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 Oppositely charged polymers can undergo the process of complex coacervation, which refers to a liquid–liquid
phase separation driven by electrostatic attraction. These materials have demonstrated considerable promise
as the basis for complex, self-assembledmaterials. In this review, we provide a broad overview of the theoretical
tools used to understand the physical properties of polymeric coacervates. In particular, we discuss historic the-
ories (Voorn–Overbeek, Random Phase Approximation), and then describe recent developments in the field
(Field Theoretic, Counterion Release, Molecular Simulation, and Polymer Reference Interaction Site Model
methods). We provide context for these methods, and map out the patchwork of theoretical models that are
used to describe a diverse array of coacervate systems. We use this review of the literature to clarify a number
of important theoretical challenges remaining in our physical understanding of complex coacervation.
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1. Introduction

Charged polymeric materials have a long and established history in
the field of polymer science [1,2]. Understanding how the presence of
Coulombic interactions affects long chain molecules remains a vibrant
field of research [3,4], which is relevant to almost every field of polymer
science. Indeed, for fields such as polymers for energy materials [5,6]
and the physics of biological macromolecules [7–11] an understanding
of charges is foundational. Theoretical challenges persist in the field of
polymer electrostatics that have motivated their study for decades
[12]. In particular, there is a convergence of a wide array of length
scales; Coulomb interactions are long-range, and often compete with
molecular interactions at short length scales [12]. This leads to competi-
tions between steric, electrostatic, and entropic considerations that are
challenging to describe both theoretically and conceptually.

An emerging class of materials that embodies these longstanding
challenges in polymer electrostatics are systems known as ‘polymeric
complex coacervates’ [8,10,13–17]. Coacervates consist of oppositely
charged species that assemble in an aqueous solution, typically with
a high concentration of salt (0.1–4 M) [13–19]. While any number
of charged species can form these assemblies, including proteins,
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surfactants, and colloids [15,19,20] [21], we will focus in this review on
polymer-based coacervates. These mixtures undergo a liquid–liquid
phase separation, where one phase is polymer dilute and the other is
polymer-rich (Fig. 1a) [13,16]. The polymer-rich phase is essentially a
transient gel, with the oppositely charged polymers forming temporary,
electrostatic crosslinks.

The utility of complex coacervate materials is well established. Orig-
inally studied by Bungenberg de Jong and Kruyt in biomacromolecular
systems of proteins and polysaccharides [13], coacervates have been
used as additives [8,22,23] in food processing and personal care prod-
ucts as encapsulants [24,25], emulsifiers [26], and viscosity modifiers
[27]. This motivated the initial forays into coacervate study [23], and
has inspired progress using biomacromolecules useful for food science
[8,13–15,22–30]. Recently, however, oppositely charged soft materials
(including both polymers and colloidal particles) have emerged as a
powerful motif in material self-assembly [17,31–41]. Complex coacer-
vation has been used to drive ordered block copolymer gels [32,33,35,
41], stimuli-responsive sensory materials [31], and coacervate-core mi-
celles useful for drug delivery [17,34,35,37,39,40,42]. The study of com-
plex coacervation has now returned to its roots in biological materials,
with analogues to coacervation found in underwater adhesives [10,
43–46], membrane-less organelles [47], and even proto-cells meant to
reproduce the fundamental aspects of living systems [48–50].

The renaissance of work in polymeric complex coacervation has in-
spired the development of new theoretical tools to understand the
physical state of these systems. This review is intended to provide an in-
troduction to the broaderfield of complex coacervation theory both as it
currently stands as well as its historical development. Indeed, this
progress has been intimately tied to progress in the theory of polyelec-
trolytes as a whole, and while the intent is that this article is a stand-
alone introduction to coacervation we point readers to a number of
reviews focusing on modern and historical developments in polyelec-
trolyte physics that complement the current review [3,4,12].

2. Complex coacervates versus polyelectrolyte complexes

Introduction of coacervate theory first requires an important discus-
sion of what physically ‘constitutes’ a complex coacervate. This is hardly
trivial, and is still an area of active inquiry [51]. Complex coacervates are
often considered to be either a subset of or distinct from a class of mate-
rials known simply as ‘polyelectrolyte complexes’. Indeed, there is a sig-
nificant amount of ambiguity in the field as to the difference between
these two materials, and early theoretical papers will sometimes treat
the two systems as interchangeable [52–54].

In this review, we will consider the theory for both complex coacer-
vates and polyelectrolyte complexes as limiting cases of the same
Fig. 1. (a)Mixing polycation and polyanion solutions together can lead to coacervation, which is
β phase. Macroscopic phase separation is experimentally observed (Spruijt et al.) [18]. Reprint
2010 American Chemical Society. (b) Phase diagram of salt concentration cS versus polymer co
within which phase separation occurs. Because salt is able to have a different concentration in
equilibrium complexes that are kinetically trapped structures due to high polymer concentration
underlying physical interactions. However we suggest a distinction;
for polymers, complex coacervates are stable, aqueous, and liquid-like
phases of oppositely charged polyelectrolytes where there is no ‘one-
to-one’ exclusivity between the chains. In otherwords, each chain inter-
acts withmultiple other polyelectrolyte chains that may be dynamically
replaced by other chains in observable time scales. Polyelectrolyte com-
plexes, alternatively, typically refer to systems that do not meet all the
criteria necessary to be a coacervate. For example, complexes are some-
times considered a polyelectrolyte phase where the charge attractions
drive the system to be kinetically arrested [51,55–58]. We will distin-
guish these systems as non-equilibrium complexes. Alternatively, com-
plex is also commonly used to refer to pairs of oppositely charged
chains that exclusively interact in an infinitely-dilute medium [59–68].
We will call these soluble complexes [69]. Both non-equilibrium and sol-
uble complexes share a key characteristic that distinguishes them from
coacervates; there is little ability for chains to ‘replace’ each other on ob-
servable time scales. This is due either to kinetic trapping or to the ab-
sence of nearby chains. Both types of complex are similarly relevant to
a number of applications. Non-equilibrium complexes are integral to
layer-by-layer assembly [58,70–73], while soluble complexes are used
for a number of drug delivery technologies that utilize complexation be-
tween DNA and polycations [67,68,74].

These three classes ofmaterials: coacervates, soluble complexes, and
non-equilibrium complexes, have been historically developed using the
same few theoretical insights that lead to a comprehensive picture of
polyelectrolyte complexation and coacervation. We will revisit the dis-
tinctions throughout the review, but will also note the connections
among this broad spectrum of materials.

3. Historical theory development

3.1. Voorn–Overbeek model

Bungenberg de Jong and Kruyt first described coacervation in the
late 1920s when they observed the formation of dense liquid droplets
from a series of biomolecular species such as casein, serum albumin,
tannin, and gelatin [13]. It was determined that polymeric coacervates
consisted of four non-water species: a polyanion, a polycation, a cation,
and an anion [13]. Mixtures of these specieswere observed to undergo a
phase separation under certain conditions into a polymer dense and a
polymer dilute phase [13]. These early experimental results represent
underlying observations that persist acrossmostmanifestations of coac-
ervation [13].

This initial work prompted the development of a theoretical frame-
work to describe coacervate systems [16,28,75]. Voorn and Overbeek
published the first successful theory of complex coacervation in 1957
a liquid–liquid phase separation between a polymer-rich α phase and a polymer-deficient
ed with permission from Spruijt, E, et al. Macromolecules 2010;43:6476–6484. Copyright
ncentration cP for a coacervate-forming system. There is a two-phase coexistence region,
both phases, tie lines between α and β phases are tilted. Low-cS regions often form non-
s. Soluble complexes form in low-cP regions, wheremore than 2-chain interactions are rare.

