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ABSTRACT: A simple conjecture relating chain dimensions to the “tube diameter”, which represents
the topological confining effect of entanglements on a chain, works well for all flexible entangled polymer
melts. I extend this conjecture to semidilute solutions: first for Θ solvents, where it is shown to be
equivalent to the Colby-Rubinstein scaling picture, and then for good solvents. In the latter case, it
turns out that the number of “blobs” per entanglement strand B is not a constant as had been previously
assumed, but depends on the ratio of the packing length to the swelling length. This unified picture is
consistent with existing data on semidilute solutions.

1. Introduction
In entangled polymer melts and solutions, the mo-

lecular weight between entanglements Me is arguably
the most fundamental material parameter, although its
origin in a more microscopic description of topological
constraints between chains is unclear. Two separate
scaling arguments have been successfully proposed to
explain the dependence of the entanglement molecular
weight (and hence the tube diameter, and plateau
modulus) of polymer melts on (1) polymer conforma-
tional properties (stiffness and bulkiness), and (2)
polymer volume fraction in a Θ solution. This paper
summarizes these two arguments, due respectively to
Lin and Noolandi1,2 and others and to Colby and
Rubinstein,3 in such a way that a unified picture
emerges.

A successful conjecture put forward by several authors
to explain the dependence of Ne ()Me/M0, M0 being the
monomer mass) on the conformational properties of melt
polymers can be expressed prosaically as follows: “when
enough different chains get into the same room together,
an entanglement happens.” This is a nontrivial state-
ment relating Ne to chain conformational properties
because (1) it takes more room to bring a given number
of chains together if they are flexible or bulky than if
they are stiff or skinny, and (2) “enough” turns out to
be the same number for all types of chains.

More precisely, the conjecture is that a fixed number
n of chain segments of chain length Ne fit inside a
volume a3. This is the volume “swept out” by an
entanglement segment, because the end-to-end distance
of an entanglement segment is the tube diameter a,
hence

In other words, the Lin-Noolandi conjecture is

where Ω0 is the displaced volume of a monomer.
Now, recognize that the ratio NeΩ0/a2 is in fact a

material constant, with dimensions of length and inde-
pendent of Ne, since both numerator and denominator
scale linearly with Ne. This length scale emerges in
many contexts. For definiteness, we define the “packing

length” lp as the ratio of chain displaced volume to the
radius of gyration squared:

Evidently, lp can be taken experimentally from neu-
tron-scattering data for the radius of gyration of labeled
chains of known mass in the melt (which is one reason
I have chosen to use Rg rather than the end-to-end
radius in the definition). For the most part, lp will be
used in this paper in scaling arguments, in which the
numerical prefactor of eq 3 is not essential. However,
section 2.4 compares numerical estimates of various
length scales for various common polymers, for which
the choice of prefactor matters.

Combining eqs 3 and 2, we have simply

The plateau modulus G is from rubber elasticity theory
generally expressible as “kT per entanglement strand”
or

Using eqs 2-4, we find

Equations 4 and 6 are nontrivial, in that they relate
an elusive property of topological origin (the tube
diameter) to prosaic chain dimensions (displaced volume
and end-to-end radius). Remarkably, these relations are
valid for all polymers that have ever been carefully
examined, with plateau moduli varying over more than
2 orders of magnitude.4

Note that I have taken a different numerical prefactor
in eqs 3 and 5 than were taken in ref 4. (The prefactor
in eq 5 has been chosen to reflect an emerging conven-
tion in recent literature.) The correspondences between
quantities in this work and ref 4 are summarized in the
Appendix. With the conventions of the present paper,
the experimentally determined value of n is n ≈ 22.4
or so.4 Thus, a/lp ≈ 3.7 and G/(kT/lp

3) ≈ 0.43.

a2 ) Neb
2 (1)

a3

NeΩ0
) n (2)

lp ) NΩ0/Rg
2(N) ) 6Ω0/b

2 (3)

a ) nlp/6 (4)

G ) kT
NeΩ0

(5)

G ) 216kT
n2lp

3
(6)
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One interpretation of the packing length lp is as
follows: if we assume random-walk scaling of end-to-
end radius with chain length R2 ) Nb2 and a volume
per monomer Ω0, there is a length scale below which
this random-walk scaling must break down or else the
monomers of a single chain would overfill space. Hence
ideality of chains in the melt must break down below
this length scale - which is in fact lp, with correspond-
ing chain length Np satisfying NpΩ0 ) lp

3. This length
scale is larger for bulky chains (large monomeric volume
Ω0) or for flexible chains (small end-to-end radius R).

Bulky and/or flexible chains have a stronger tendency
to fill space around a given monomer of a chain with
other monomers nearby along the arclength, thus
excluding monomers from other chains. We might
likewise expect lp to be the typical “distance of closest
approach” of two chains, with a corresponding displaced
volume of NpΩ0, since two pieces of chain cannot
approach more closely without overfilling space (or
distorting considerably their conformations).

Thus, the Lin-Noolandi conjecture may be described
as the assertion that whatever a tube is, it takes a
constant number of “close approaches” between chains
in a volume a3 to define a tube segment of dimension a.
This number of close approaches is a3/lp

3 ) (n/6)3 or n2/
63 ≈ 2 close approaches per entanglement segment.

Note that eq 3 implies that lp for a semiflexible chain
of sufficient stiffness would be smaller than the chain
diameter. To see this, define lb as the chain Kuhn
length, which is Nb monomers long. On this length scale,
a chain bends freely (hence subscript b for bending). The
chain diameter d is then given by NbΩ0 ) lb(π/4)d2

(displaced volume of a Kuhn length). The chain dimen-
sions satisfy Rg

2 ) (N/Nb)lb
2/6 (freely joined random

walk of Kuhn lengths). Now note that the packing
length can be related to Nb and lb by lp ) 6NbΩ0/lb

2,
which implies lp ) (3π/2)d2/lb using the above relations.

