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A B S T R A C T   

It has long been established that the coherent scattering intensity of neutrons by isotropic mixtures of hydrog-
enous and deuterated polymers of matching molecular weights is, to the first approximation, proportional to the 
single-chain structure factor of the polymer chain. The validity of this fundamental relation for equilibrium, 
undeformed polymer melts is well supported by the extensive experimental and theoretical investigations over 
the past several decades. The generalization of this relation to the case of nonequilibrium, deformed polymer 
melts, however, is not a trivial one. Despite its widespread usage in small-angle neutron scattering (SANS) studies 
of deformed polymer melts, the assumed proportionality between coherent scattering intensity and single-chain 
structure factor has received very little experimental scrutiny. This work quantitatively examines this issue 
through spherical harmonic expansion analysis of the anisotropic SANS spectra of deformed polystyrene melts of 
different levels of deuterium labeling. It is shown that the classical assumption works extremely well over a wide 
range of scattering wavevectors, where the isotropic component of the SANS spectrum and the leading term of 
structural anisotropy vary by more than two orders of magnitude.   

1. Introduction 

Small-angle neutron scattering (SANS) is a powerful experimental 
technique for examining the conformational changes of polymers under 
flow and deformation and has been widely applied in rheological studies 
of polymer solutions [1–3] and melts [4–19]. For isotopically labeled 
polymer melts consisting of hydrogenous and deuterated chains of 
comparable lengths, extensive experimental and theoretical studies 
have shown that the coherent scattering intensity from such systems in 
the quiescent state is proportional to the single-chain structure factor 
(form factor) of the polymer. This important result has been generalized 

to the case of nonequilibrium state – polymers under flow and defor-
mation. Indeed, it has been the working hypothesis in the past 40 years 
or so that the coherent scattering intensity Icoh(Q) from deformed, 
isotopically labeled polymer melts directly reflects the anisotropic 
single-chain structure factor Schain(Q): 

Icoh(Q)∝Schain(Q) (1) 

Despite the central role of this assumption in SANS studies of poly-
mer rheology, there has been only one experimental study that explicitly 
examines its validity [20]. Additionally, this early pioneering work 
suffers a few drawbacks,1 and has not completely resolved the issue. 
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Taking advantage of the spherical harmonic expansion (SHE) technique 
[4,5,21–28], this study re-examines the aforementioned fundamental 
assumption in small-angle neutron scattering investigations of deformed 
polymers in a quantitative and rigorous manner. From a scientific 
viewpoint, the contributions of this work are threefold. First, the SHE 
method allows one to extract and quantify the isotropic and anisotropic 
components of the 2D SANS spectra over a wide range of scattering 
wavevectors. This provides a robust route to rigorously examining the 
fundamental assumption in small-angle neutron scattering studies of 
deformed polymer melts [Eq. (1)]. Second, we explicitly show that the 
samples for the scattering investigation indeed exhibit identical rheo-
logical behavior, in both the linear and nonlinear viscoelastic regimes. 
Lastly, our experiments are based on carefully designed model systems: 
the degrees of polymerization of the deuterated and hydrogenous 
components differ by only a few percent, with their polydispersity index 
(PDI) extremely close to unity. These improvements allow us to draw a 
definitive conclusion on the validity of Eq. (1), removing any lingering 
doubt about this long-held assumption. 

Besides the apparent scientific motivation, this investigation also 
serves a pedagogical purpose. While the application of small-angle 
neutron scattering to polymer rheology has a long history, some prac-
titioners are not familiar with the theoretical framework for formulating 
and interpreting experiments. In particular, many systems of practical 
interest, from the point of view of scattering, are far more complicated 
than the classical case of isotopically labeled melts. By dissecting the 
small-angle neutron scattering theory and experiment involving a sim-
ple system of hydrogenous and deuterated chains of identical degree of 
polymerization, we expose the underlying fabric for data interpretation. 
This exercise may serve as a useful reference for future studies of com-
plex systems, where analysis and interpretation of anisotropic SANS 
spectra can be much more challenging. 

