parameter was set to
aps = 160. We simulated each system for 108 DPD steps.

The simulation cell was defined as a cubic box with the edge
size Lbox = 50rc, with periodic boundary conditions in all
directions. There were totally 375 000 DPD beads in the simula-
tion box with the maximum number of polymer chains N(max)

chains =
375 at j = 1. In the starting conformations, the average end-to-
end distance of a Gaussian chain with N = 103 and l = 0.48 is

equal to R ¼ l
ffiffiffiffi
N
p
� 15 (this is well seen in Fig. 7a below). After

a very long equilibration of our semiflexible chain in a y-solvent
or in a melt the end-to-end distance would of course become

larger, R ¼ 2bl
ffiffiffiffiffiffiffiffiffiffiffiffi
N=2b

p
� 32:5, which is still smaller than the

box size (here we used the estimation for Kuhn segment being
twice the persistence length, lK E 2b̃ = 2bl). In Fig. 7a below,
although the chains swell on local scales, the average distance
between chain ends in the final conformation (obtained after
108 DPD steps) does not change too much in the course of
simulation for all systems with different polymer volume fractions
and becomes only slightly larger (R B 17) in comparison with the
starting Gaussian conformation. Thus, on average each polymer
chain does not interact with itself via periodic boundaries, neither
in the starting, nor in the final conformation, or at least possible
effects from such interactions are weak. This is also true even
when a percolating cluster appears in our simulation box because
a percolating cluster consists of multiple chains.

We performed averaging over 5 independent simulation
runs for each j-value (the parameters related to single chain
properties were averaged also over all chains in a simulation
box). For the calculations, we used our own original parallelized
DPD code with domain decomposition.46,47 We checked that
our implementation works about 1.8 times faster than DPD
code embedded in LAMMPS.

To characterize the system morphologies, we implemented
the following two-stage cluster analysis. In the first stage, we
consider bonds vi connecting two successive beads (monomer
units) i � 1 and i (Fig. 2). Coordinates of centers of bonds are
the coordinates of bonds, and directions of bonds are vectors
between two successive beads. We determine which bonds
belong to the crystalline fraction, and then we perform cluster
analysis to find crystallites composed from these ‘‘crystalline’’
bonds. To recognize whether a particular bond vi belongs to the
crystalline phase we use the following rules, Fig. 2a.

1. For each bond vi, we determine all neighboring bonds vj

as bonds inside a sphere with the center at the center of bond vi

and radius Rc = 1.5rc. In the system with polymer volume
fraction j = 1, each bond has B18 neighbors.

2. Then, we define the number of neighboring bonds vj,
which are collinear with the selected one, vi. For this goal, we
calculate the angle yij between bonds vi and vj and use the
following collinearity threshold criteria: two bonds vi and vj are

Fig. 1 Schematic representation of two chains to check bond crossing
conditions.
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collinear if the angle between them is less than 17 degrees,
yij o 17 degrees.

3. Finally, we calculate the ratio of the number of collinear
neighbors to the total number of neighbors. Bond vi is marked
‘‘crystalline’’ if this ratio is greater than 0.4, otherwise it is
marked ‘‘amorphous’’, and this is our bond crystallinity criteria
(this procedure is quite similar to the crystallinity criteria used
previously in MC simulations of isotropic–nematic phase
transition60 and MD simulations of crystallization in
alkanes33).

After such labeling, we perform the standard clustering
analysis61 using cut-off radius Rc = 1.5rc to find the clusters
formed by neighboring ‘‘crystalline’’ bonds.

In the second stage, we turn to the consideration of the beads
and mark a bead ‘‘crystalline’’ if it is either the beginning or the
end bead of at least one crystalline bond, otherwise it is marked
‘‘amorphous’’. This procedure transforms the system of bonds
into the system of beads. However, after the first stage some
‘‘amorphous’’ beads were still located inside crystalline clusters.
We consider ‘‘amorphous’’ beads in the neighborhood to ‘‘crys-
talline’’ beads within the cutoff radius Rc = 1.5rc. We define the
direction of such beads (i) as the vectors between beads (i � 1)
and (i + 1). Then we check the following criteria, Fig. 2b:

1. Calculate the director Dc for each cluster, i.e., the unit
vector corresponding to the preferred orientation of the beads
in a crystallite (the normalized sum of all beads in a cluster).