Image of Fig. 1
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[16,75]. Their model was investigated over a series of articles by them
and others [16,28,75,76], and demonstrated that qualitative matching
and/or quantitative fits can be achieved using a relatively simple
model based on the Flory–Huggins theory of polymer mixing and the
Debye–Hückel theory of simple electrolytes [16,75]. Both of these theo-
ries provide analytical expressions for the free energy associated with
their respective subjects [2,77]. The Flory–Huggins theory predicts the
mixing of a polymeric species with a small molecule solvent [2],
which Voorn and Overbeek used to describe both the polycation and
polyanion in water. The Debye–Hückel theory offers a limiting expres-
sion for the free energy associated with dilute, weakly interacting elec-
trolytes [77,78]. These were identified as both the charges on the salt
species (both the cation and anion) as well as the charges along the
backbone of the polycation and polyanion chains. The resulting free en-
ergy expression over the species i=+ ,− ,P+ ,P− ,S is [16,18,28,75]

a3 F
VkBT

¼
X
i

ϕi

Xi
lnϕi þ

X
i

X
jN i

χijϕiϕ j−α
X
i

σ iϕi

" #3
2

ð1Þ

The first two terms are generalized Flory–Huggins contributions,
written in terms of the volume fraction of all the species ϕi, the Flory
χij-parameter between species i and j, and the polyelectrolyte degree
of polymerization Xi. The last term corresponds to the Debye–Hückel
free energy. This includes the combined concentration of charges,
using a stoichiometric coefficient σi to relate charge concentration to

ϕi. The strength of the electrostatic interactions α ¼ e2
8 πϵϵ0kBTa

¼ λB=2a

is the dimensionless Bjerrum length λB=e2/(4πϵϵ0kBT), which repre-
sents the distance over which the electrostatic energy is larger than
the thermal energy kBT [3,4,78].

The properties of this theory have been widely studied, in particular
in the plane of salt concentration versus polymer concentration [16,18,
19,34,75,79–81]. Fig. 1b demonstrates a schematic of a phase diagram
typical from calculating the appropriate equilibrium conditions (μiα=
μiβ) for a binodal curve defining a two-phase coexistence region (be-
tween a polymer-rich α phase and polymer-deficient β phase) at low
salt and polymer concentrations [18]. Indeed, this is the region where
‘coacervation’ occurs due to liquid–liquid phase separation.

Extensions to the Voorn–Overbeek theory have been developed to
consider coacervate systems that do not match well with the original
predictions of Voorn–Overbeek theory. For example, Veis et al. incorpo-
rated a reaction schemeof aggregating soluble complexes, in an attempt
to explain the apparent entropic nature of coacervation in experimental
phase diagrams [28]. Work by Tainaka extended this scheme to under-
stand the role of excess polyions [76].

This formalism has persisted as the primary way to describe com-
plex coacervation, either as a way to describe data in the experimental
literature or to provide the conceptual framework within which exper-
imentalists consider complex coacervate systems. Examples of the for-
mer are present throughout the literature, including a number of
recent results [18,19,34,79–82]. Spruijt et al., for example, experimen-
tally determined the entire binodal curve for a number of molecular
weights [18]. Three fit parameters in Voorn–Overbeek were parameter-
ized: the charge density σi, which indicates the stoichiometric ratio of
monomers to polymerized charges, the size of the charges a that deter-
mines the strength of the electrostatic interactions α, and finally theχij-
parameter that captures dispersive interactions [18]. Judicious choice of
these parameters led to a direct correspondence between the experi-
ment and the theory, for both the binodal as well as the water content
of the coacervate (Fig. 2a) [18]. Similar matching can be found in
other predictions stemming from Voorn–Overbeek. For example, Qin
et al. used a Helfand–Tagami approach to calculate the scaling of surface
tension as the salt concentration cS approached its critical value cS

0 [83].

They calculated a result γ∼ð1− cS
c0S
Þ3=2 that indeed matches with experi-

ment (Fig. 2b) [79].
3.2. Random Phase Approximation

Due in large part to the apparent success of the Voorn–Overbeek
model [18], efforts to improve on its predictions and its sophistication
have progressed in parallel with the Flory–Huggins theory upon
which it is based. The Edwards approach to polymer field theory led
to a general framework to systematically consider mean-field theories
and include fluctuations [84–86]. For coacervates, the partition function
Z for a system of polymers is reframed in the context of a path integral:

Z ∼ ∏
nPþ ;nP−

j

Z
Dr j ∏

nCþ ;nC−

k

Z
drk∏

nS

l

Z
drl exp −βU0 r2nPN

� �
−βU1 r2nPNþ2nCþnS

� ��
−βU2 r2nPNþ2nCþnS

� �Þδ X
i

ρ̂i−ρ0

 !
ð2Þ

This is a Canonical partition function for nP+ polycations, nP−
polyanions, nC+ cations, and nC− anions in nS solvent molecules. Densi-
ties are given by operators ρ̂S, ρ̂C� and ρ̂P� that give the density at a spa-
tial location r. The script Dr j indicates the integral is over all paths (i.e.
configurations and conformations) that a series of polymers may take.
All of these interact via a version of the ‘Edwards Hamiltonian’ that en-
ergetically constrains the trajectory of the polymers through space as a
function of the segment index s (i.e. the number of segments along the

chain contour): βU0½r2nPN � ¼ 3=2a2∑2nP
j ∫N0 ds

��� dr jðsÞ
ds

���2 . Also included

in the Hamiltonian are dispersive χ-interactions βU1½r2nPNþ2nCþnS � ¼
ðν0=2Þ ∫dr∑ijχijρ̂iðrÞρ̂ jðrÞ (where ν0 is a solvent/polymer unit

volume), and the electrostatic interactions βU2½r2nPNþ2nCþnS � ¼ ðλB=2Þ
∫dr ∫dr0ρ̂EðrÞρ̂Eðr0Þ=jr−r0j. This includes the charge density operator,
ρ̂E ¼ ρ̂Cþ þ f ρ̂Pþ−ρ̂C−− f ρ̂P−, where f is the fraction of charged seg-
ments. The delta function in Eq. (2) constrains the polymer and sol-
vent densities to equal the average system density at all points. The
above integral can be recast as an integral not over the paths of the
polymers and the possible positions of all the ions, but rather as an
integral over the density fields of the five species ϕi=ϕP±,ϕC±,ϕS,
their respective chemical potential fields μi=μP±,μC±,μS, and an
electrostatic potential field ψ:

Z ∼
Z

DϕiDμ iDψDη exp −βH ϕi; μ i;ψ;η½ �ð Þ ð3Þ

Here, a Lagrangemultiplier field η has also been introduced tomain-
tain ∑iϕi ¼ 1. The Hamiltonian H½ϕi; μ i;ψ; η� for coacervates has the
form [87,88]:

βH ϕi; μ i;ψ; η½ � ¼ −nP� lnQP� η; μP�;ψ½ �−nS lnQS η; μS½ �−nC� lnQC� η; μC�;ψ½ �

þ ρ0

Z
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1
2
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χϕi rð Þϕ j rð Þ þ η rð Þ
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μ i rð Þϕi rð Þ þ
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qiϕi rð Þψ rð Þ− ∇ψ rð Þj j2
8πλB

#
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There are five components i=P± ,C± ,S representing the polyelec-
trolytes, counterions, and solvent respectively. Qi are the single
polymer/particle partition functions, evaluated by considering all the
configurations and conformations of each species in their respective
fields (combinations of μi,ψ, and η). The electrostatic potentialfieldψ in-
teracts with the components with charge qi, and itself has energy given
by the final term in the Hamiltonian.