2. Theoretical background 

2.1. Traditional theoretical argument 

Before delving into the experimental details, we pause to review the 
traditional theoretical argument that leads to Eq. (1) for deformed 
polymers. As a special case, the validity of Eq. (1) has been extensively 
tested in undeformed, isotropic polymer melts [20,29,30], where the 
scattering intensity has no dependence on the polar angle. Specifically, 
the coherent scattering intensity from isotopically labeled polymer melts 
consisting of hydrogenous and deuterated chains of identical lengths is 
given by 

Icoh(Q)= (bD − bH)
2ϕ(1 − ϕ)nsegNS(Q), (2)  

where bD and bH are the coherent scattering length of the deuterated and 
hydrogenous chain segments (“repeating units”), respectively, ϕ is the 
volume fraction of the hydrogenous chains, nseg is the polymer segment 
number density, and N is the degree of polymerization of the polymer 
chain (i.e., number of segments per chain). S(Q) is the single-chain 
structure factor of the polymer chain: S(Q) ≡ Schain(Q). From this 
point onwards, we will drop the subscript “chain” and use S(Q) to denote 
the single-chain structure factor in this article, unless otherwise stated. 
Since the scattering intensity from an isotropic sample does not depend 
on the orientation of Q, Eq. (2) is often written as Icoh(Q) =

(bD − bH)
2ϕ(1 − ϕ)nsegNS(Q), where Q is a scalar. As a classical formula, 

Eq. (2) has been derived and re-derived numerous times in the literature 
by different authors through various methods [31–35]. Here we review 
the argument presented by Higgins and Benoît in their book on polymers 
and neutron scattering [32] and point out that no explicit assumption 
about the sample anisotropy has been made in this derivation. In other 
words, their argument can be applied to both isotropic and deformed 
polymers. However, we must realize that this fact alone does not guar-
antee the validity of Eq. (2) for the deformed state. As a cautionary tale, 

we will demonstrate at the end of this article that a similar but more 
general formula for polymer blends is valid for the isotropic state but 
fails when the polymers are deformed. In this case, there is no explicit 
assumption about the sample anisotropy in the theoretical argument, 
either. Because of the subtlety of the issue, a direct and careful experi-
mental examination of Eq. (2) appears rather necessary. 

For a mixture of hydrogenous (ordinary) and deuterated chains, the 
coherent scattering intensity for a given volume can be expressed as 

Icoh(Q)= b2
HSHH(Q) + 2bHbDSHD(Q) + b2

DSDD(Q), (3)  

where Sαβ is the partial structure factor defined as Sαβ(Q) =
∑Nα

i=1
∑Nβ

j=1e− iQ⋅(ri − rj), with Nα and Nβ being the total number of chain 
segments for species α and β, respectively. Under the assumption of 
incompressibility, which is typically true for polymeric liquids on large 
length scales, we have ΔnH(r)+ ΔnD(r) = 0, where ΔnH and ΔnD are the 
fluctuations of number density for the hydrogenous and deuterated 
chain segments, respectively. Here, the implicit assumption is that the 
molecular volumes of the hydrogenous and deuterated segments are the 
same. With this incompressibility condition, it can be shown that 

SHH(Q)= SDD(Q) = − SHD(Q) (4) 

The details of this fundamental result for small-angle neutron scat-
tering are further discussed in Appendix A. Using Eq. (4), we can rewrite 
Eq. (3) as 

Icoh(Q)= (bH − bD)
2SHH(Q)= (bH − bD)

2SDD(Q)= − (bH − bD)
2SHD(Q)

(5) 

As is well known, a more general form of Eq. (5) can be conveniently 
expressed in terms of scattering length density, when the molecular 
volumes of the hydrogenous and deuterated chain segments are 
different. Evidently, this subtle point has no essential bearing on the 
current problem, as it only involves the proportionality constant be-
tween Icoh(Q) and Sαβ(Q). 

As shown in Appendix A, Eq. (5) is supposed to be valid for both 
isotropic and deformed states. Furthermore, in the case of mixtures of 
hydrogenous and deuterated chains of identical degree of polymeriza-
tion, Eq. (5) directly leads to the prediction that Icoh(Q)∝Schain(Q), when 
the mixing of the two polymers is ideal (see Appendix B), without any 
requirement about structural symmetry. In other words, the classical 
theory asserts that for incompressible, ideally mixed hydrogenous and 
deuterated polymers of identical chain lengths, the coherent scattering 
intensity is always proportional to the single-chain structure factor, 
regardless of the deformation state. As pointed out in the Introduction, 
despite the extensive experimental evidence supporting Eq. (1) in the 
isotropic, equilibrium state, the anisotropic, nonequilibrium case has 
not been adequately studied. From a theoretical perspective, an obvious 
lingering question is whether non-ideal mixing of hydrogenous and 
deuterated chains would pose a serious problem for data interpretation 
in the deformed state. 