Now for a semiflexible chain, we can have lb increas-
ingly larger than d, so for a stiff enough chain with lb
> (3π/2)d, we have lp < d. This is unphysical, because
it is impossible for the distance of closest approach for
a binary contact to be smaller than d. Evidently for
sufficiently stiff, skinny chains the Lin-Noolandi con-
jecture should be replaced by something else.

2. Extension to Θ-Solutions

What is the proper generalization of the Lin-
Noolandi conjecture to ideal but diluted entangled
polymers? This question arises in multiple contexts: (1)
the plateau modulus of polymer semidilute solutions in
Θ solvents; (2) the time-dependent modulus of bidis-
perse polymer melts on time scales between the short-
chain and long-chain reptation times (assumed to be
widely separated); (3) stress relaxation in star polymer
melts, in which the outer portions of star arms quickly
relax their stress while inner portions of star arms relax
much more slowly.

The plateau modulus in Θ solutions is related to these
dynamical situations because in melts undergoing stress
relaxation, the chains maintain ideal uncorrelated
random-walk configurations as do the chains in Θ
solutions, even as the concentration of effectively en-
tangling chains decreases at long time scales due to fast
relaxations of some species (short chains) or portions
of chains (outer portions of star arms).

2.1. Incorrect Approach. A simple (and incorrect)
extension of the Lin-Noolandi conjecture that suggests

itself to many people who first consider this problem is
as follows: in the presence of Θ solvent, unentangled
chains, or other diluents, an entanglement volume
contains some fixed number n of entanglement strands,
but now at volume fraction φ of the entangling species.
That is, a3φ/(NeΩ0) ) n.

This leads immediately to a(φ) ) a0/φ where a0 is the
tube diameter in the melt. Correspondingly, the con-
centration dependence of the entanglement chain length
becomes Ne(φ) ) Ne/φ2. The plateau modulus of “kT per
entanglement strand” in polymer solutions is given in
terms of the entanglement chain length quite generally
by the simple generalization of eq 5

This implies under the present assumptions G ) G0φ
3

where G0 is the melt value. Unfortunately, these scaling
results are in sharp disagreement with data on the
concentration dependence of the modulus in Θ solutions
and dynamically diluted melts,5 which has led some
workers to question the validity of the Lin-Noolandi
conjecture even for melts.

It is clear upon reflection that this is not the correct
extension of the Lin-Noolandi conjecture to Θ solutions.
The argument described above amounts to saying that
each chain in the melt carries around a “coating” of the
diluting species, in effect increasing the monomer
volume from Ω0 to Ω0/φ without changing anything else
about the system. This would make sense if the diluting
species were a short side branch literally attached to
the polymer (and did nothing to change the end-to-end
radius).

Indeed, this provides a crude approximation of the
effect of short side groups in polyolefins, where the
radius of gyration of the backbone is not strongly
affected by the addition of side groups.6 However, the
diluting species in a Θ solution or a dynamically diluted
melt are uncorrelated in position with the entangling
chains, which a proper extension of the Lin-Noolandi
conjecture to these situations must take into account.

2.2. Colby)Rubinstein Argument. Colby and Ru-
binstein formulated a correct ansatz as to the concen-
tration dependence of the plateau modulus in Θ solu-
tions with the following argument,3,7 which we shall
restate (in a more leisurely fashion than their original)
and discuss. First, they remark that, in a Θ solution,
localized binary contacts occur randomly between por-
tions of chains that happen to come close, and they have
a volume (assumed to be independent of concentration)
of NpΩ0 just as in the melt. Thus, the concentration of
these binary contacts is cB(φ) ) φ2/(NpΩ0), where φ is
the volume fraction of chains.

Then, they hypothesize that “some fixed (but as of yet
unspecified) number of binary contacts collectively gives
rise to the topological constraint which we call an
entanglement”swhich is the same assumption as in the
Lin-Noolandi argument, extended to assume that n is
independent of concentration. Thus, the tube diameter
a(φ) is assumed to scale with concentration in the same
way as the near-neighbor distance between binary
contacts l(φ), where 1/l(φ)3 ) cB(φ). If we simply take
a(φ) ) nl(φ)/6, this is the same as the Lin-Noolandi
conjecture in the melt limit when l(φ) becomes 6(NpΩ0)1/3

) lp.

G(φ) )
kBTφ

Ne(φ)Ω0
(7)
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This scaling of a(φ) proportional to l(φ) is nontrivial,
because there are several candidate “microscopic lengths”
in the problem to choose from, including the correlation
length for concentration fluctuations ê(φ), which scales
differently with φ as we shall see below. In any event,
since one may write the concentration of entanglement
points either as 1/l3(φ) or as φ2/(NpΩ0), Colby and
Rubinstein’s assumption implies l(φ) scales as
(NpΩ0)1/3φ-2/3.

Thus, the tube diameter is assumed to scale as

where a0 is the melt value for the tube diameter.
Because the entanglement strands are Gaussian ran-
dom walks of end-to-end radius a [i.e., a2 ∼ Neb2], this
implies

The corresponding result for the modulus from eq 7 is

in terms of the melt plateau modulus from eq 6. This
argument is in good agreement with existing Θ solution
data of Adam and Delsanti.5

One may then ask, how many entanglement strands
of length Ne(φ) are cohabiting a segment of tube, with
volume of a3(φ)? Multiplying this volume by the con-
centration of entanglement strands φ/(Ne(φ)Ω0), we find
φ1/3n strands cohabiting a tube segment. So for φ larger
than φc ) n-3 ) 10-4 or so, there are many entangle-
ment strands cohabiting the same tube segment, and
the theoretical picture is sensible.

2.3, What about Slip-Links? Some readers may
wonder about a hypothesis for the concentration depen-
dence of the entanglement length based on a picture of
“slip-links”, which may be formulated as follows. One
proposes that whatever a tube is, it consists of a
sequence of localized binary entanglement events called
“slip-links”, in which the motion of a given chain
transverse to its own primitive path is constrained by
a second chain.

Now consider a Θ solution or equivalently a melt in
which some more rapidly relaxing chains are not
dynamically relevant on some longer time scale. One
might be tempted to argue that if the volume fraction
of entangling species is φ, that the probability per unit
arclength of chain of a slip-link being present should
be proportional to φ.