2. Compare the directions of the cluster director Dc and a
neighboring ‘‘amorphous’’ bead. If the angle a between the
cluster direction and the bead direction is less than a o
20 degrees, the bead is marked ‘‘crystalline’’ and added to this
cluster, otherwise the bead stays ‘‘amorphous’’.

The first stage (bonds) is more sensitive to the local fluctua-
tions than the second stage (beads), because the direction of a
bond is the vector between i and i + 1 beads and the direction of
a bead is the vector between i � 1 and i + 1 beads. After the first
stage, crystallites contain many ‘‘amorphous’’ beads inside
them. The DPD potential of the excluded volume is soft, which
causes coordinate and direction fluctuations. The second stage
of the analysis is aimed to reassign these ‘‘amorphous’’ beads
inside crystallites to the ‘‘crystalline’’ beads in order to avoid
artificial appearance of amorphous beads inside crystallites.

In our simulations, we looked at the average size, the
number of crystallites, and the degree of crystallinity as

functions of time and polymer volume fraction. To characterize
polymer chain conformations, we calculated the dependence of
the average squared spatial distance between two monomers on
their distance along the chain, R2(n), separately for the
segments belonging to crystalline and amorphous fractions,
respectively. This dependence allows the analysis of the poly-
mer structure on different length scales.38,62 For different
polymer concentrations, we also calculated the distributions
of crystalline segment (stem) lengths, i.e., the strongly extended
parts of polymer chains inside crystallites.

3 Results and discussion

In Fig. 3, we represented the final morphologies of several
systems with different polymer volume fractions j after long
equilibration time. Solvent particles are hidden, and red and
blue colors represent the ‘‘crystalline’’ and ‘‘amorphous’’ beads,
respectively. Solvent (transparent) or ‘‘amorphous’’ (blue) beads
separated crystallites (red). The linear size of a typical crystallite
is smaller than the simulation box size, so that a single crystallite
does not interact with itself through periodic boundaries (a
possible case of percolating crystallites is discussed below).
Visually, the crystallite size seems to have the largest value for
polymer volume fraction j between 0.7 and 0.95.

Fig. 4 shows a more detailed view of a typical system with 0.5
polymer volume fraction at an intermediate time of 107 DPD
steps, including its crystallization behavior and cluster struc-
ture. In Fig. 4a one can see the polymer–solvent separation as
well as the separation of the polymer-rich phase into crystalline
and amorphous sub-phases. The crystalline sub-phase is com-
prised of several crystallites (see Fig. 4b), which could be easily
found by our two-stage clustering analysis described above.

Fig. 2 Stage one: schematic illustration of the crystallinity criterion for a
polymer bond (a). Stage two: schematic illustration of the crystallinity
criterion for a polymer bead (b).

Fig. 3 Snapshots of several systems with different polymer volume
fraction j at the end of equilibration, t = 108 DPD steps: j = 0.2 (a), j = 0.7
(b), j = 0.9 (c), j = 1 (d). Only polymer beads are shown (‘‘crystalline’’ beads are
red and ‘‘amorphous’’ beads are blue), while solvent beads are hidden.
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These crystallites can have quite complex surfaces and very
different sizes. Analysis of the maxima in static structure factor

(see Fig. 4d) shows the ratio between peaks 1:
ffiffi
ð

p
3Þ:2. Such a

ratio of Bragg peaks confirms that chain parts (stems) in
crystallites have hexagonal packing18 corresponding to the
rotator phase. The radial distribution functions, G(r), for the
whole system and for its components show that the crystalline
phase is slightly more dense than amorphous one in solutions
and becomes more noticeably dense in the melt, see Fig. S2 in
the ESI.†

To study the crystalline structure in detail we calculated the
Steinhardt bond order parameters Q4, Q6, W4 and W6