2.2. Spherical harmonic expansion analysis 

Boué’s previous neutron scattering study on this subject [20] ex-
amines the intensities from uniaxially stretched polymers in the parallel 
and perpendicular directions. This approach, however, does not fully 
exploit the two-dimensional SANS spectra of the deformed polymers [5]. 
The current investigation takes advantage of the spherical harmonic 
expansion framework [4,5,21–28], which permits quantitative analysis 
of small-angle scattering spectra. For the current problem of small-angle 
neutron scattering by deformed polymers, the intensity at low Q is 
completely dominated by coherent scattering. We define a structure 
factor S(Q) of the polymer melt: S(Q) ≡ I(Q)/ lim

Q→0
Iiso(Q). S(Q) takes on 

the meaning of the single-chain structure factor when Eq. (2) applies. 
More generally, S(Q) can be simply regarded as a normalized scattering 
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intensity, as the validity of Eq. (2) is the very subject of this investiga-
tion. For uniaxial extension, S(Q) can be expanded by spherical har-
monics as 

S(Q) =
∑

l:even
S0

l (Q)Y0
l (θ,φ), (6)  

where Y0
l (θ,φ) is the real spherical harmonic function of degree l and 

order zero and S0
l (Q) is the corresponding Q-dependent expansion co-

efficient. Fig. 1 illustrates the details of the scattering geometry, where 
the stretching direction coincides with the z axis and the detector plane 
is parallel to the xz plane. As explained in Ref. [5], the relevant spherical 
harmonics for uniaxial extension are essentially all the even degree 
Legendre functions: Y0

l (θ, φ) = Θl(θ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅
2l + 1

√
Pl(cos θ), and the 

expansion coefficients S0
l (Q) can be straightforwardly obtained from the 

2D SANS spectra as S0
l (Q) = 1

2

∫ π

0
sin θdθIxz(Q,θ)Θl(θ)/ lim

Q→0
Iiso(Q). 

2.3. Design philosophy of the experiment 

To examine the assumption that the anisotropic coherent scattering 
intensity from isotopically labeled, deformed polymer melts is propor-
tional to the single-chain structure factor, i.e., Icoh(Q)∝Schain(Q), we 
perform small-angle neutron scattering experiments on samples with 
various h/d ratios, uniaxially stretched under identical conditions. In our 
current context, the measured scattering intensity I(Q), according to the 
traditional theoretical argument, can be expressed in the following form: 

I(Q,ϕ)= I0(ϕ)Schain(Q) + Ibkg(ϕ), (7)  

where the I(Q, ϕ), zero-angle coherent scattering intensity I0(ϕ), and 
“background” Ibkg(ϕ) depend on the volume fraction of the hydrogenous 
polymer, but the single-chain structure factor Schain(Q) does not. 
Therefore, our goal is to test whether the apparent anisotropic single- 
chain structure factor, defined as S(Q) ≡ [I(Q) − Ibkg]/I0, is indeed in-
dependent of the sample composition. The previous investigation by 
Boué and coworkers [20] examined the structures of S(Q) only in par-
allel and perpendicular directions to stretching, without a complete 
analysis of the 2D SANS spectra. Additionally, their inverse intensity 
plot (1/I(Q) vs. Q2) placed emphasis on the high-Q region, making it 
difficult to resolve the behavior at low Qs. In contrast, by employing the 
spherical harmonic expansion technique outlined in the preceding sec-
tion, this study quantitatively surveys the full anisotropic structures in a 
broad range of scattering wavevectors. Specifically, we will compare the 
expansion coefficients S0

l (Q) of different samples to see if the degree of 
isotope labeling has any impact on the result. 