There is a connection between Eq. (4) and standard Flory–Huggins
theory. In the case of a polymer solution, there is an absence of counter-
ions and charges on the polymers, there is only one polymer species,
and a homogeneous state (e.g. ϕi(r)=〈ϕi〉) is considered. This last as-
sumption signifies a mean-field theory, and is the sole contributing
term in the integral in Eq. (3). Using F=−kBT lnZ this simplifies to



Fig. 2. (a) Experimental determination of complex coacervate binodal curve for a number of chain lengths of poly(acrylic acid) and poly(N,N-dimethylaminoethyl methacrylate) (left) [18].
Similarly, the fraction of water in the coacervate is also measured for each point along the right side of the binodal (right) [18]. All curves demonstrate excellent fits to the Voorn–Overbeek
theory, upon appropriate choice of fit parameters α ,σ, and χ (Spruijt et al.) [18]. Reprinted with permission from Spruijt, E, et al. Macromolecules 2010;43:6476–6484. Copyright 2010
American Chemical Society. (b) Voorn–Overbeek theory can be used to calculate the expected scaling of the normalized surface tensionγ/γ0 as the critical salt concentrationψC is approached
(curve), which matches experimental data (points) [79]. Reprinted with permission from Qin, J, et al. ACS Macro Lett. 2014;3:565–568. Copyright 2014 American Chemical Society.

5C.E. Sing / Advances in Colloid and Interface Science 239 (2017) 2–16
Flory–Huggins theory for the free energy FMF. In particular, the first two
terms lead to the entropic contribution (the first term in Eq. (1)), and
the first bracketed term is the enthalpic contribution (the second term
in Eq. (1)).

The full Eq. (3) can be also evaluated using a homogeneous mean-
field assumption (ϕi(r)=〈ϕi〉) to yield the analogue to Flory–Huggins
for coacervate-forming systems. The resulting free energy does not pre-
dict coacervation, however; the last term would trivially give zero con-
tribution due to the lack of field gradients, and the only other difference
is the presence of a counterion entropy term. In general, this theory is
only non-trivial (1) at interfaces when electroneutrality can be broken
and (2) in equilibrium coexistence where the ideal gas entropy of the
counterions is the primary influence on phase equilibria. Voorn–
Overbeek theory surpasses this result by incorporating the Debye–
Hückel result around a test charge [52,77]. By doing so, Voorn–Overbeek
therefore incorporates some fluctuations around the mean-field result.
Thus, the Random Phase Approximation (RPA) is historically invoked
to include these fluctuations more systematically.

While the approximation of a homogeneous state as the main con-
tributor to the partition function only leads to amodified Flory–Huggins
theory, the formalism provides a way to systematically extend the the-
ory to include increasing numbers of fields in the partition function. RPA
does this by expanding in fluctuations around the homogeneous fields
(all fields are in the form ϕi(r)=〈ϕi〉+δϕi(r)) [87,89]. By converting

to Fourier space, δϕiðrÞ ¼ ð2πÞ−3∫ dk δϕðkÞ expð−ik � rÞ, it is possible
to write the partition function in the form:

Z ∼ exp −βFMFð Þ
Z

DδϕiDδμ iDδψDδηexp −
β
2

Z
dk

2πð Þ3
Ωi kð ÞMij kð ÞΩ j kð Þ

 !

ð5Þ
where Ωi=(δϕj,δμj,δψ,δη) is a vector that represents the various field
variables andMij(k)=(δ2H/δΩiδΩj). The starting point for RPA includes
the fluctuations as deviations from mean-field theory up to the second
order (see schematic in Fig. 3a) [89]. This is therefore a Gaussian integral
that can be solved. This can be performed for all non-density field vari-
ables to yield an equation that is the starting point for most RPA-based
analysis [52,53,87,89–91]:

Z ∼
Z

∏
i
Dδϕi exp −

β
2

Z
dk

2πð Þ3
δϕi kð ÞS−1

ij kð Þδϕ j kð Þ
 !

ð6Þ

where the matrix Sij
−1 is the inverse structure factor.

The inverse structure factor, for RPA, provides information on the
deviations from mean-field behavior. Each wave vector k sets a length
scale, and the structure factor denotes how important these length
scales are to the deviations from themean-field free energy. This occurs
through spatial correlations, either from particle interactions (such as
electrostatic interactions) or from chain connectivity interactions. Posi-
tive values of the structure factor indicate an increase in free energy, and
at k=0 the distances are associated with macroscopic values of r and
thus represent thermodynamic stability. Thus, these tools are used in
a number of ways. For example, the free energy can be directly evaluat-
ed for a given phase by calculating the full partition function, or the sta-
bility of the phase is considered based on the sign of the inverse
structure factor at k = 0. Higher-order terms can be systematically in-
cluded, forming the foundation of field theoretic models that have had
a profound role in treating both polymer systems [84,91–93] and elec-
trostatic systems [94–97]. In particular, the RPA model for electrolytes
is related to Debye–Hückel theory, and thus serves as the basis to sys-
tematically improve field theoretic models of coacervation [52].

Image of Fig. 2


Fig. 3. (a) Field theory approaches consider density fields {ϕi} that determine the Hamiltonian ℋ and thus the partition function Z∼∫Dϕi expð−βℋÞ. We schematically illustrate the
various levels of evaluating this partition function. The mean-field approximation considers only a single field configuration (the minimum of ℋ, ℋ⁎) to contribute to Z. The RPA
considers fluctuations to second order (Gaussian fluctuations). Full field theoretic approaches sums over all fields, which typically must be performed numerically. (b) Extensions of
RPA for complexes by Castelnovo and Joanny were used to calculate phase behavior, with the dependence of the polymer concentration in the complex ~c on the overall charge
concentration ~nþ f~c [171]. Reprinted with permission from Castelnovo M and Joanny J-F. Langmuir 2000;16:7524–7532. Copyright 2000 American Chemical Society. (c) Kudlay and
Olvera de la Cruz extended this approach to account for the finite size of the charges, leading to a similar phase diagram of the polymer concentration ϕ versus the salt concentration
ϕS (top) [53]. Importantly, the excess salt ϕS

P−ϕS is plotted (bottom) to demonstrate that salt is expelled from complexes at high salt concentrations, in contrast with Voorn–Overbeek
predictions [53]. Reprinted with permission from Kudlay A, Olvera de la Curz M. J. Chem. Phys. 2003;120:404. Copyright 2003, AIP Publishing LLC.
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RPA and related approaches have been used to tackle both complex-
ation (in the framework of Lifshitz–Grosberg globule theory) [98], mul-
tilayer formation [73], aswell as complex coacervation [52]. Initial work
on these systems led to a variety of behaviors. For example, the phase
diagram of a complex was determined as a function of salt and solvent
quality, and extension to coacervates was postulated due to a precipita-
tion of globular complexes [98]. Coacervates themselves require the
one-loop approximation (an extension of RPA that modifies Sij−1 to re-
flect how it changes due to density fluctuations), leading to predictions
that can (for example) bridge standard Flory–Huggins-based ternary
mixtures and complex coacervation by adjusting the strength of disper-
sive versus electrostatic interactions [52].

Castelnovo and Joanny developed this one-loop RPA-basedmodel of
complexes, which dissolve as the salt concentration is increased
(Fig. 3b), yieldingpredictions for a number of chargemonomer fractions
[52]. They also discuss the limitations of these methods [52]. Indeed,
density fluctuations due to chain correlations couple to the electrostatic
correlations; however, they note the limitations of this method as the
charge density gets large and discuss a need for an ‘ion pair’ approach
[52]. Similarly, the finite sizes of the charges are not explicitly consid-
ered; the Hamiltonian only implicitly includes this in the entropic
mixing term, which is based on the mixing of species whose volume
fractions sum to 1. These weaknesses were partly addressed in follow-
up papers fromKudlay, Ermoshkin, andOlvera de la Cruz, whoexplicitly
included thefinite size of the ions bymodifying the Coulombic potential
and diagrammatic expansions that consider strong local effects due to
ion complexation and van der Waals attractions [53,54]. This strategy
furthermore addresses the issues of high-k (small r) divergences in
standard RPA approaches. This work yields similar results, however
this demonstrates that for most conditions the finite size of the charges
depletes them from the complex (Fig. 3c).