Hence Ne(φ) would scale as 1/φ. Correspondingly, the
tube diameter would scale as φ-1/2 (since a2 ∼ Ne) and
the plateau modulus would scale as φ2 (from eq 7).
Evidently, this is not the same scaling as predicted by
the Colby-Rubinstein argument. Furthermore, it is
ruled out by the data of ref 5. [Note that this means
that the φ2 concentration dependence of the plateau
modulus typically assumed in various formulations of
stress relaxation in polydisperse linear entangled melts,8
often called “double reptation”, is not quite correct. Such
theories ought to be modified to reflect the correct
concentration dependence, and referred to as “seven-
thirds reptation”.]

Perhaps the contrast between this unsuccessful an-
satz and the successful Colby-Rubinstein hypothesis
tells us something about what a tube is and is not. The

successful hypothesis tells us that the number of binary
contacts in a volume a3(φ), scaling as a3(φ)φ2/lp

3, is a
constant.

The unsuccessful hypothesis would imply that the
number of binary contacts of an entanglement segment
of a given chain with other chains in a volume a3(φ) is
constant. To see this, note that the concentration in the
volume a3(φ) of a given chain’s own monomers φself scales
as Ne(φ)Ω0/a3(φ). The concentration of binary contacts
between the monomers of a given chain and monomers
from any chain will be proportional to the product φselfφ/
lp

3 [i.e., proportional to the product of the two volume
fractions, with each contact having a volume lp

3]. Thus,
the number of contacts of the given chain with others
in a volume a3(φ) scales as φNe(φ)Ω0/lp

3. If this were
constant, Ne(φ) would scale as 1/φ.

In short, the success of the Colby-Rubinstein ansatz
suggests that the tube of a given chain results from
binary contacts not only of the given chain with other
chains, but of nearby chains with each other.

2.4. Case of O < Oc. What happens for φ less than φc?
Recall the scaling of the correlation length, which must
equal the chain radius R at the overlap volume fraction
φ* ∼ NΩ0/R3, and must become independent of chain
length N for concentrations well above φ*. We thus have
ê(φ) ∼ Rφ*/φ, or ê(φ) ) Ω0/(b2φ) ) lp/φ for Θ solutions.
We may interpret ê(φ) as the length scale over which
the monomers of a single chain passing through a region
contributes a concentration that dominates the average
volume fraction φ.

It turns out that ê(φ) and a(φ) are comparable at φc,
a(φ) being larger than ê(φ) for φ > φc. It does not make
sense for a(φ) to be smaller than ê(φ), because the tube
is defined by other chains, and ê is the length scale on
which a single chain makes the dominant contribution
to the local concentration. Hence for φ less than φcsa
limit difficult to achieve in practiceswe must have the
tube diameter given by ê(φ), as Colby and Rubinstein
argued.

This limit is extremely hard to achieve in practice,
because to obtain φ* < φc implies a chain length N
satisfying N > (lp/b)2n6. Since n is about 20 and lp/b is
typically about unity, only enormously large chains with
more than 108 monomers would remain overlapping
below the (extremely dilute) crossover concentration φc.

In that hard-to-access limit, the tube diameter would
be given by a(φ) ) lp/φ or equivalently a0/(nφ); the
entanglement length would scale as Ne(φ) ) lp

2/(b2φ2),
or equivalently Ne/(n2φ2). Correspondingly, the plateau
modulus would scale as implied by eq 7, which is G0n2φ3.

2.5. Numerical Estimates of Length Scales. At
this point we make some simple numerical estimates
of the various lengths we have introduced for the case
of typical polymers. To begin with, the mean- square
end-to-end distance of typical polymers (with carbon-
carbon single bonds along the backbone) turns out to
be of the order of 1 Å2 times the molecular weight of
the backbone (in grams per mole).

In other words, to a crude first approximation, the
presence of side groups along the main chain (which is
essentially polyethylene) does little to affect the end-
to-end distance of that backbone. (More precisely, side
groups can either make the backbone more flexible, by
disrupting the energy difference between trans and
gauche states, or more rigid, by colliding with their
neighbors along the backbone.)

a(φ) ) a0φ
-2/3 (8)

Ne(φ) ) Neφ
-4/3 (9)

G(φ) ∼ G0φ
7/3 (10)
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This implies that the effective bond length b is
approximately constant for a wide variety of polymers
based on single carbon-carbon bonds, independent of
the bulkiness of the polymer, with corrections arising
only from changes in the Kuhn length as described
above. This idea is confirmed in Table 1.

In Table 1, the values of R2/M from which the packing
length is derived [using lp ) 6M/(FNAR2)] come from
neutron scattering measurements of R2 in the melt [data
from ref 4]. The values of the monomer mass M0 are on
a “C2 basis”, i.e., the mass per pair of bonds along the
main chain. The values for b come from b ) (M0R2/M)1/2.
Evidently b ≈ 6 Å for a wide range of polymers, even
some with main-chain double bonds (polybutadiene
[PBD] and polyisoprene [PI]) and non-carbon single
bonds (poly(dimethylsiloxane) [PDMS]).

Now we estimate the Kuhn length lb of a polymer
(which figured in the consistency argument for the Lin-
Noolandi conjecture at the end of section 1) and the
corresponding number of monomers per Kuhn length
Nb. These are defined to satisfy R2 ) Nb2 ) (N/Nb)lb

2

and Nbl0 ) lb, where l0 is the length of a monomeric step
in a fully stretched chain. Thus, lb ) b2/l0. For polymers
made of carbon-carbon single bonds, l0 is about 2.5 Å
(as above, we take a monomer to be C2 along the main
chain). Hence for such polymers, lb is about 10 Å, and
Nb is about 4.

We now examine the packing length lp for these same
polymers. Using the polymer end-to-end distance as in
eq 3, the values in Table 1 are obtained.4 Evidently, all
these are larger than the Kuhn length (about 10 Å), with
polyethylenesthe skinniest polymer in the table,
with the correspondingly smallest packing lengths
approaching lp ) lb. [Note that with the definition lp )
Ω/R2(N) of ref 4, the values of lp for various polymers
in Table 1 would be a factor of 6 smaller, which would
lead to lp < lb for most of the polymers in the table.]