3. Materials and methods 

3.1. Sample preparation 

Our experimental system is a blend of deuterated (d-PS) and hy-
drogenous polystyrenes (h-PS) of matching degree of polymerization. 
The deuterated polystyrene (with Mw = 253 kg/mol and Mn = 252 kg/ 
mol) was synthesized by anionic polymerization in benzene with sec- 
butyllithium as the initiator. The hydrogenous polystyrene (with Mw =

222 kg/mol and Mn = 218 kg/mol) was purchased from Polymer Source. 
The h-PS and d-PS are dissolved in toluene at five different h/d ratios 
(2:98, 4:96, 8:92, 16:84, and 32:68) and precipitated in excess meth-
anol. The resulting blends were dried in a vacuum oven first at room 
temperature for approximately 6 h and then at 130 ◦C for more than 12 h 
(overnight) to completely remove the residual solvent. The linear 
viscoelastic properties of these polymer mixtures were characterized by 
small-amplitude oscillatory shear measurements in the temperature 
range from 120 to 200 ◦C on a DHR2 rheometer (TA Instruments) with 
parallel-plate geometry (8 mm in diameter). The temperature was 

controlled by DHR2’s convection Environment Test Chamber with ni-
trogen as the gas source. 

To prepare for the small-angle neutron scattering experiments, the 
isotopically labeled polystyrenes were molded into rectangular speci-
mens on a Carver hydraulic press at 200 ◦C. They were then uniaxially 
stretched on an RSA-G2 Solid Analyzer with a constant engineering 
strain rate of 0.02 s− 1 (i.e., constant crosshead velocity) to a stretching 
ratio of λ = 1.8 at 125 ◦C. Immediately after the deformation, cold ni-
trogen gas were introduced to the convection oven of the RSA-G2 to 
quenched the stretched sample into a glassy state. According to the es-
timates presented in Section 4, the longest chain relaxation time τ and 
the Rouse relaxation time τR of the polystyrene2 are 6.87 × 103 and 279 
s, respectively, at 125 ◦C. As a result, the instantaneous Rouse Weis-
senberg number ε̇τR was greater than unity throughout the stretching 
experiment. Additionally, the long relaxation times ensured that mo-
lecular relaxation was negligible during the quenching procedure. 

3.2. Small-angle neutron scattering 

Small-angle neutron scattering measurements of both the isotropic 
and deformed polystyrene samples were performed on the EQ-SANS 
beamline of the Spallation Neutron Source (Oak Ridge, TN). The scat-
tering geometry is shown in Fig. 1, where the stretching direction is 
along the z axis and the flat surfaces (xz plane) of the rectangular sample 
are perpendicular to the incident neutron beam. The polymer sample 
was held in place by two quartz windows in a standard demountable 
titanium sample cell. A total of three instrument configurations were 

used to cover a Q range from approximately 0.004 to 0.2 Å
− 1

. The 
measured intensity was corrected for sample transmission, sample cell 
scattering, detector background and sensitivity, and placed on the ab-
solute scale by using measurement of a standard sample. 

4. Results and discussion 

4.1. Equilibrium properties 

To improve upon the previous effort [20] to establish the validity of 
Eq. (1) in the nonequilibrium state, we first try to match the length of the 
hydrogenous and deuterated chains as closely as possible. Since the 
rheology of entangled polymers is sensitive to molecular weight, 
mismatch in chain length can result in different rheological responses as 
we vary the h/d ratio of the samples. Fig. 2 shows the dynamic moduli 
[G’(ω) and G′′(ω)] of the polystyrene samples of different h/d ratios, 
constructed by using the Time-Temperature Superposition (TTS) Prin-
ciple [36]. Evidently these five samples exhibit nearly identical linear 
viscoelastic spectra. We report below only the molecular characteristics 
of one of the samples, the PS mixture with h/d = 16:84. The rubbery 
plateau modulus (G0

N), determined from the inflection point of G’(ω), is 
approximately 0.26 MPa. The relation Me = ρRT/G0

N gives us an 
entanglement molecular weight Me of 12.3 kg/mol and an average en-
tanglements per chain (Z ≈ Mw/Me) of 18. From the crossover frequency 
ωc of the storage and loss moduli, the longest chain relaxation time is 
estimated to be τ ≈ ω− 1

c ≈ 6.87 × 103 s at 125 ◦C. On the other hand, the 
Rouse relaxation time τR, calculated using Osaki’s formula [37,38], is 
279 s at the same temperature. 