63,64 for
amorphous and crystalline phases, see Fig. S3 in the ESI.† There
is a very small difference between the two clouds of points in the
Q4–Q6 and W6–Q6 planes, so that we cannot distinguish the
amorphous and crystalline phases from these data. Actually, this
is not surprising because we cannot expect a three-dimensional
crystalline ordering in our system, but rather the formation of
some hexagonal packing of chain stems inside lamellar crystal-
lites like in the rotator phase. To reveal the existence of such
ordering, another parameter is better suitable, namely, the

parameter c6 ¼
1

NNchains

PNNchains

i¼1

1

ni

Pni
j¼1

expði6aijÞ
�����

�����
* +

, where aij

are the angles between the vectors connecting monomer i to
its neighbors j and a fixed axis in the plane perpendicular to the
director of a crystallite, and ni is the number of neighbors of
bead i within the cutoff radius (which was chosen as 1.6rc). This
parameter was first introduced for studying 2D crystallization in

hard disk systems65–67 and recently used for revealing hexagonal
2D packing in a model melt of semiflexible polymers encom-
passing a liquid and a hexagonal rotator-like crystal phase,21

where it was found to be equal to c6 E 0.28 for ‘‘liquid’’ (actually
amorphous nematically ordered polymer melt) and c6 E 0.6 for
hexagonal rotator-like crystalline polymer melts.21 We per-
formed this analysis of rotator-like crystalline ordering, as well
as the orientational nematic ordering, separately for each crystal-
lite and for the amorphous phase.

To analyse the orientational (nematic) ordering, we calcu-
lated for every single crystallite and for amorphous phase the
eigenvalues S1, S2, S3 of the orientational tensor21,33,59 for

polymer bonds, Qa;b ¼
1

ðN � 1ÞNchains

PðN�1ÞNchains

i¼1

1

2
ð3eiaeib � dabÞ,

where eia is the a component of the unit vector along the bond i.
For the ideal nematic ordering these eigenvalues are equal to
(1, �0.5, �0.5) and for the isotropic system they are (0,0,0). In
ESI,† Fig. S4, we represented the box plots for S1, S2, and S3.
The amorphous phase is isotropic while the crystallites show
pronounced nematic ordering. In Fig. S5 in the ESI,† we have
shown the dependence of the eigenvalues S1, S2, and S3 on the
size of crystallites. For very small clusters the nematic ordering
is perfect while with increasing the cluster size, we observe
crystallites with both quite small S1 o 0.4 and large S1 4 0.8
values. We assume that large crystallites have non-ideal shape
like, e.g., bent lamellae, and this significantly affects the
eigenvalues of orientational tensor leading to decreasing of
S1, although there are also large crystallites with very high
nematic ordering.

We plotted the distributions (box plots) of parameter c6 for
crystallites and amorphous phase in Fig. S6 in the ESI.† The
results indicate proper distinguishing of crystalline and amor-
phous phases. In the amorphous phase the value c6 is close to
zero. Quite high values (more than 0.5, even above 0.7) are
observed for a few crystallites, but on average these values are
rather moderate – about 0.2, although widely distributed. This
can be explained by two reasons: (1) the structure is not perfect
and (2) most of the clusters are rather small, so that most beads
in small clusters lie on their surface and do not have enough
neighbors. Dependencies of c6 on the crystallite size are shown
in Fig. S7 in the ESI.† There is a clear trend towards increasing
c6 with increasing cluster size, although the width of the
distribution also grows, so that there are also small values of
c6 o 0.1 for clusters larger than 10 000 beads. The dependen-
cies of c6 on the first eigenvalue S1 do not demonstrate a clear
correlation between these two parameters, see Fig. S8 in the
ESI.† However, high values c6 4 0.3 are observed for clusters
with S1 between 0.4 and 0.95, and the ‘‘record’’ is (c6,S1) =
(0.7,0.7).