For bulkier polymers with a carbon-carbon backbone
(i.e., everything but polyethylene [PE]), we would expect
that the packing length would increase as the ratio of
the volume per backbone carbon to that of polyethylene
(neglecting any decrease in stiffness of the backbone).
This simple argument supports the observation that PE
has the shortest packing length (hence smallest tube
diameter, and highest plateau modulus) of any common
polymer.

For chains based on stiffer backbone chemistries (e.g.,
multiple bonds, or biopolymers), we could certainly
achieve the situation in which the packing length
assuming random walk statistics turns out to be con-
siderably smaller than the Kuhn length. For such
polymers, the present picture of close binary contacts
having a volume lp

3 would not survive, since that picture

is based on chains that are Gaussian or nearly so on
the scale of the collision. Alternate approaches have
been devised to describe entanglement for such semi-
flexible chains.9

The tube diameter for PE can be inferred directly from
experimental results4 for the plateau modulus and
hence the entanglement weight, which is about 1000
g/mol. This leads to a tube diameter of 30 Å or so. The
important point is that this is larger than both the
packing length and the Kuhn length. Hence the chain
within the tube is (barely) describable as Gaussian,
probably with significant corrections due to chain stiff-
ness.

For carbon-carbon main chain polymers bulkier than
polyethylene, we expect lb to be the same or smaller,
while the tube diameter will grow due to the bulk of
the side groups. Thus, the description of the polymer
within the tube as Gaussian should improve for poly-
mers with side groups.

3. Good Solvent Regime

Finally, we turn to the case of entangled polymer
solutions in a good solvent. This might be thought by
most readers to be simple, with the tube diameter a
scaling in the same way as the correlation length ê, as
φ3ν/(1-3ν)≈-3/4.

That is, the entanglement length and the correlation
length are commonly thought to be proportional, with
an entanglement strand consisting of a fixed number
of “blobs” (correlation volumes) for all semidilute solu-
tions, independent of concentration or polymer/solvent
system.10 In the common parlance of scaling, for semi-
dilute solutions it is often said that “there is only one
length scale in the problem”, namely the correlation
length ê. More precisely, this asserts that there is a
scaling regime where the values of other microscopic
length scales do not affect the physics and are thus
“irrelevant”.

If this view were correct, it would imply that the
osmotic modulus K of a semidilute solution, which scales
as “kT per blob”, and the plateau modulus G, which
scales as “kT per entanglement strand” from rubber
elasticity theory, would have a ratio K/G equal to the
“number of blobs per entanglement strand” ne, inde-
pendent of concentration or polymer/solvent system.10

3.1. Variation of K/G. In fact, this simplified view
was shown to be incorrect by Raspaud, Lairez, and
Adam.11 They examined three different polymer/good
solvent systems each in the semidilute regime (PBD and
PI in cyclohexane, and polystyrene [PS] in benzene),
using static light scattering to measure the osmotic
modulus and dynamic rheology to determine the plateau
modulus.

First, Raspaud et al. verified for their three systems
that the osmotic modulus vs concentration obeyed a
universal curve when expressed in the reduced form
(dΠ/dC)/(kT/M) vs CMA2 where MA2 is the second virial
coefficient determined from light scattering. (This
amounts to reducing C by the overlap concentration C*,
since MA2C* ) constant) They found good agreement
with the theoretically predicted power-law scaling, as
had previous authors.12

However, ref 11 concluded that while the ratio K/G
was independent of concentration within experimental
error, it was not the same constant for each polymer/
solvent system. In fact, they found a wide range of
values for the number of blobs per entanglement strand

Table 1. Values of Packing Length lp, Chain End-to-End
Distance Per Unit Mass, Monomer Mass, and Effective

Monomer Step Length ba

polymer
lp

(Å)
R2/M

(Å2 mol/g)
M0

(g/mol)
b

(Å)

polyethylene 10.2 1.25 28 5.9
polybutadiene 13.7 0.876 54/2 4.9
a-polypropylene 18.8 0.670 42 5.3
polyisoprene 19.2 0.625 68/2 4.6
polyisobutylene 20.6 0.570 56 5.6
polystyrene 23.6 0.434 104 6.7
poly(dimethylsiloxane) 24.3 0.457 78 6.0
poly(vinylcyclohexane) 33.5 0.323 110 6.0

a Note the near-constancy of b despite variation in lp.
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(see Table 2). They observed that, perhaps coinciden-
tally, the values of K/G they obtained were quite close
to the number of monomers in an entanglement strand
in the melt (see Table 2).

The results of ref 11 invite the question of how and
which other microscopic length scales affect the value
of G (since K obeyed the expected scaling relation, the
variation in K/G presumably comes from G). In short,
the complications arise from the fact that a “good
solvent” does not imply that chains are self-avoiding on
all length scales.

3.2. Scaling in Semidilute Solution. In particular,
a single chain in a good solvent will only display self-
avoiding behavior above a length scale ls at which the
self-interaction energy is of order kT (at which length
scale a perturbative treatment of self-interactions breaks
down13). Hence, we review the length scales that arise
from considering polymer self-avoidance in semidilute
solution, and then return to questions of entanglement.

In a simple mean-field, random-mixing approximation
we estimate the energy of repulsive interactions U per
unit volume V in a polymer solution of volume fraction
φ by

Here w is the “excluded volume parameter” that mea-
sures the strength of repulsive interactions between
monomers, and hence the quality of the solvent. As w
approaches zero, we have a vanishing second virial
coefficient between polymers and a Θ solvent; w nega-
tive implies phase separation between polymer and
solvent.

3.3. Swelling Length. We may then ask on what
length scale ls a polymer interacting with itself suffers
kT of repulsive energy.14 The monomer volume fraction
φs inside the polymer coil of size ls is within random
mixing approximation

Here Ns is the number of monomers in a chain of size
ls, i.e., ls

2 ) Nsb2.
Thus, the definition of ls above translates to

which implies

The length scale ls is sometimes called the “thermal
blob”; here we use the name “swelling length” to
emphasize the role of ls in determining the overall chain
configuration.