Consistent with the linear viscoelastic data, the SANS measurements 
show that apart from different levels of isotope labeling, these samples 
have almost exactly the same melt structures in the equilibrium state 
(Fig. 3). Additionally, the data can be well described by the classical 

2 Since the chain lengths of the h-PS and d-PS are closely matched, we do not 
make a distinction between the two polymers here and ignore the subtle 
changes of relaxation times with the h/d ratio. This simplification avoids 
redundancy in the discussion. 
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Debye function: 

I(Q)= I0gD
(
Q2R2

G

)
+ Ibkg, (8)  

where gD(x) = 2
x2 (e− x + x − 1). The resulting radii of gyration (RG) from 

the Debye fits are nearly identical for the five samples: 132 Å for the h/d 
= 2:98 sample, 133 Å for 4:96, 128 Å for 8:92, 132 Å for 16:84, and 138 
Å for 32:68. And the zero-angle scattering intensity I0 scales with ϕ(1 −

ϕ), as expected (inset of Fig. 3). These results are, not surprisingly, in 
line with the previous investigations in the literature [20,29,30]. The 
observed low-Q upturn in the h/d = 2:98 and 4:96 samples might be 
attributed to the presence of micro-sized voids [20]. 

4.2. Response under deformation 

Having verified the basic properties of the polystyrene melts in the 
equilibrium state, we now turn own attention to the deformed case. 
Fig. 4 shows the engineering stress σE as a function of engineering strain 
εE during stretching for all the samples. In accordance with our expec-
tation, these samples exhibit identical stress-strain curves during the 
entire deformation process. As mentioned in the materials and methods 
section, the samples were rapidly quenched into a glassy state at the end 
of uniaxial extension, and the frozen melt structures at λ = 1 + εE = 1.8 
were examined by the SANS experiments. (Due to the limitation of SANS 
counting statistics and the size of RSA-G2 environmental chamber, λ =

1.8 was a stretching ratio at which the experiment could be comfortably 
performed.) The (apparent) 2D single-chain structure factor, defined as 
S(Qx, Qz) = [I(Qx, Qz) − Ibkg]/I0, is presented in Fig. 5 for the five 
deformed samples with different h/d ratios. Here, the background Ibkg 

and the zero-angle scattering intensity I0 are obtained from the Debye 
fitting of the equilibrium SANS spectrum in Fig. 3. Upon visual inspec-
tion, we see that these properly subtracted and normalized 2D spectra 
indeed look identical to each other, in agreement with Eq. (1). 

To show that the samples indeed have identical anisotropic melt 
structures, we may select the S(Qx,Qz) of one sample as the reference 
and subtract it from the spectra of other samples. However, this seem-
ingly simple method does have a few drawbacks. First, since it is 
nontrivial to use logarithmic scales for Q values, the low-Q information 
is always highly compressed on such 2D plots. Second, the S(Q) of this 
system decays rapidly as the Q increases. Presenting the differential 
spectra on either linear or logarithmic scales has its own problems. 
Finally, the use of “colormap” is a delicate art and highly subjective. 
Depending on the color mapping scheme, the same data can create 
rather different visual impressions. While we by no means are advo-
cating the spherical harmonic expansion technique as the only way of 
analyzing anisotropic 2D SANS spectra, it does appear to be a more 
tractable method for the current problem. 

To bring our analysis to a more quantitative level, we compute the 

Fig. 1. Illustration of the scattering geometry. The stretching direction is along the z axis and the two largest flat surfaces (xz plane) of the rectangular sample are 
perpendicular to the incident neutron beam. θ is the polar angle from the positive z axis with θ ∈ [0, π] and φ is the azimuthal angle in the xy plane from the x axis 
with φ∈ [0, 2π). 

Fig. 2. Linear viscoelastic spectra of the polystyrene samples of different h/ 
d ratios, constructed by using the Time-Temperature Superposition (TTS) 
Principle. aT is the shift factor for the TTS procedure. The reference tempera-
ture is 125 ◦C. Solid symbols: G’(ω). Open symbols: G′′(ω). 