Ultimately, RPA and related analytical field theory approaches eluci-
date the physical couplings between chain connectivity and electrostat-
ics, and can introduce corrections to account for excluded volume and
correlation effects [53,54]. These are highly sophisticated theories, yet
their sophistication limits both their adaption by experimentalists and
the transparency of their assumptions. Indeed, there are well-known
challenges with regard to both electrostatics and polymers treated in
RPA and related perturbative approaches [94]. In particular, such theo-
ries do not converge when the electrostatic interactions are strong or
the ion valency is large [94]. This is an important limitation; high charge
densities along a polymer chain remain a challenge becausemultivalent
ions are in the limit of high charge densities. Approaches to circumvent
these challenges have been widely proposed for polyelectrolyte sys-
tems, typically relying on the supposition of an alternate ‘highly-or-
dered’ state such as an ionic solid [99,100], effective chi-parameters
[101,102], and/or ion condensation [103–106]. While motivated by
strong physical intuition, these invoke assumptions about the system
that decreases their predictive power or limits their regime of applica-
bility. Nevertheless, these understandings have been instrumental in
progressing the state of complex coacervation.

4. Modern approaches to complex coacervation

4.1. Experiments and the need for new complex coacervate theories

There has been a recent resurgence in the experimental study of
complex coacervation. Many of the motivations that have previously

Image of Fig. 3
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spurred interest in coacervates remain, such as their utility in cosmetics
and food additives [22], however new applications have come to the
forefront. For example, the connection between complex coacervates
and the origins of life is an old idea, but recentwork has begun to devel-
op ‘proto-cells’ that take advantage of the biology-like environment of
complex coacervates [48–50]. This connection has found utility in tissue
engineering applications [107,108]. Biological analogues with
membrane-less organelles andunderwater adhesives have also been in-
vestigated extensively [10,43–47]. Beyond biology, charge complexa-
tion has found use as a powerful motif in self-assembly. Layer-by-
layer assembly has seen applications ranging from fuel cell membranes
to coatings for drug delivery [58,70–72,109–112]. Block copolymers can
form coacervate-core micelles useful for drug delivery and protein en-
capsulation [17,32,34,37,39,40,42,69], or stimuli-responsive photonic
materials and gels [31,33,41].

Almost all of these applications for coacervation or complexation re-
quire further theoretical development due to specific challenges not
addressed by Voorn–Overbeek or RPA theoretical frameworks. For ex-
ample, layer-by-layer assemblies are often in kinetically trapped states
(which can be desirable for the function of devices made using this
method) [71,72,109,110], and block copolyelectrolyte features exist
over a large spectrum of length scales [12]. Biological systems and ana-
logues also often possess features such as stiff macromolecules [113]
and specific interactions such as hydrogen bonding [56,114] that extend
beyond electrostatic and dispersive interactions typically considered in
classical coacervation theories.

Recently, fundamental experimental work has continued to probe
the physical properties of complex coacervates [18,20,44,51,56,79,80,
115–118]. This work includes mixed success when Voorn–Overbeek
andRPA results are considered. Perhaps the strongest success is captured
by the work of Spruijt et al., which compares experimental phase dia-
grams in the salt concentration/polymer concentration space with the
phase diagram calculated from Voorn–Overbeek theory [18]. This
matching data is parameterized by the strength of the χ-parameter as
well as the linear charge density, which are treated as adjustable param-
eters [18]. Appropriate choice of parameters leads to excellent fits to ex-
perimental data over a broad range of chain lengths [18]. This has
motivated the use of Voorn–Overbeek theory to study coacervate inter-
faces, with similar matching to experiment. Despite this success,
Voorn–Overbeek has fallen short in a number of situations. For example,
recent work has demonstrated that the identity of a salt ion is important
to the equilibriumphase behavior of a coacervate [81,115], and this is not
predicted by Voorn–Overbeek, and tellingly is related to the Hofmeister
series of ions [115,119,120]. It has been demonstrated that charges are
often expelled from the coacervate (the opposite is true of Voorn–
Overbeek) [121], and that coacervation is primarily an entropic process
(i.e. not strongly driven by enhanced electrostatic attraction) [118]. Fi-
nally, molecular features such as hydrogen bonding and chirality are
known to have significant affects [56], including the tendency to form ki-
netically trapped ‘precipitates’ that are not hydrated systems.

Mismatches between Voorn–Overbeek predictions and experimen-
tal results are expected, because the range of applicability of its assump-
tions is often far outside where it is used. In particular, the Debye–
Hückel theory is known to break down in salt concentrations above
ca. 5–10 mM (1–2 orders of magnitude below salt concentrations typi-
cally seen in coacervates) [77]. Indeed, it has been suggested that the
apparent matching is a result of both the liberal use of a number of
fitting parameters (χ ,α ,σ) as well as a cancellation of errors from
both the connectivity-based correlations that enhance coacervation
and the excluded volume repulsions that suppress coacervation [122].

Beyond the fundamental understanding of coacervates, the desire to
probe increasingly complex systems, with multiple blocks [32,41,123],
new chemical functionalities [56], and more advanced architectures
[67,68,124], has inspired the development of new theoretical and com-
putational tools for understanding coacervates and other charged com-
plexes. A number of strategies have emerged to address the limitations
of historical theoretical development, expanding the predictive power
for designing this emerging class of materials. We group current, mod-
ern developments into a number of broad classes, each with its own
set of advantages and disadvantages.

4.2. The complexation approach

RPA work by Borue and Erukhimovich specifically considered the
case of a polyelectrolyte complex that forms a globular structure [98].
Their work postulated that these globular complexes can aggregate to
form complex coacervates, due to a tradeoff between the increase in hy-
drated area versus benefits of the translational entropy of the counter-
ions [98]. In the spirit of this hypothesized link between complexes
and coacervates, a class of theories has focused on developing the theo-
ry of complexes and subsequently applying them tomulti-chain coacer-
vate systems [62,66,105,125].

Complexation theory spans a number of underlying approaches;
Borue and Erukhimovich initially used RPA to capture the competition
between correlated charge interactions and single-chain entropy [98].
In contrast, modern theoretical approaches adapted ideas based on clas-
sicalManning condensation theory in order to characterize systems that
were understood to be outside the realm of RPA-based methods (i.e.
high charge densities) [52,126]. Manning condensation arose from the
electrostatic potential around a chain of charge density σ, which leads
to diverges at a sufficiently high value of the linear charge density
[126]. Manning's argument is based on the partition function of a line
of charge in the presence of nearby charges of the opposite sign. The
nearest free charge is affected by the unscreened Coulombic interaction
with the line of charge, βu(r)=2σλB lnr, which leads to the form of the
partition function for monovalent ions [126]:

Z ¼ Z0

Z r0

0
dr 2πr exp −βu rð Þð Þ ¼ 2πZ0

Z r0

0
dr r1−2σλB ð7Þ

The constant Z0 contribution stems from the non-nearest ions be-
yond a distance r0, which feel the screened environment and undergo
the standard Debye–Hückel screening [126]. The integral associated
with the nearest charge, however, diverges unless the exponent in the
integrand is 1−2σλBb−1 [126]. The interpretation of this is that
charges will avoid the divergence by ‘condensing’ on to the line of
charge (i.e. the polyelectrolyte), so that it can realize an ‘effective’ linear
charge density of σeff=1/λB, or a single charge per Bjerrum length
(Fig. 4a) [103,104,126].