A single chain may contribute to several crystallites (e.g., the
chain shown in Fig. 4c is involved in two different crystallites).
In general, the crystallite structure is similar to that obtained,
e.g., for another model by means of MD simulation.18 Thus, a
preliminary conclusion here is that our model and the DPD
simulation scheme keep the chains to be non-phantom (which
is crucial for polymer crystallization), reproduce reasonably

Fig. 4 (a) Snapshot of a system with 0.5 polymer volume fraction (some
intermediate morphology in the course of equilibration): red beads are
‘‘crystalline’’ and blue beads are ‘‘amorphous’’, solvent beads are not
shown. (b) The same system after both stages of the cluster analysis:
different colors correspond to different crystalline clusters, and ‘‘amor-
phous’’ beads are not shown. (c) The conformation of a randomly chosen
single polymer chain from (a). (d) The static structure factor for the
polymer beads (black) and separately crystalline (red) and amorphous
(blue) phases from (a).
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good some general features and are suitable for studying the
crystallization in polymers on quite large length scales.

Fig. 5 and 6 present the physical quantities which are the
main characteristics of the crystalline sub-phase – the average
size of crystallites (in beads), the normalized number of

crystallites (i.e., the number of crystallites divided by the
polymer volume fraction j), and the degree of crystallinity
(i.e., the number of crystalline beads divided by the total
number of polymer beads) – at different times and for different
polymer volume fractions. We indicated error bars in these
figures to confirm the validity of our results. We used lines
connecting the data points without any smoothing as an
eye guide.

In Fig. 5a one can observe the process of crystallization on a
logarithmic timescale – the degree of crystallinity starts to
increase quite rapidly after about 105 DPD time steps for small
polymer volume fractions j and after about 106 DPD time steps
for large polymer volume fractions j. The time when this initial
growth of the degree of crystallinity has a maximal slope
coincides with our estimation for the local crystallization time
t, which we defined from Fig. 5c as the time of formation of
maximal number of crystallites. This time t depends on j due
to the preliminary orientational ordering in good solvent and
different speeds of the polymer–solvent separation after
quenching. After this initial relatively rapid increase of the

Fig. 5 Time dependencies of the degree of crystallinity (a), of the average
crystallite size (b), and of the normalized number of crystallites (c) for
systems with different polymer volume fractions (shown in the legend).

Fig. 6 Dependence of the average crystallite size (a) and the degree of
crystallinity (b) on polymer volume fraction at different times (in DPD steps,
shown in the legend) during the crystallization process.
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degree of crystallinity, a steady-state regime of logarithmically
slow crystallization process starts at times about 107 DPD time
steps. The kinetic reason for this slowing-down is the network
of entanglements in the concentrated polymer solution (or
even melt after separation from the solvent), so that the full
relaxation time for such a system is expected to be comparable
with reptation time,4 i.e., being of the order tN3. Because in our
simulations the polymer length is N = 103, there is no hope to
reach a true thermodynamic equilibrium in such systems, both
in simulations and in real experiments (crystallizable polymers
always stay semi-crystalline), and we can only discuss the
properties of some quasi-equilibrium steady-state systems with
slow evolution toward morphologies with a higher degree of
crystallinity. The sigmoidal shape of this curve is typical for the
nucleation and growth scenario. However, in our model, we
observed interesting features: the crystallization speed is
almost the same with good accuracy in the steady-state regime
for systems with j from 0.2 to 0.95. This is probably because
the entanglement length Ne is similar for those polymer
systems (see Fig. S9 in the ESI† for time evolution of Ne).

The calculation of Ne was carried out in a similar manner to
the procedure developed by M. Kröger’s group68–71 (this
method gives an average value of Ne for all chains in a system).
In our simulations, we did not observe a considerable increase
of Ne during the whole simulation time (except the very short
time in the beginning). This observation is consistent with the
argument for a long reptation time given above. The entanglement
length increases (i.e., the chains become less entangled) quite fast
only in the beginning of simulations, and afterwards it stays almost
constant for all systems. In the initial configurations, the entangle-
ment length is Ne E 10 for j = 1 and 0.9 and Ne E 70 for j = 0.5.
During the first 100 DPD steps it increases to Ne E 30 for j = 1,
Ne E 40 for j = 0.9 and Ne E 200 for j = 0.5. At the end of
simulation (108 DPD steps), Ne becomes slightly bigger in concen-
trated systems and almost does not change in dilute systems:
Ne E 40 for j = 1, Ne E 60 for j = 0.9 and Ne E 200 for j = 0.5.
This procedure for analysis of entanglement length was already
used previously in studies of polymer crystallization.31,32,72