In a polymer solution of volume fraction φ, we only
expect self-avoiding behavior of the polymers at length

scales between ls and the “blob size”, at which a given
polymer chain begins to encounter other polymer chains
so that self-avoidance is screenedsroughly, there is no
longer a reason to give up entropy by self-avoidance if
encounters with other polymers are frequent.

To determine the blob size, we find the length scale
at which the monomers from a single polymer chain
contribute an average volume fraction equal to the
solution volume fraction. (Thus, semidilute solution
consists of blobs at overlap concentration.) Assuming
the chain is self-avoiding below this length scale, the
radius ê of a portion of the chain of g > Ns monomers
scales as

In scaling parlance, each blob consists of a self-avoiding
walk of “thermal blobs”, and the entire chain in semi-
dilute solution consists of a Gaussian (not self-avoiding)
walk of blobs of characteristic size ê.15 This is illustrated
schematically in Figure 1.

Then the volume fraction contributed by this portion
of a chain is gΩ0/ê3; equating this to φ gives

which holds for φ < φs. Using the self-avoiding scaling,
we have

As the solvent quality worsens, ls increases and φs
vanishes. At a given polymer volume fraction, as solvent
quality worsens or concentration increases, eventually
φs drops below φ and we have ideal random-walk
behavior at all length scales above lp.

This is the “Edwards regime”, in which mean-field
theory is a valid description of the structure and
interactions of a sufficiently concentrated solution of

Table 2. Values for Number of Blobs Per Entanglement
Strand and Number of Monomers per Entanglement in

the Melt for Three Polymer/Solvent Systems

polymer K/G Me/M0

polystyrene 185 ( 40 165
polyisoprene 112 ( 8 94
polybutadiene 38 ( 6 35

U/V ) wφ
2 (11)

φs )
NsΩ0

ls
3

)
lp

6ls
(12)

wφs
2ls

3 ) kT (13)

ls

lp
) 36kT

wlp
3

(14)

Figure 1. Polymer chains in a semidilute solution. Here, the
polymer chain may be regarded as a Gaussian random walk
of blobs of size ê. Each blob consists of a self- avoiding walk of
“thermal blobs” of size ls. Each thermal blob consists of a
Gaussian random walk of chain segments the size of the Kuhn
length.

ê/ls ) (g/Ns)
ν≈3/5 (15)

(g/Ns)/(ê/ls)
3 ) φ/φs (16)

(ê/ls) ) (φ/φs)
ν/(1-3ν)≈-3/4 (17)
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sufficiently weakly interacting chains.16 The limit of
applicability of self-consistent mean-field theory is when
the Edwards correlation length [which scales as (b2/
(φw))1/2] becomes as small as the length scale at which
a single chain in the solution dominates the local
concentration [which scales as Ω0/(φb2)]. Then, mean-
field theory breaks down (because there are no longer
a large number of chains per correlation length all
interacting). The concentration at which this breakdown
occursswhere the Edwards regime crosses over to a
semidilute solution with swollen chains below the
correlation lengthsis φs. The crossover state corre-
sponds to thermal blobs at overlap concentration.

3.4. Tube Diameter. Now consider the scaling of the
tube diameter. For volume fractions φ larger than φs
we have in effect a Θ solution, so the tube diameter
must scale as a(φ > φs) ) a0φ

-2/3. At φs we have a(φs) )
n(lp/ls)1/3ls, which is to be compared to the correlation
length ê(φs) ) ls.

If φs ) lp/ls is greater than φc ) n-3 (true for all but
the most marginal “good solvents”), the tube diameter
exceeds the correlation length, which we need for
consistency just as in the Colby-Rubinstein argument.
[If φs < φc, we have crossover at φc to a(φ) scaling as 1/φ
as for Θ solutions.]

For φ less than φs, we have self-avoidance and hence
significant local correlations in the chain conformations,
which invalidates the Colby-Rubinstein estimate of the
concentration of “binary events” cB as proportional to
φ2. In its place, we expect cB to be of order one per blob
volume ê(φ)3.

To determine the prefactor, we force continuity at φ
) φs, which implies

This continuity implies a connection between entangle-
ment behavior of polymers in the melt and in the
semidilute state.

With this form for cB the same conjecture can be
applied to determine the tube diameter as previously,
namely a(φ) ) nl(φ) with 1/l(φ)3 ) cB(φ)sthe tube
diameter is proportional to the distance between “binary
events”swith the result

The corresponding results for the entanglement chain
length Ne(φ) and plateau modulus G(φ) are

Another way to obtain these results is to argue as
follows. When two self-avoiding walks cohabit the same
space, on a more local level a finite number of thermal
blobs from the two chains overlap. This number is
independent of the length of the walks (up to logarith-
mic corrections) and the solvent quality (size of the
thermal blob). Physically, this is true because (1) the

cost of two thermal blobs overlapping is of order kT (by
definition) and (2) a few repulsive contacts of order kT
between overlapping self-avoiding chains is enough to
induce rearrangements of the overall chain conforma-
tions such that further contacts are avoided.

Now when two thermal blobs overlap, a mean-field
description is valid, and we can estimate the number
of close binary contacts of volume lp

3 as ls
3φs

2/lp
3. Using

eq 12, the number binary contacts per pair of overlap-
ping thermal blobs scales as ls/lp. Because there are only
O(1) such overlapping thermal blobs when two self-
avoiding correlation blobs of dimension ê overlap, the
concentration of binary contacts scales as (ls/lp)/ê3. But
this is just eq 18, from which all the scaling results
including eq 22 follow.

3.5. What Crossover? The values of the scaling
exponents in eq 21, 7/3 ) 2.33 and 9/4 ) 2.25, are close
enough to be indistinguishable in practice; using the
best accepted value of ν ) 0.588 (see ref 17 and
references therein), we have even closer values for these
exponents, as 3ν/(3ν - 1) ) 2.31.