Fig. 3. Small-angle neutron scattering spectra of the isotropic, undeformed 
polystyrene samples of different h/d ratios. Solid lines: Fits by the Debye 
function [Eq. (8)]. Inset: Zero-angle scattering intensity I0 as a function of ϕ(1 −

ϕ). ϕ: Volume fraction of the hydrogenous polymer. 
Fig. 4. Engineering stress σE as a function of engineering strain εE during 
stretching for all the samples at 125 ◦C. 
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spherical harmonic expansion coefficients of the single-chain structure 
factor, using the procedure detailed in section 2.2. The first three 
expansion coefficients for the uniaxial symmetry, S0

0(Q), S0
2(Q), and 

S0
4(Q), are shown in Fig. 6 for all the samples. As explained in our pre-

vious work [5], the spherical harmonic expansion analysis is model in-
dependent and the determination of S0

l (Q) is also independent of each 
other because of the orthogonality of the spherical harmonic functions.3 

In other words, the values of S0
0(Q), S0

2(Q), and S0
4(Q) are not affected by 

the truncation of the expansion at a finite degree l. Higher degree 
expansion coefficients are not presented here, as their magnitude is 
rather small. As a trivial fact, we note that S0

0(Q) is the isotropic 
component of the single-chain structure factor S(Q), whereas S0

2(Q) is 
the leading anisotropic expansion coefficient. Additionally, it is perhaps 
helpful to point out that background subtraction has no effect on S0

2(Q), 
because Ibkg is assumed to be isotropic and therefore only affects S0

0(Q). 
Consistent with our visual “impression” from Fig. 5, the expansion 

coefficients from the 2D SANS spectra, S0
0(Q), S0

2(Q), and S0
4(Q), are 

nearly identical for all the five samples [Fig. 6 (a)]. As discussed earlier, 
the slight low-Q upturn in S0

0(Q) of the h/d = 2:98 and 4:96 samples 
might be attributed to the presence of micro-sized voids. Further plot-
ting the magnitude of S0

0(Q) and S0
2(Q) on a logarithmic scale [Fig. 6 (b) 

and (c)], we clearly see that the data from different samples fall on top of 
each other over a wide Q range, when S0

0(Q) and 
⃒
⃒S0

2(Q)
⃒
⃒ vary more than 

two orders of magnitude. This striking agreement unquestionably sup-
ports the validity of Eq. (1) for mixtures of hydrogenous and deuterated 
polymers of matching chain lengths in the nonequilibrium state, 
providing a strong experimental proof for this long-held belief in the 
community. Together with the evidence from the earlier investigation 
[20] and detailed theoretical justifications in Appendices A and B, this 

study should present a final and convincing case for this fundamental 
assumption in small-angle neutron scattering studies of deformed 
polymer melts. 

5. Conclusions and additional remarks 

In summary, this work critically examines a fundamental assumption 
in small-angle neutron scattering studies of deformed polymer melts. By 
combining anionic polymerization, judiciously designed sample prepa-
ration procedures, and the spherical harmonic expansion technique, we 
quantitatively analyze the small-angle neutron scattering spectra from a 
series of deformed polymer melts that differ only in the degree of 
deuterium labeling. We show that the measured coherent scattering 
intensity is indeed proportional to the single-chain structure factor for 
mixtures of hydrogenous and deuterated polymers of matching chain 
lengths, even in the deformed state. 

Some readers may still wonder why we have spent so much effort to 
carefully examine, and in some sense re-examine, this old and seemingly 
closed case (depending on their viewpoint) in SANS studies of polymer 
melts? We now offer some further explanation. It is well known that for 
isotropic polymer melts, Eq. (2) can be derived from a more general 
result for binary polymer blends on the basis of the random phase 
approximation (RPA) [31]: 

(bD − bH)
2nseg

I(Q)
=

1
NHϕHSH(Q)

+
1

NDϕDSD(Q)
− 2χ, (9)  

where χ is the Flory interaction parameter, and the lengths NH and ND of 
the hydrogenous and deuterated chains are generally not equal. Setting 
χ = 0 and NH = ND, we trivially recover Eq. (2). Interestingly, SANS 
experiments have demonstrated that this RPA formula [Eq. (9)] is 
generally invalid in the deformed state [10], due to the phenomenon of 
viscoelastic phase separation [39–44]. On the other hand, this study 
shows that Eq. (2) holds extremely well for mixtures of hydrogenous and 
deuterated polymers of matching chain lengths even in the 

Fig. 5. Two-dimensional single-chain structure factors log10 S(Qx,Qz) of the stretched polystyrene samples of different h/d ratios: (a) 2:98, (b) 4:96, (c) 8:92, (d) 
16:84, and (e) 32:68. As indicated in the main text, the single-chain structure factor S(Qx,Qz) is determined as S(Qx,Qz) =

[
I(Qx,Qz) − Ibkg

]/
I0. 