The time evolution of the average crystallite size (measured
in beads) shows a rather fast growth on times between 105 and
106 DPD steps and much more slow growth on larger times
(Fig. 5b). Interestingly, the largest average cluster size is
achieved for polymer volume fraction in the range j A
[0.7,0.95] (see more discussion below). The data for average
cluster size (used in Fig. 5b and in Fig. 6a below) were obtained
using the cluster size distribution shown in Fig. 7b below (with
a minimal crystallite size cutoff equal to 5 beads in order to
avoid contribution of small crystallites).

Fig. 5c shows the total number of determined crystallites
divided by the polymer volume fraction j and gives more
insight into the crystallization process. On small times, we
observed a sharp increase of the number of crystallites. One can
see a well-defined maximum (local crystallization time t)
around 106 DPD steps for all systems in solutions and around
107 DPD steps for the melt. A pronounced decrease of the
number of crystallites is consistent with the fast growth of

average crystallite size. The initial increase represents the
nucleation process, when many small crystallites (crystalline
seeds) are formed in the system, and this stage of crystallization
starts to saturate at the time moment when the overall degree of
crystallinity starts to increase, Fig. 5a. After that moment the
number of crystallites starts to decrease both due to the process
of merging of small crystallites into larger ones and due to
adding new chain stems from amorphous sub-phase to crystal-
lites (secondary nucleation or growth of crystallites). Merging of
small crystallites occurs most probably due to filling the space
between two crystallites by new chain stems from amorphous
phase which become crystalline but not due to diffusion of
crystallites towards each other. More interestingly, during this
second regime all systems have very similar behavior, and we
suspect even the existence of a universal power-law decrease of
the number of crystallites at late stages of crystallization while
the slope of this decrease is maximal for systems with a

Fig. 7 Squared spatial distance R2 between two beads versus distance n
between them along the chain for initial (black line) and final (blue curve)
conformations of a system with polymer volume fraction j = 0.9 (a). For
the final conformation, dependencies R2(n) are plotted also separately for
crystalline (red curve) and amorphous (green curve) segments (a). Dis-
tribution of length of crystalline segments (stems) in systems with different
polymer volume fraction (shown in the legend) at the end of simulations at
time 108 DPD steps (b).
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polymer volume fraction in the range j A [0.7,0.95], i.e., in
concentrated solutions. To summarize, at the late stages of the
observed crystallization process (after 107 DPD steps) the
degree of crystallinity and the average size of crystallites
increase while the number of crystallites decreases.

The length and time scales available in our simulations allow
the observation of many crystallite seeds in the simulation box
and their growth and merging. In the movie of the system
evolution (see Fig. S10 and movie in the ESI†), we observed both
the addition of chain stems to the lateral faces of growing
crystallites and the diffusion of chain parts inside crystallites
through their end faces, as it was also observed previously in MD
simulations of UA models.8,27,33,34

In Fig. 6, we observed that the average crystallite size (in
beads) is maximal at intermediate values of the polymer volume
fraction j A [0.7,0.95] at large time scales, while the degree of
crystallinity is monotonically decreasing with increasing j at all
times. This feature originates from the competition of two
opposite processes that limit the crystallite growth: (i) at small
concentrations there is a lack of the surrounding polymer
material, while (ii) at high concentrations the entanglement
effect from surrounding chains is so strong that it prevents the
segment diffusion on large distances as well as the local
orientational rearrangement of polymer segments in amorphous
regions (these are two processes, which are necessary for
merging of small crystallites into larger ones).

In order to understand the structure of crystallites, we
studied the conformations of chain segments inside and out-
side crystallites. In Fig. 7a, we plotted the average squared
spatial distance R2 between two monomer units versus the
distance n between them along the chain for the system
configurations in the beginning and at the end of simulation.
Although we presented the data for the system with j = 0.9
polymer, the systems with another polymer volume fraction
demonstrated similar behavior. The initial starting conforma-
tion of all chains in the system was Gaussian, so that the
corresponding dependence lies exactly along the line R2(n) = l2n
(black line), where l is the bond length.