From a purely phenomenological point of view, eq 21
asserts that the concentration dependence of the plateau
modulus will be G(φ) ) G0φ

2.3 all the way from the melt
to overlap concentration, with no noticeable break in
slope at the boundary between semidilute and Edwards
regimes.

In ref 11, raw data for K and G separately are not
presented. However, power-law correlations that rep-
resent their data for K(c) are reported, and a plot of
values for K/G vs concentration c (in g/cm3) is given. I
have thus inferred values for G from their data, by
reading off values of K/G(c) from the plot, computing
K(c) from the reported power-law correlations, and
taking G(c) ) K(c)/(K/G(c)).

With values for melt densities c0 and plateau moduli
G0 from ref 4, one can then make a log-log plot G(c)/G0
vs volume fraction φ ) c/c0, as shown in Figure 2. The
data evidently collapses reasonably well to a single
power law; the straight line has a slope of 2.3.

The prefactor of the power-law fit in Figure 2 corre-
sponds to a melt value for G(c)/G0 of about 0.4. One may
understand this value by recalling the way in which
Raspaud et al. measured the plateau modulus; namely,
they defined G as the zero-shear viscosity divided by
“the longest relaxation time”. This procedure will to

cB(φ < φs) )
ls

lpê(φ)3
(18)

a(φ) ) {a0φ
-2/3: φ > φs

a0φs
-2/3(φ/φs)

ν/(1-3ν)≈-3/4: φ < φs

(19)

Ne(φ) ) {Neφ
-4/3: φ > φs

Neφs
-4/3(φ/φs)

1/(1-3ν)≈-5/4: φ < φs

(20)

G(φ) ) {G0φ
7/3: φ > φs

G0φs
7/3(φ/φs)

3ν/(3ν-1)≈9/4: φ < φs

(21)

Figure 2. Values for plateau modulus G inferred from ref
11, scaled against the melt value G0, plotted against volume
fraction c/c0. The straight line is a power law of 2.3. (Data for
PS, PI, and PBD are triangles, squares, and circles, respec-
tively.)
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reasonable approximation yield 1/Je, the reciprocal of
the recoverable compliance. Thus, the extrapolation to
the melt should give G(c)G0 f 1/(JeG0).

For well-entangled polymer solutions and melts, the
product G0Je is about 2.3.18 Also, there are published
values for Je for PS,19 PI,20 and PBD21 melts, namely
Je ) 12, 5.9, and 2.0 (MPa)-1 respectively. Comparing
to the modulus values from ref 4, we find G0Je ) 2.4 (
0.1 in all three cases. The prefactor in the fit of Figure
2 is in fact 1/(2.4) ) 0.42.

3.6. Number of Blobs per Entanglement, B. For
practical purposes, the simple scaling relation G(φ) )
G0φ

2.3 from melt down to overlap concentration should
be adequate. Its simplicity belies the complexity of the
underlying crossover from the Edwards to the semi-
dilute regime; the exponents controlling the concentra-
tion dependence of G are close “by coincidence”.

If however we persist in answering the question posed
by Raspaud et al., namely, “how many blobs comprise
an entanglement strand”, we can write G(φ) in the
semidilute regime in a revealing way, as

which exposes the prefactor of the naive scaling result
G ∼ kT/ê3 implied by continuity of the semidilute and
Edwards regimes.

Using eq 14 we observe that the “number of blobs per
entanglement” factor B can be written as

[Note that this cannot be applied in the limit w f 0,
since we must have ls < ê to be in the semidilute
regime.]

Equation 23 shows that the number of blobs per
entanglement is not a constant for all different polymer
systems, but depends on the ratio of “irrelevant” mi-
croscopic lengths in the problem, lp and ls. Qualitatively,
as the repulsive interactions become stronger, B in-
creases: more strongly self-avoiding chains have fewer
chances to become entangled. Likewise, chains with a
larger packing length, which are more hindered from
making close approaches, have a larger value of B.

4. Swelling Crossover
To check eq 23, we need the swelling length for each

polymer studied. The swelling length can be obtained

from the swelling dependence of chain dimensions in
dilute solution.

On general grounds we expect the “swelling ratio” Rg/
Rg0 (where Rg0 is the chain radius of gyration with
repulsive interactions turned off) to be a function of the
ratio Rg0/ls. This ratio measures the importance of self-
avoidance for the chain. If ls > Rg0, the chain is not large
enough for self-avoidance to perturb the chain dimen-
sions very much, and the swelling ratio will tend to
unity.

To describe how the swelling ratio depends on Rg0/ls,
we first turn to Flory theory for the swelling of a single
chain.22 This description consists of a phenomenological
free energy with three termsschain stretching, free end
entropy, and mean-field monomer-monomer inter-
actionssin the form

Minimizing F with respect to R yields an equation
for the swelling ratio

which interpolates between the good-solvent scaling
result (R/R0) ) (R0/ls)2ν-1≈1/5 and the Θ-solvent result
R/R0 ) 1.

4.1. Swelling Curve From Simulations. In prin-
ciple, the swelling curve could be computed using
renormalization group techniques.23 An alternate ap-
proach to determining the swelling ratio as a function
of Rg0/ls is to use data from Monte Carlo or molecular
dynamics simulations of a self-interacting random walk.
This was carried out by Graessley et al.17 and compared
to data on the swelling ratio as a function of chain
length for a variety of polymers.24

The molecular dynamics simulations of ref 17 used a
bead- spring model of a polymer chain, with cutoff
Lennard-Jones interactions between monomers, U(r) )
4ε[(σ/r)12 - (σ/r)6 - (σ/rc)12 + (σ/rc)6 for r less than rc
(and U(r > rc) ) 0). The athermal limit was modeled by
choosing the cutoff at the LJ minimum, rc ) 21/6σ, so
that the monomer interaction is purely repulsive.