Manning condensation has strong ramifications for complex forma-
tion. Almost all theories on complexation invoke some form of ‘counter-
ion release’ theory [62,66,127]; in an uncomplexed chain the condensed
counterions are confined to the chain, however these counterions can
be replaced by the oppositely charged chain and gain translational en-
tropy. This leads to the straightforward result for the entropy change
as two chains form a complex, each with N monomers [66]:

ΔS≈−2NkBα lnϕS ð8Þ

Here,α is the fraction of condensed counterions andϕS is the volume
fraction of salt.

Condensed ions also play a significant role in non-stoichiometric
complexes, and destabilize complex formation due to their localization
in the globule. Work by Zhang and Shklovskii mapped out a phase dia-
gram describing the behavior of complexes as their stoichiometry and
relative lengths changed [127]. Motivated by bridging the gap between
polymer/multivalent ion theories and complexation theories, a series of
different ‘morphologies’ of these systems were predicted [127]. This in-
cludes globular complexes at stoichiometry, which then move through
‘tadpole’ regimes (Fig. 4b) to reach an uncomplexed state at high out-
of-stoichiometric ratios [127,128].



Fig. 4. (a) Manning condensation theory is based on the observation that the calculation of the partition functionZ can diverge when considering the closest charge next to a chain of the
opposite charge. This divergence is physically avoided by condensing counterions onto the chain, lowering its charge density σ to one charge per Bjerrum length λB [126]. (b) Using
counterion condensation ideas, Shklovskii and Zhang predicted the formation of globular and tadpole globules for soluble complexes [127], which are correspondingly seen in
simulations [128]. Reprinted from Physica A, 352, Zhang R and Shklovskii BI, Phase Diagram of Solution of Oppositely Charged Polyelectrolytes, 2005 with permission from Elsevier;
and Dias, RS et al. reprinted with permission from Wiley. (c) The driving force for complexation is called counterion release. Ou and Muthukumar observe this in simulations, where
counterions are localized next to two non-interacting polyelectrolytes (top) [66]. When these chains complex, counterions are no longer localized and gain translational entropy.
Reprinted with permission from Ou Z and Muthukumar M J. Chem. Phys. 2006;124:154,902. Copyright 2006, AIP Publishing LLC. (d) Extension to non-equilibrium complexes has been
suggested by Schlenoff et al., who use a ‘doping’ model where counterion release is quantified by the fraction of unmatched polycation–polyanion pairs y [51,135]. Reprinted with
permission from Fu, J, and Schlenoff, JB. J. Amer. Chem. Soc. 2016;138:980–990. Copyright 2016 American Chemical Society. This fraction is used to quantify the transition from non-equi-
librium complexes to coacervates to fully miscible solutions [51,135].
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Simulation is consistent with these results [66,128], demonstrating
that ‘counterion release’ is the driving force for polyelectrolyte complex
formation (Fig. 4c). DNA/polyelectrolyte complexes useful for drug de-
livery motivate work on complexes, and many of the simulation efforts
have focused on incorporating relevant molecular details [56,59,62,
65–68,129–134]. This includes the structure (charge density and flexi-
bility) of DNA molecules, as well as the nature of the complexing poly-
mer as well [56,59,62,129–133]. Effects such as charge sequence and
architecture have been shown to play an important role in the stability
and morphology of complexes [56,62,129,131].

Efforts to extend these results to polyelectrolyte coacervates have
been considered relatively infrequently. Despite the utility for com-
plexation, there is not a clear way to proceed to macroscopic coacer-
vate phases that lack the ‘ordering’ typically found in a complex. This
‘disorder’ is due to (1) the remaining presence of significant amounts
of salt and counterion charges that still interact with the coacervating
chains [55] and (2) the lack of one-to-one correspondence between
chains (i.e. each chain is interacting with many others). Recently, at-
tempts to consider this viewpoint by Schlenoff et al. have used a doping
picture of complex coacervates that extends from a disordered poly-
electrolyte complex into a more dilute, macroscopic polyelectrolyte
pictures (Fig. 4d) [51,55,135]. This is tied to a ‘complex/coacervate con-
tinuum’ conceptual picture that has emerged from experimental obser-
vation [51]. The approach is to slowly dope or replace charges initially
paired between complexed polyelectrolytes with ion pairs [135]. The
polyelectrolytes get increasingly ‘coacervate-like’ as the amount of
ion pairs that replace complexation gets above a threshold value [51,
135]. The critical salt concentration for coacervation is linked to com-
plete removal of complexed ion pairs [51,135]. It remains unclear
that this approach will hold for many cases, or if it will provide
conceptual guidance or prediction. Indeed, this ‘ion pair’ picture is rem-
iniscent of historic work using the concept of ion clustering to explain
correlations in regular electrolyte solutions at low temperatures [136].
While they can qualitatively agree with certain experimental features,
such approaches are ad hoc and typically neglect higher-order
correlations present in charged systems and limit predictive power
[137,138]. This theoretical approach remains a challenge regardless,
due to the importance of the Hofmeister series in a number of coacer-
vate systems [55,81,115], which may be exacerbated by the use of
highly charge-dense polymers (such as poly(styrene sulfonate) and
poly(diallyldimethylammonium)) used in many of these studies [51,
55,57,115,135].

Image of Fig. 4
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4.3. The field theory approach

Voorn–Overbeek and RPA approaches stem from the same theoreti-
cal origins, with the RPA being the Gaussian field correction to the
mean-field theories on which Voorn–Overbeek is based [16,52–54,75,
98]. Parallel to similar developments in the behavior of other polymeric
materials such as block copolymers [84,92], efforts have been made to
use numerical field theoretic methods to treat the inadequacies of ana-
lytical approaches to understand complex coacervates [41,139–143].
Block copolymers have benefited from years of research into self consis-
tent field theory (SCFT), which is capable of capturing the mean-field
behavior of common inhomogeneous systems [84]. The main concept
behind SCFT and related field theoretic approaches is to solve the parti-
tion function in the form of Eq. (3) using a Hamiltonian such as the one
in Eq. (4) for charged systems. Instead of integrating out the non-ϕ
fields, and also without invoking the mean-field approximation, it is
possible to transform the integral into one that depends only on the
fields μ and ψ [84,144]. For complex coacervates, the resulting partition
function becomes [139,141,142]:

Z ∼
Z

Dμ
Z

Dψ exp −βHCoac μ;ψ½ �ð Þ ð9Þ

When dispersive χ-interactions are neglected and replaced with
simple excluded volume repulsions parameterized by u0, the updated
Hamiltonian is [139,141,142]:

βHCoac ¼ 1
2

Z
dr

∇ψj j2
4 πλB

−
μ2

u0

" #
−nPþ lnQPþ −μ þ ψ½ �−nP− lnQP− −μ−ψ½ �

−nCþ lnQCþ ψ½ �−nC− lnQC− −ψ½ � ð10Þ

Anumber of pedagogical texts and articles demonstrate the practical
implementation of an iterative scheme to numerically calculate the re-
sults of this theory [84,144]. Numerical calculations require the calcula-
tion of the single-chain partition function given by VQP�½−μ � ψ� ¼
∫ drq�ðr; s ¼ 1; ½−μ � ψ�Þ , where the s=1 indicates that this is the
sum over the weight of all chain ends at r after traversing the
field –μ±ψ [84,144]. The rest of the chain had been propagated

through this field using the diffusion equation ∂q�
∂s ¼ ∇2q�−ð−μ � ψÞ

q� integrated from s=0 [84,144]. The single-particle partition functions
VQC�½�ψ� ¼ ∫ dr exp½∓ψ�are similarly calculated [84,144]. SCFT involves
an iterative scheme involving this calculation of the Hamiltonian, as

well as its field derivatives ð∂HCoac
∂μ Þ

r
at each point r to update the fields

to reach an extremum in the Hamiltonian [84,144]:

∂HCoac

∂μ rð Þ
� �

μ�
¼ 0;

∂HCoac

∂ψ rð Þ
� �

ψ�
¼ 0 ð11Þ

Here, the asterisks denote the mean-field value of the Hamiltonian,
determined iteratively as these derivatives themselves depend on the
value of the fields that have been extremized.