The data for the conformations at the final time of simula-
tion (108 DPD steps) are shown for the entire chains (blue
curve) as well as separately for crystalline (red curve) and
amorphous (green curve) segments. It is clear that the crystal-
line stems have rod-like conformations, and this leads to the
power law dependence R2(n) B n2. Contrary to that, chain parts
consisting of amorphous segments have quite extended con-
formations only on small length scales along the chain, while
on large scales they look like very compact conformations.
Crystalline segments have quite short length (not larger than
30 beads) while the amorphous segments can reach the length
of about 200 beads. The dependence for entire chains (blue
curve), after the steep increasing R2 B n2 shows a plateau
starting at n B 30 (which is approximately the stem length) and
ending at n B 60 (which is approximately two stem lengths),
while the scaling on large distances along the chain (n 4 60 E
Ne) is R2 B n1/2, i.e., R B n1/4. On the scale of the whole chain
(n E 1000) the end-to-end distance does not change too much:

for the initial Gaussian conformation before crystallization,
R2(1000) E 180, and for the final one, R2(1000) E 250.

The observed R B n1/4 scaling means effectively ‘‘more
strongly crumpled’’ conformations on the scales larger than
the stem segment size in a crystallite, in comparison to the
scaling for a single usual crumpled (fractal) globule.37 Scaling R
B n1/4 was first reported for lattice animals73 and can also
mean effectively more dense packing of some interpenetrating
objects like soft spheres or Gaussian blobs. In our systems, we
have the case of more dense packing of hairpins from different
chains (or from the same chain but separated from each other
along the chain) in a single dense crystalline lamella. Hairpins
could be packed more densely than their linear size assumes.
We checked the distribution of the degree of crystallinity along
the chain for the systems with 50 and 100% polymer volume
fractions, see Fig. S11 in the ESI.† We observed significant
peaks at the chain ends, showing that the end monomer units
(about 3 units) have higher chance to be amorphous (due to higher
entropy) and the few next monomer units (about 5–15 units) have
higher chance to be a part of a crystallite. The large central part of
the dependence has a plateau with the value corresponding to the
average degree of crystallinity.

The final distributions of the length of crystallized segments
(stems) for different polymer volume fractions are presented in
Fig. 7b. We observed the exponential Flory-like distribution of
segment lengths (for stems shorter than 20 beads), and these
curves look very similar for all studied systems, especially for
concentrated solutions with polymer volume fractions j A
[0.7,0.9]. We can conclude from this plot that the internal
structure of all crystallites is actually the same for all systems
under study, with approximately the same maximal lamella
thickness around 25–30 monomer units.

In Fig. 8, we plotted the time dependence of the average stem
length at large time scales. The average was calculated over the
distribution shown in Fig. 7b and over the similar distributions

Fig. 8 Dependence of the average stem length on time for systems with
different polymer volume fractions (shown in the legend).
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calculated at time moments 2 � 106 and 107 DPD steps. For the
averaging over distributions we chose the stem size equal to 5 as
the left bound of the averaging interval. In Fig. 8, we see
crystalline lamellar thickening in logarithmic time scale.1–3

4 Conclusions

In this study, we performed coarse-grained DPD computer
simulations of the crystallization process of long semiflexible
polymer chains (of the length N = 1000 monomer units) in
melts and solutions with various polymer volume fractions and
under poor solvent conditions, which is typical for many
polymer processing schemes.51

For this particular process we revealed several general
features (discussed below) which do not depend on the
chemical structure but arise due to universal polymer proper-
ties like chain connectivity, intrachain stiffness and topology/
entanglements.