3 In general, computing Sm
l (Q) from small-angle scattering experiments is a 

nuanced issue. Please see Ref. [28] for a further discussion. 
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nonequilibrium state. Therefore, as long as the polymeric mixtures of 

matching molecular weights are far away from the phase boundary in 
the equilibrium state, it is typically not essential to consider the inter-
action parameter χ in the deformed state. (While this is a logical 
conclusion from our study, the readers should take this recommendation 
with caution.) Additionally, viscoelastic phase separation [39–42] does 
seem to be main factor for the failure of the general RPA formula [Eq. 
(9)] under deformation. Because of the absence of viscoelastic asym-
metry in mixtures of polymers of matching chain lengths, Eq. (2) re-
mains valid in the deformed state, just as indicated by the theoretical 
analysis (Appendices A and B) and current and past experimental 
results. 
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Appendix A. Small-Angle Neutron Scattering by Incompressible Liquids 

We reproduce here the derivation of the fundamental theorem for small-angle neutron scattering by incompressible liquids [Eq. (5)]. Although this 
is a well-known result, we assume that not all readers are familiar with the mathematical details of its derivation. By exposing the underlying 
mathematics, we show that this theorem is valid for incompressible liquids in both isotropic and deformed states. Our proof below is slightly more 
detailed than the one presented in the classical textbook by Higgins and Benoît [32]. 

For the convenience of the derivation below, we rewrite the partial structure factor Sαβ(Q) in the continuous form: 

Sαβ(Q)=

∫∫

nα(u)nβ(r+ u)e− iQ⋅rdudr =
∫∫

K(r)e− iQ⋅rdr, (A1)  

where nα is the number density of species α. Focusing on the characteristic function K(r) ≡ ∬ nα(u)nβ(r + u)du, we see that 

K(r)=
∫∫

nα(u)nβ(r+ u)du=

∫∫

[Δnα(u)+ nα][Δnβ(r+ u)+ nβ]du, (A2)  

where Δnα(r) represents the spatial fluctuation of number density of species α: Δnα(r) ≡ nα(r) − nα. Expanding the product in Eq. (A2), we have 

K(r)=T1 + T2 + T3 + T4, (A3)  

with T1 = ∬ Δnα(u)Δnβ(r + u)du, T2 = nαnβ∬ du, T3 = nβ∬ Δnα(u)du, and T4 = nα∬ Δnβ(r + u)du. The third term T3 is zero by definition. And the 
fourth term T4 is also zero in most practical cases because it computes the total density fluctuation within a “shifted” volume. Physically, whether we 

Fig. 6. (a) Spherical harmonic expansion coefficients, S0
0(Q), S0

2(Q), and S0
4(Q)

of the stretched polystyrene samples of different h/d ratios. (b) S0
0(Q) presented 

on a double-logarithmic scale. (c) Absolute value of S0
2(Q). 
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consider the volume defined by uor u+ rshould not change the average density fluctuation, which is zero for incompressible liquids. Therefore, we 
have 

K(r)=
∫∫

Δnα(u)Δnβ(r+u)du + nαnβV. (A4) 

Substituting this result to Eq. (A1) yields 

Sαβ(Q)=

∫∫

Δnα(u)Δnβ(r+u)e− iQ⋅rdudr + nαnβV(2π)3δ(Q). (A5) 

Since the last term can be discarded for any practical considerations, we have: 

Sαα(Q) ≈

∫∫

Δnα(u)Δnα(r+ u)e− iQ⋅rdudr, (A6)  

Sαβ(Q) ≈

∫∫

Δnα(u)Δnβ(r+ u)e− iQ⋅rdudr. (A7) 

In the current context, we consider the case of a binary mixture, consisting of hydrogenous and deuterated molecules. The incompressibility 
condition implies ΔnH(r)+ ΔnD(r) = 0. Therefore 