In a homogeneous system, this method is essentially equivalent to
the mean-field picture discussed in Eq. (4) (except for the neglect of
the dispersive terms). The single-polyelectrolyte version of this theory
has beendubbed the ‘Model F′field theory [84,88], andhas been applied
to a number of situations for polyelectrolyte block copolymers [145,
146]. This theory is now considered inadequate for many polymer sys-
tems including block copolyelectrolytes [12,147] as well as complex co-
acervates [12], stemming from a variation of the same observation
made about the homogeneous mean-field theory: the electrostatic
term of the Hamiltonian is only non-zero when there is charge separa-
tion between the grid points in the numerical solution to Model F
[148]. Therefore, the only difference in energy between a macroscopic
phase without charges and a charged, electrostatically neutral phase is
if there are more components in the latter (such as salt or counterions)
that possess additional translational entropy. This is noticeably
unphysical for polymer systems such as complex coacervates, where fa-
vorable electrostatic interactions within an otherwise homogeneous
phase must be accounted for.

Extending field theory to capture coacervate behaviors requires so-
phisticated techniques beyond the mean-field approximation used in
SCFT [84,92,144]. This is analogous to the development of RPA, which
needed the first-loop expansion of the inverse scattering function to
couple connectivity and electrostatic attraction [52–54]. In numerical
field theories, moving beyond the mean-field approximation means
considering the influenceofmore than one set offields into thepartition
function sum. The inclusion of more than one set of fields rather than
just the mean-field means that these incorporate all ‘field fluctuations’
(the far right schematic in Fig. 3a) [144,149]. These fluctuations are in-
cluded using a variety of methods, such as ‘complex Langevin’methods
that use a pseudo-dynamic field update or a Monte Carlo approach
where changes to the field are randomly done and subsequently evalu-
ated via the system Hamiltonian [84,144]. Recently, these non-mean-
fieldmethods have been developed to treat a broad class of polymer sci-
ence problems, such as semidilute solutions [150], block copolymers
[151], and nanoparticle/block copolymer composites [152].

Complex coacervates have been among the polymer systems stud-
ied using non-mean-field methods, which have been used to develop
predictions for a number of experimental investigations. Popov, Lee,
and Fredrickson developed a complex Langevin technique to model co-
acervates [141,142] demonstrating that its predictions are largely
consistent with the results of one-loop RPA, except in high charge den-
sities (Fig. 5a) [141,142]. Improvements on this model consider the use
of a ‘smearing function’ that provides a finite size for the charges in the
field theory, which ensures that themodel is ‘UVconvergent’ if thefinite
size of the grid used in the numerical calculation is sufficiently small to
capture all charge details [139]. In principle, this approach is capable of
providing a full theoretical picture of complex coacervates, as it
completely evaluates the partition function given in Eqs. (3) and (4).
However, the grid that is used is on a similar size as the size of the
individual ions [139]. While this still allows the thermodynamics
of a homogeneous coacervate system to be captured, there remain
challenges in scaling up the calculation to consider inhomogeneous
systems that are of experimental interest (and can be 2–3 orders of
magnitude larger).

Recent efforts to extend fluctuating field theories to larger
length scales have been motivated by the desire to consider block
copolymer-based coacervates. In particular, Audus et al. have developed
an ‘embedded fluctuation’ model that incorporates the one-loop RPA
model directly into an SCFT calculation [32,41], capitalizing on the ob-
servation that the complex Langevin and analytical one-loop RPA
models are mostly in agreement (Fig. 5a). This model is capable of
exhibiting impressive agreement with experimental phase diagrams
(Fig. 5b) [41].

These sophisticated field theoretic approaches are powerful tech-
niques that can treat inhomogeneous polyelectrolyte coacervates; as
these materials become increasingly complicated, field theories repre-
sent a promising way to develop their theoretical understanding. Nev-
ertheless, these methods possess similar drawbacks to their RPA
forebears. While the full fluctuating field theory is capable of consider-
ing more highly-charge dense systems [139], it has so far not been
used in larger scale calculations for block copolymers. The one-loop
RPA result is used instead, however it is limited when polymers have
a high charge density along their backbone [41]. Therefore, real
coacervate-based self-assembled systemsmay remain poorly described
by even these sophisticated methods. Furthermore, the use of Gaussian
smearing functions even in the fluctuating techniques may limit their
ability to articulate the local charge structure; while chain length-scale
scattering functions is resolved, as far as we know the ion and charge
correlation functions in complex coacervates have not been demon-
strated using these methods [139].



Fig. 5. (a) The charge–charge scattering function SCC(k) calculated via the full field theoretical approach (points) is able to demonstrate good matching to RPA-based analytical theory
(lines) [142]. This is especially true for small values of charge density (parameterized by E), however significant deviations at high E occur at large values of k [142]. This is consistent
with known limitations of RPA [52]. Reprinted with permission from Riggleman, RA, et al. Chem. Phys. 2012;136:024,903. Copyright 2012, AIP Publishing LLC. (b) The accuracy of RPA-
based analytical theory has led to the development of the ‘embedded fluctuation’ model that incorporates the one-loop RPA results into SCFT [41]. Experimental results (main graph)
match theoretical predictions (inset) [41]. Reproduced in part from [40] with permission of The Royal Society of Chemistry.
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4.4. The simulation approach

Field theory and counterion release theory have provided conceptu-
al guidance for coacervation and complexation respectively. While they
remain incredibly useful, they reflect only a highly idealized picture of
real polyelectrolyte complexes. This stems from some very important
assumptions that are made. For example, these theories almost exclu-
sively use some version of the restricted primitive model that considers
all species to be composed of charged spheres in a dielectric medium
(Fig. 6a) [78]. There are a lot of approximations wrapped up in this
statement: atomistic detail is neglected including the behavior of the
solvent (typically water), ions have a specific size that includes a hydra-
tion shell, and the dielectric constant is homogenous. Each of these ap-
proximations has been appropriately called into question, and can be
demonstrated to play a role in a number of situations [51,56,71,109,
110,112,134,135,153]. Furthermore, almost all of the previous theoreti-
cal methods include assumptions of thermodynamic equilibrium, de-
spite the observation that many complex or coacervate systems are
Fig. 6. (a) The restricted primitivemodel provides the starting point for almost every theoretica
beads [12]. The neglect of these atomistic details represents a primary limitation of most theo
dynamics simulations demonstrate the importance of hydrogen bonding in dense coacervate
coefficient, related to the formation of a ‘network’ of hydrogen bonding [153]. Reprinted w
American Chemical Society. (c) Chirality also plays a significant role, with out-of-equilibriumcom
alent racemic polypeptides [56,134]. Typical snapshots from simulation demonstrate that st
Reproduced in part from [133] with permission of The Royal Society of Chemistry.
strongly trapped in metastable or non-equilibrium states [51,56,71,
116,153]. Finally, other molecular interactions are typically neglected
yet may play a crucial role [56,134].