To study chains with weakly repulsive interactions
between monomers, the authors used a cutoff length rc
> 2.5σ, such that the resulting interaction included most
of the attractive part of the LJ interaction. Then the
approach to the Θ condition is accessible by varying the
simulation temperature, which was known from previ-
ous work to be kTΘ ) (3.0 ( 0.1)ε.25

Reference 17 showed that the radii of gyration of their
chains of different lengths and temperatures fell on a
master curve, when plotted as Rg(N, T)/Rg(N, TΘ) vs
N/Nq(T). The scale factor Nq(T) was determined empiri-
cally for each temperature such that the data collapses
onto a single curve, with limiting behavior for large N
of the form Rg/Rg0 ) (N/Nq)(ν-1/2), where ν is the observed
swelling exponent. Using ths procedure, Nq ) 4.03 for
the athermal chains.

In ref 24, the same approach was applied and the
same collapse found for experimental data on a variety
of polymer-solvent systems. The swelling crossover
data for both simulations and experimental data was
presented in ref 17, and is shown here as Figure 1.

The Flory result in eq 25 does not describe the
crossover very well, but a phenomenological expression

Figure 3. Master curve for swelling ratio Rg/Rg0 vs N/Nq.
Reprinted from ref 17. Copyright 1999 American Chemical
Society. The solid curve is is crossover function given by
solution of eq 26.

F ) 3kTR2

2R0
2

- kT log(R3/R0
3) +

wN2Ω0
2

2R3
(24)

(R/R0)
5 - (R/R0)

3 ) R0/(2ls) (25)

G(φ) ) kT
n2ê(φ)3(6ls

lp
)2/3

(22)

B ) n2( lp

6ls
)2/3

) n2( wlp
3

216kT)2/3

(23)
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in the same spirit works quite well, namely

This is a “reasonable” expression [describing a some-
what sharper crossover than eq 25] in that it (1) goes
to R/R0 ) 1 for small N and (2) gives (R/R0) ) (N/Nq)0.089

for large N, which is very close to the expected result ν
- 1/2 with ν ) 0.588 the accepted value of the swelling
exponent. In any event, this expression results in the
solid curve in Figure 1, which represents the data very
well.

4.2. Using the Swelling Crossover. With the swell-
ing crossover curve established, experimental data on
dimensions in the melt and in solution of a chain of a
single molecular weight can be used to determine the
swelling length in a polymer-solvent system, without
varying the molecular weight to observe the crossover
in that system.

Chain dimensions in solution and in the melt deter-
mine the swelling ratio Rg/Rg0. From eq 26, which
summarizes the crossover results of Figure 1, we can
then find N/Nq as N/Nq ) f 2(Rg/Rg0), and so find Nq.

To find a value for the swelling length ls, we make
the definition

which may be regarded as determining the prefactor in
the scaling definition of ls. [Compare eq 25 and eq 26.]
The definition eq 27 makes clear that ls is the radius of
gyration of a chain of length equal to the crossover
length Nq, at which the chain first begins to swell.

Using eq 26, we can extract ls as

Data on chain dimensions in both good and Θ solvents
for several polymer systems has been tabulated by
Fetters et al.,26 which summarizes the data for suf-
ficiently large molecular weights as power-law correla-
tions with correlation coefficients above 0.99. The power
laws found for the good and Θ solvent regimes are in
reasonable agreement with theoretical values for the
swelling exponents.23 Chain dimension data for many
polymers in the melt have also been collected4 (ex-
pressed as the coefficient R2/M of Table 1).

From these data, we can compute values for the
swelling length ls using eq 28. In principle, we may
either take Rg0 from chain dimensions in the melt, or
in Θ solution. For many (but not all4) polymer systems,
these are nearly the same. In Table 3, we present results
for the radii of gyration, swelling ratio Rg/Rg0, and
swelling length ls for several polymer systems using
both melt and Θ dimensions for Rg0, using data from
refs 4 and 26. For these polymers, the results are
evidently close.

With these results, one can compute estimates of the
Edwards concentration for the three polymer systems
of ref 11, using eq 12, φs ) lp/(6ls). From the values of
Tables 3 and 1, one finds φs ) 0.24, 0.19, and 0.045
respectively for PS/benzene, PI/cyclohexane, and PBD/
cyclohexane. Of course, eq 12 is only a scaling relation,
i.e., it has implicitly an unknown coefficient of order
unity. Still, the present results suggest that accessing
the Edwards regime should be easier in PBD/cyclohex-
ane than in the other two systems.

Likewise, with the swelling length in hand one can
compute a swelling-based value for the excluded-volume
parameter, using eq 14 and the data of Tables 3 and 1.
The results are shown in Table 4 below, where w is
presented in the form wΩ0/kT [which equals 36Ω0/(lslp

2)
from eq 14]. Here Ω0 ) M0/(NAF) the volume of a
“monomer” (defined here as the volume associated with
a pair of carbon atoms along the main chain).

Note that in each case wΩ0 is small compared to kT,
which means that excluded volume effects are weak in
these polymer systems on a per-monomer basis. Also
reported in Table 4 are the inferred values of Nq (in
terms of number of monomers) for these four polymer
systems. Note the relatively large value of Nq for the
PBD/cyclohexane system, which likewise has the small-
est value of wΩ0/kT and the largest value of ls (see Table
3).

4.3. Predicting B. Using the packing and swelling
lengths for the polymers studied by Raspaud et al. we
can compare eq 23 for the number of blobs per entangle-
ment B with the results of ref 11. (Here I have used the
swelling lengths derived from chain dimensions in the
melt.) The results of this comparison (using the value
n ) 20x5/4 ≈ 22.4) are shown in Table 5. The results
are quite encouraging, particularly in that this value
of n that describes melt entanglement works here as
well, with only a constant factor of 0.66.

In the above, the error bars on the predicted values
of B are derived only from the uncertainty in the
crossover curve derived from simulations, and do not
reflect the additional uncertainties that arise from the
experimental inputs (measured chain radii in melt and
solution).