SHH(Q)+ SHD(Q)≈

∫∫

ΔnH(u)[ΔnH(r+u)+ΔnD(r+ u)]e− iQ⋅rdudr= 0. (A8) 

Similarly, we can show that SDD(Q)+ SHD(Q) = 0. The coherent scattering intensity from a two-component system can be formally expressed as 
Icoh(Q) = b2

HSHH(Q)+ 2bHbDSHD(Q)+ b2
DSDD(Q). Applying the above results obtained from the incompressibility condition, the scattering intensity can 

be rewritten as 

Icoh(Q)= (bH − bD)
2SHH(Q)= (bH − bD)

2SDD(Q)= − (bH − bD)
2SHD(Q). (A9) 

The presented derivation contains nothing original. The goal of this exercise is to emphasize, by rigorous mathematics, that the above fundamental 
relation [Eq. (A9)] holds in both isotropic and deformed states. In reality, no liquid is completely incompressible. The consequence of finite 
compressibility has been considered and discussed by a number of authors [45,46]. However, the present experimental study, along many others in the 
literature, shows that for isotopically labeled polymer melts the incompressibility assumption works well and there seems to be no need to consider the 
finite compressibility of polymeric liquids. 

Appendix B. Scattering from Isotopically Labeled Polymer Melts 

Now we further consider the application of the above theorem to small-angle neutron scattering by isotopically labeled incompressible polymer 
melts, consisting of hydrogenous and deuterated chains of identical degree of polymerization [32]. Once again, the analysis itself contains nothing 
original. Our goal is to highlight, by dissecting the classical proof, the basic assumptions that need to be re-examined in the context of flow and 
deformation. Following the approach of Higgins and Benoît [32], one can separate the interchain and intrachain contributions to the partial structure 
factors as: 

SHH(Q)=MHN2
HSHH,intra(Q) + M2

HN2
HSHH,inter(Q), (B1)  

SDD(Q)=MDN2
DSDD,intra(Q) + M2

DN2
DSDD,inter(Q), (B2)  

SHD(Q)=MHMDNHNDSHD,inter(Q), (B3)  

where Mα is the number of chains of species α in the system and Nα is the number of segments per chain, commensurate with the coherent scattering 
length calculation. Let M be the total number of molecules and ϕ the volume (molar) fraction of the hydrogenous polymer. Furthermore, in the case of 
ideal mixing, we have SHH,inter(Q) = SDD,inter(Q) = SHD,inter(Q) and SHH,intra(Q) = SDD,intra(Q). The above equations can therefore be rewritten as 

SHH(Q)=ϕMN2Sintra(Q) + ϕ2M2N2Sinter(Q). (B4)  

SDD(Q)= (1 − ϕ)MN2Sintra(Q) + (1 − ϕ)2M2N2Sinter(Q). (B5)  

SHD(Q)=ϕ(1 − ϕ)M2N2Sinter(Q). (B6) 

It follows that 

ϕMN2Sintra(Q)+ϕ2M2N2Sinter(Q)= − ϕ(1 − ϕ)M2N2Sinter(Q), (B7)  

which further yields 

Sintra(Q)= − MSinter(Q). (B8) 

Finally, we have 

Icoh(Q)= (bH − bD)
2ϕ(1 − ϕ)MN2Sintra(Q). (B9) 

It should be pointed out that Eq. (2) as well as the rest of the main text uses “absolute intensity” whereas “nominal (total) intensity” is adopted in 
the appendices. These two kinds of intensities differ by a normalization constant, which is the volume of the system. With this in mind, it is easy to see 

Y. Wang et al.                                                                                                                                                                                                                                   



Polymer 204 (2020) 122698

8

that Eq. (B9) leads directly to Eq. (2). 
Mathematically, the above derivation involves only elementary arithmetic and is not affected by deformation. Additionally, the basic assumptions 

that SHH,inter(Q) = SDD,inter(Q) = SHD,inter(Q) and SHH,intra(Q) = SDD,intra(Q) do not require polymers to be in the isotropic state. However, in making 
these assertions, we do implicitly assume that isotopic labeling, i.e., deuteration, does not affect the structure and dynamics of the system in any 
significant way. In other words, the mixing of the hydrogenous and deuterated components is ideal or nearly ideal. This is a reasonable assumption 
when the system is far away from the phase boundary. 
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