Atomistic structure, kinetic trapping, and secondary interactions are
all behaviors that require atomistic or molecular simulations. Simula-
tions have begun to probe these challenging effects. For example, the
formation of glassy-like dynamics in layer-by-layer assembly has been
studied by considering local dynamics in molecular dynamics (MD)
simulations [153]. These studies have implicated hydrogen bonding
and complexation as cooperative affects that strongly slow down the
dynamics of charge polymer systems (Fig. 6b). Similarly, the role of hy-
drogen bonding and chirality (Fig. 6c) in the formation of kinetically
trapped precipitates rather than coacervates has highlighted the impor-
tance of atomistic structure on the behavior of charge polymer systems
[56,134].

However, atomistic simulation of complexation is still an open field
for a number of reasons. Most importantly, the length and time scales
that MD is able to capture limit their applicability to homogeneous
l approach to studying electrostatics, because it coarse-grains atomistic features as charged
ries, which can only (partially) be overcome by using atomistic simulation. (b) Molecular
systems [153]. The diffusion of water is shown to undergo a discrete jump in its diffusion
ith permission from Yildirim et al. ACS Macro Lett. 2015;4:1017–1021. Copyright 2015
plexes formed in stereoregular polypeptides and coacervates formed in otherwise-equiv-

rong interactions are consistently more common when both chains are chiral [56,134].
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systems and very short time scales. Many of the issues associated with
polyelectrolyte complexes span hundreds of nanometers or microsec-
onds to minutes of time; these are orders of magnitude outside the
range of atomistic MD simulation. The atomistic challenges in polyelec-
trolyte complexes themselves also represent a number of very active
fields and lingering challenges inMD simulations: the structure and dy-
namics of water [154], the size and behavior of ions (via the Hofmeister
series) [120], and the nature of hydrogen bonding [155] are all non-
trivial and prevent atomistic simulation from providing unwavering
predictive power.

5. A unified theory of complex coacervation?

Modern coacervate and complexation theory has made great strides
in providing a comprehensive picture of charged polymers. A broad pal-
ette of theoretical and computational methods informsmaterials devel-
opment, however by and large the models that have been created to
date lack a fully predictive capability of all complex coacervates. Some
limits (low charge density, homogeneous systems) are well character-
ized by field theoretical models [16,18,41,52,75,139,140,142], while
other limits (high charge density, homogeneous or single-complex
systems) can be well-described by counterion release ideas [57,59,62,
66,68,118]. Nevertheless, systems that are inhomogeneous (i.e. block
copolymers, blends, brushes), kinetically trapped, and have significant
atomistic-level structure or charge patterns are still in need of further
theoretical development. A unified theory of complex coacervation is
still missing.

Hints of how this theory might be developed are starting to emerge.
One area of convergence would be to bridge the gap between field the-
oretical methods and counterion release methods. One candidate theo-
ry uses a liquid state theory model known as the Polymer Reference
Interaction SiteModel (PRISM) [156,157] to develop an alternative the-
ory of complex coacervation [122]. It is shown that this theory is capable
of demonstrating both counterion release (Fig. 7a,b) and, in the appro-
priate limit, approaches the Voorn–Overbeek theory (Fig. 7c) [122].
PRISM and related liquid state theory models are capable of capturing
correlation effects of (for example) hard spheres and structured mole-
cules, and subsequently providingmacroscopic thermodynamic param-
eters that can be used to calculate phase behaviors [156,157]. This
theoretical approach captures aspects difficult or impossible to calculate
in RPA, field theoretic approaches, or counterion release. Importantly,
PRISM predicts pair correlation functions that capture local charge
structure typically included in an ad hoc fashion using ion pairing argu-
ments [52,66,141].

However, this theory falls short of a true unified theory due to defi-
ciencies in the underlying PRISM model. These theories require what
are known as ‘closure approximations’ that are often unreliable with
Fig. 7. PRISMmodel of complex coacervation captures both counterion release as well as the Vo
demonstrate strong polyanion/polycation (P+, P−) attractions [122]. In this phase, the opp
correlations (blue curve and red curve, respectively) [122]. (b) The same calculation in the
polymer when compared to oppositely charged salt ions [122]. This reflects counterion cond
limit of low linear charge densities along the polyelectrolyte chains σ, as well as at low con
chemical potential μ± approach the Debye–Hückel prediction (black line) [122]. Reprinte
Copyright 2015 American Chemical Society.
regards to macroscopic thermodynamic values [78]. The closure used
in this particular example (the Debye–Hückel ExtendedMean Spherical
approximation) [158] is also not optimized for use with the PRISM
formalism. PRISM is further limited to describing equilibrium states
in homogeneous systems, however there are methods capable of
circumventing these limitations for incorporating PRISM into larger
scale theories [159,160]. Despite these quantitative challenges, this is
the first example of a theory capable of reflecting both counterion re-
lease and Voorn–Overbeek limits [12,122]. It has also highlighted the
importance of charge density and the excluded volume of charges in
the continued development of theory [12,122].

The embedded fluctuation model of Audus et al. also provides the
starting point for increasingly accurate theoretical or computational ap-
proaches to complex coacervates [41]. By coupling RPA results to field
theoretical calculations, multiple length scales of molecular information
are incorporated into a single model. This is part of an emerging class of
multi-scale models that are beginning to address the wide variety of
length scales at play in a single-polyelectrolyte system [41,90,147,148,
161–163]. Similar models combining liquid state theory and SCFT are
capable of capturing melt polymer systems [90,147,148,161–163], for
example, as are field theory models that incorporate molecular confor-
mation information for polymer brushes and gels [164,165]. A more
complete theory of complex coacervate may take a similar approach.
By leveragingmolecular simulation or alternative field theoretic methods
[166,167], multi-scale models of complex coacervation may be able to
guide conceptually or even predict material properties for charged self-
assembly. Molecule-specific behavior, such as atomistic structure, water,
and hydrogen bonding may even be possible in such an approach.

In Fig. 8 we map out the various theoretical models that have been
discussed in this review. Two general features demarcate the essential
aspects captured or neglected in each model: the length scale that they
consider, and the linear charge density σ. Low σ is characterized by a
lack of counterion condensation, with charges separated by more than
a λB of distance. High σ includes models that can account for counterion
condensation, either explicitly (such as with molecular dynamics) or
using counterion release arguments. Field theoretic arguments can, in
principle, also account for this, however the ‘smearing’ of charges places
an upper limit on its accuracy. Voorn–Overbeek, RPA, and the embedded
fluctuation theory are limited to low-σ regimes. Coacervate theories re-
solve different length scales L. For example, all RPM-based theories
(Voorn–Overbeek, counterion release, PRISM, etc.) are not capable of re-
solving atomistic details below ~1 nm, an area that MD simulations are
able to capture. Conversely, MD is not able to efficiently calculate sys-
tems above ~10–100 nm, limiting its use in representing the overall
phase behavior of coacervation and larger length scales. Large length
scales – those associatedwith self-assembly N10–100 nm, have been de-
scribed primarily by the embedded fluctuation model.
orn–Overbeek limit. (a) Pair correlations calculated in the dense coacervate phase, which
osite polymer/charge correlations are almost indistinguishable from the charge/charge
dilute phase demonstrates that there is an excess of salt near the oppositely charged
ensations that are ‘released’ when the polymers move into the dense phase. (c) In the
centrations and small ion sizes, thermodynamic values from PRISM such as the excess
d with permission from Perry SL and Sing CE, Macromolecules. 2015;48:5040–5053.
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Fig. 8.Mapof the various theories discussed in this review. The realmof applicability of these theories is considered as a function of both the length scale that it can resolve, L, and the linear
charge density of the polymers σ. Important length scales are the atomistic (~1 Å) length scale, the coarse-grained length scale captured by the restricted primitive model (RPM, ~1 nm),
and the self-assembly length scale (≳10−100nm). Noting that σ determines the relevant length scales, we draw a non-rigorous ‘empty area’ in the lower left hand side of the diagram.
Models included are Voorn–Overbeek and RPA (VO, RPA), field theoretic (FT), counterion release (CR), molecular dynamics simulation (MD), polymer reference interaction site model
(PRISM), and the embedded fluctuation model (EF). We note that, even within their realms of applicability, these methods all possess different levels of accuracy.
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Not all L values are relevant for all σ. For example, with low σ sys-
tems the density of the coacervate tends to be very small, and large
length-scale features (chain correlations) drive coacervation rather
than small length-scale features (such as atomistic structure). We de-
note this general observation by shading the small L, small σ region of
Fig. 8. This is not a rigorous boundary, however, especially when other
Table 1
The current models of polymer complex coacervation discussed in this paper, including the ad