Our coarse-grained DPD model appropriately modified by a
(tangent-hard-spheres-like) stiffness potential resembles a wide
class of semiflexible polymers in solutions and melts and is
suitable to study general aspects of crystallization in polymers.
We start with a randomly prepared homogeneous configuration
and monitor the crystallization process for a reasonably long
time reaching the later stages of crystallization such as lamellar
thickening. We represent the dependencies of several observable
values on the polymer volume fraction j because this parameter
governs the role of entanglements, e.g., the lamellar thickness
depends on j. Parameters of the model are chosen in such a way
that the pure polymeric melt (j = 1) crystallizes (due to the steric
interactions and intrachain stiffness). In solutions (j o 1), the
orientational ordering of chains and polymer–solvent separation
on local scales (demixing) occur very fast, and this induces
subsequent crystallization (like it was also observed in similar
models for very dilute solutions35).

We have found that the microscopic mechanism of initial
stages of crystallization in concentrated solutions of semiflex-
ible polymers with poor solvent involves the orientational
ordering of polymer chains accompanied by simultaneous
polymer–solvent separation.

We have observed the two-stage (nucleation and growth)
scenario of crystallization for all systems with different polymer
volume fraction j. In the first stage, the precursors of crystal-
lites (seeds) are formed. At the end of this stage, the number of
crystallites reaches its maximal value, and simultaneously a
steep increase of the degree of crystallinity is observed (coin-
cidence of time of these two events is a quite promising result).
In the second stage, the initial crystallites grow and merge into
larger crystallites, and this is observed as a much more slow
steady-state process. This process on a large time scale is
characterized by the same logarithmic time dependence of
the degree of crystallinity for polymer volume fractions j 4
0.5. Merging of crystallites occurs mostly also due to crystallite
growth which leads to filling the space (gap) between two
crystallites by parts of chains from amorphous regions which

become new crystalline stems, i.e., intermediate amorphous
regions became crystalline.

The overall degree of crystallinity at the end of simulation
decreases with increasing the polymer volume fraction in the
system. There is a non-monotonous dependence of the average
crystallite size on the polymer volume fraction j. We suppose
that j A [0.7,0.95] is the optimal polymer volume fraction in a
sense of balance between the available polymer material to
build crystallites and chain entanglements preventing from
crystallite growth and merging.

A lamella consists of many rod-like stems with a size of
about 20–30 monomer units, and they are hexagonally packed.
We observed logarithmic law of lamellar thickening. Each
crystallite (lamella) can consist of different chains and each
chain can participate in several crystallites (lamellae). Primary
nucleation happens on very short time scales; we have not
studied it in detail and it will be the topic of further research.

Finally, we would like to make a few more remarks. Some
of our results are not new and just confirm that our model
is suitable to study polymer crystallization. But, all our
conclusions on the dependence of different parameters of
crystallites (their size, number, length distribution of stems)
on the polymer volume fraction are new and bring physical
insights into polymer crystallization in poor solvent solutions
of semiflexible polymers.
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32 C. Luo, M. Kröger and J.-U. Sommer, Macromolecules, 2016,

49, 9017–9025.
33 M. Anwar, F. Turci and T. Schilling, J. Chem. Phys., 2013,

139, 214904.
34 M. Anwar and T. Schilling, Polymer, 2015, 76, 307–312.
35 M.-X. Wang, Phys. Lett. A, 2015, 379, 2761–2765.
36 J. Morthomas, C. Fusco, Z. Zhai, O. Lame and M. Perez,

Phys. Rev. E, 2017, 96, 052502.
37 A. Y. Grosberg, S. K. Nechaev and E. I. Shakhnovich, J. Phys.,

1988, 49, 2095–2100.
38 A. Chertovich and P. Kos, J. Chem. Phys., 2014, 141, 134903.
39 W. Hu, D. Frenkel and V. B. F. Mathot, Macromolecules,

2003, 36, 8178–8183.

40 W. Hu and D. Frenkel, J. Phys. Chem. B, 2006, 110,
3734–3737.

41 W. Hu and T. Cai, Macromolecules, 2008, 41, 2049–2061.
42 L. Onsager, Ann. N. Y. Acad. Sci., 1949, 51, 627–659.
43 A. Khokhlov and A. Semenov, J. Stat. Phys., 1985, 38,

161–182.
44 R. D. Groot and P. B. Warren, J. Chem. Phys., 1997, 107,

4423–4435.
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