Method Advantages Limitations

Voorn–Overbeek • Simple analytical form
• Good matching to experimental
phase diagrams

• Matching to experimenta
requires fitting constants

• Neglects charge connecti
• Neglects finite size of ion
• Equilibrium only
• Mean-field

RPA • Analytical equations
• Can be modified to include ion
charge, local correlations

• Can be systematically extended to
include higher-order correlations

• Slightly beyond mean-field

• Inclusion of connectivity,
• Systematic inclusion of h
correlations becomes cha
charge-dense polymers n
described

• Equilibrium only
Field Theoretic • Can calculate charged systems

without any major assumptions
• Beyond mean-field

• Requires small grid to res
organization features

• Small grid limits ability to
heterogeneous polymer s

• Equilibrium only

Counterion release • Conceptually simple
• Captures entropic driving force for
coacervation

• Captures high charge density limit

• Not yet developed into ful
• Requires counterion conde
density) limit

• Does not describe small en
coacervation

• Equilibrium only
Molecular dynamics • Atomistic resolution

• Dynamic information
(non-equilibrium)

• Small length, time scales
• Relies on the accuracy of

Embedded
fluctuation

• Can capture coacervate-driven
block copolymer self-assembly

• Slightly beyond mean-field (RPA)

• Uses 1-loop RPA for local
(same limitations)

• Polymers treated at mean
• Equilibrium only

PRISM • Can describe both Voorn–-
Overbeek, counterion release limits
(all charge densities)

• Captures both local charge
organization and phase behavior

• Beyond mean-field

• Opaque assumptions that
systematically improve

• Thermodynamic values fr
dependent on closure, and

• Equilibrium only
interactions (dispersive, hydrogen bonding, metal–ligand, etc.) begin
to play a central role.

Fig. 8 highlights what is currentlymissing in coacervate theory. First,
an accurate description of large length scales for high charge density
polyelectrolytes is missing. This is the upper right hand corner of the di-
agram, and iswheremuch of the emerging coacervate-based assembled
vantages, limitations, and predictions of each model.

Predictions Key References

l phase diagrams
, cancellation of errors
vity along chain
s, polymer charges

• Coacervation phase diagram
• Thermodynamic values such as
surface tension, free energies,
salt partitioning

[16,18,28,75,79,81,82]

charge size ad hoc
igher-order charge
llenging; highly
ot adequately

• Coacervation phase diagram
• Thermodynamic values such as
surface tension, free energies,
salt partitioning

• Chain scattering functions

[52–54,73,98]

olve all charge

compute large-scale
ystems

• Coacervation phase diagram
• Thermodynamic values such as
surface tension, free energies,
salt partitioning

• Local correlations, scattering
functions

[139–142]

l theory for coacervation
nsation (high charge

thalpic contributions to

• Entropic contribution of
coacervation

• Critical salt concentration

[51,62,66–68,128,135]

force fields
• Local dynamics
• Solvent, local chain and charge
structure

[56,59–61,65,134,153]

charge correlations

-field level (SCFT)

• Coacervate-driven block
copolymer morphology
phase diagrams

• Chain scattering functions

[41]

are difficult to

om PRISM are highly
often not quantitative

• Coacervation phase diagram
• Local correlations

[122]

Image of Fig. 8
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materials lie. This regime remains an important area to understand. Sec-
ond, there are fewmethods that span all length scales. The ability to in-
clude atomistic, nanometer, and self-assembly length scales remains a
challenge. This is more important at high σ, where all of these length
scales matter. Third, the existing patchwork of theories all still have ad-
vantages and disadvantages that are not easily captured by this dia-
gram. For example, PRISM can reach all chain densities, yet still
requires significant refinement to do so accurately [78,122]. Voorn–
Overbeek fails to demonstrate the entropic driving force for coacerva-
tion [16,118], despite providing excellent matching to experiment
[18]. Finally, almost all of these theories are essentially equilibrium the-
ories; except for MD [63,153], the dynamics of coacervates have not
been widely studied using theory or simulation.We summarize the ad-
vantages and disadvantages of using all of these methods in Table 1,
which also describes the main predictions of each theory or simulation
that can be compared to experiment.

6. Conclusion

Polyelectrolyte coacervates and complexes are a class of materials
that are being increasingly used for self-assembly [31–33,35,41], how-
ever there are fundamental challenges in understanding them from a
theoretical point of view. Many if not most of the most pressing
challenges in polymer modeling today affect have profound implica-
tions for complex coacervates – highly correlated electrostatics [12,94,
147,161,162], multiple length scales, kinetic traps and glassy dynamics
[41,51,55,153], water [153], dielectric [97], and specific ion effects [45,
81,115].

The diversity of modern theoretical approaches typically address
some but not all of these issues. A comprehensive picture of the state
of the theory shows that while a patchwork ofmany theories collective-
ly captures a number of limiting cases, there is not a single theory capa-
ble of simultaneously addressing the full spectrum of features observed
in complex coacervation. Ideally, such a theory would be able to predict
coacervate properties over a broad range of parameters and length
scales. At the atomistic and/or molecular level, the organization of
charges and even solvent would be characterized by (for example)
pair correlation functions. Larger length-scale effects, such as the overall
polymer conformation, phase behavior, and self-assembled structures,
would be simultaneously predicted. Out-of-equilibrium behavior
should also be captured in a complete physical picture of coacervation.
Finally, such a theory would ideally provide a consistent conceptual pic-
ture of coacervation that is useful for experimental design of coacervate-
based materials.

Intermediate progress toward this goalwould lead to immediate im-
pact. For example, to the author's knowledge the rheological behavior of
coacervates has not been widely studied from a theoretical perspective.
This is despite the regular use of rheology as a tool to characterize coac-
ervates [35,80]; existing models such as transient network theory or
sticky reptation may be useful in understanding rheological observa-
tions [168–170]. Drawing such a connection between rheology andmo-
lecular structure would increase the information obtained from these
investigations. Likewise, self-assembly in high charge density polymers
leverages the entire hierarchy of length scales in charged materials.
Fully atomistic control over self-assembled structures is in principle
possible, however theoretical prediction is needed to realize this limit.

There is still a need for more connection between experimental and
theoretical work. Experimental efforts have largely focused on phase
behavior as the primary point of comparison, however this is not always
a direct probe of the molecular-level features such as charge correla-
tions, charge density effects, excluded volume, and specific ion effects.
This makes it difficult to distinguish between Voorn–Overbeek theory
and more sophisticated theories, which as a result are not often com-
pared to experiment. Conversely, there is a need from the theoretical
side to expand the palette of models relevant to the coacervate-driven
assembly that is at the forefront of experimental work in the field.
Joint efforts will expedite the convergence on an overall picture of coac-
ervation; this will hopefully enable polymer scientists to fully exploit
their complexity to make truly exciting and biologically inspired
materials.
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