Note that the predicted value of K/G depends not
only on melt properties (via lp) but also on solvent
quality as well (via ls). The surmise of ref 11 was that

f (R/R0) ≡ (R/R0)
5.59 - (R/R0)

-9.43 ) (N/Nq)1/2

(26)

(N/Nq)1/2 ) Rg0/ls (27)

ls ) Rg0/f (Rg/Rg0) (28)

Table 3. Chain Dimensions in Good Solvents26 and in the
Melt4 and the Resulting Swelling Ratios and Swelling

Lengths for Four Polymer Systems

polymer solvent
Rg × 102

(nm)

Rg (nm)
at 105

g/mol
swell
ratio

ls
(Å)

PBD cyclohexane 1.29M0.609 14.3
dioxane (Θ) 3.79M1/2 12.0 1.19 47.8
melt 3.82M1/2 12.1 1.18 50.8

PI cyclohexane 1.26M0.61 14.1
dioxane (Θ) 3.3M1/2 10.4 1.35 19.3
melt 3.23M1/2 10.2 1.38 16.7

PIB cyclohexane 1.37M0.595 12.9
isoamylisovalerate (Θ) 3.0M1/2 9.49 1.36 16.9
melt 3.1M1/2 9.74 1.33 20.2

PS benzene 1.21M0.595 11.4
cyclohexane (Θ) 2.79M1/2 8.82 1.29 21.3
melt 2.69M1/2 8.51 1.34 16.6

Table 4. Swelling-Derived Values of Excluded Volume
Parameter w for Four Polymer-Solvent Systems

system F (g/cm3) Ω0 (Å3) wΩ0/kT Nq

PBD/cyclohexane 0.826 54 0.21 657
PI/cyclohexane 0.830 68 0.40 79
PIB/cyclohexane 0.849 109 0.47 77
PS/benzene 0.969 178 0.68 36

Table 5. Number of Blobs Per Entanglement B from
Reference 11 and Equation 23

system K/G 0.66B

PS/benzene 185 ( 40 126 ( 11
PI/cyclohexane 112 ( 8 111 ( 8
PBD/cyclohexane 38 ( 6 41 ( 3
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K/G ) Me/M0 only depends on melt properties, and thus
cannot explain a decrease in K/G as solvent quality
decreases. It would therefore be interesting to measure
K/G as a function of temperature in a single polymer/
solvent system in the vicinity of the Θ point.

4.4. Gauss Winding Number. There have been
several attempts27-29 to relate the plateau modulus or
tube diameter to quantities describing the topological
constraints in an entangled polymer melt or solution.
This is evidently an appealing goal, since the plateau
modulus in entangled polymer systems ultimately arises
from uncrossability constraints, which are topological
in nature.

These efforts have so far been unsuccessful. Here, I
shall show that a certain plausible quantity related to
the Gauss winding numbers (GWNs) of a melt or
solution of entangled ring polymers reproduces the
scaling results of the present paper for the plateau
modulus. Once again, an essential ingredient of the
argument is the packing length.

The reason for considering ring polymers is that for
a configuration of such polymers, the GWN between any
two polymers is a well-defined topological quantity. Of
course, an actual melt of ring polymers cannot change
the state of entanglement, because of uncrossability
constraints. However, we can consider a “thought
ensemble” of ring polymers, but with the partition
function summed over all configurations without re-
specting uncrossability. This ensemble ought to re-
semble an ensemble of long entangled polymers with
respect to its configurations, while still having well-
defined GWNs for any pair of polymers in a given
configuration.

The GWN of two loops counts the number of times
that one loop winds around the other. It can be
expressed as a double line integral over the two loops:

which takes on integer values 0, (1, (2, ....
In fact, a simple discrete algorithm exists for comput-

ing the GWN for loops on a cubic lattice30 (and by
implication any smooth paths that may be discretized).
The algorithm proceeds as follows. First, to avoid
ambiguities arising from overlaps, one of the two loops
is displaced by by one-half a lattice spacing in all three
coordinate directions [i.e., by (x̂ + ŷ + ẑ)/2]. The pair of
loops are then projected along each of the three coor-
dinate axes, and the crossings of the two loops so
projected are counted with a contribution (1/6. The sign
of the contribution is positive (negative) if the tangent
of the upper curve in the crossing must be rotated
clockwise (counterclockwise) to coincide with the tan-
gent of the lower curve. The sum of the contributions
gives the GWN.

For two overlapping Gaussian random loops, it has
been argued by des Cloizeaux31 and shown by on-lattice
Monte Carlo simulation32 that the mean-square GWN
scales as N1/2. The argument of des Cloizeaux amounts
to saying the following: (1) the contributions to the
GWN come from close approaches of the two loops; (2)
the number of close approaches of two overlapping ideal
random walks scales as N2/R3 or N1/2; (3) the contribu-
tions are random in sign, so the variance scales as N1/2

by the central limit theorem.

Of course, for two such Gaussian random loops, there
are no packing constraints operating to restrict the
number of close approaches. Now consider two ring
polymers in a Θ solution or melt, cohabiting the same
volume. Using the same packing arguments as in
previous sections, the number of contacts C between
these two polymers must scale as φ̃2R3/lp

3, where φ̃
refers to the volume fraction of monomers from the two
rings in the volume they pervade. That is, φ̃ should scale
as NΩ0/R3, so that C scales as R/lp. Since R scales as
N1/2, this is the same as claim 2 of des Cloizeaux’s
argument above, but with local packing constraints
included.

Now estimate the number of loops n(φ) that cohabit
the same volume. At volume fraction φ, we must have
n(φ)NΩ0 ) R3φ, so that n(φ) scales as (R/lp)φ. Thus, if
we sum the variances of the GWN of a given loop with
all other loops, this sum scales as (R/lp)2φ.

Then the sum of the variances of the GWN of all loops
with all other loops, per unit volume, scales as (R/lp)2φ2/
(NΩ0), which is φ2/lp

3. This quantity, we propose, scales
as 1/a3(φ)swhich reproduces the results of the Colby-
Rubinstein ansatz. In other words, each tube segment
volume a3(φ) on the average contains some constant
number of winding or unwinding events between some
pair of chains.

It would be worthwhile to test in off-lattice simula-
tions of concentrated systems of ring polymers, equili-
brated with respect to uncrossability, with variable
stiffness so that the packing length varies, to see if the
sum of the variance of the GWN of one loop with all
others scales as predicted.

5. Conclusions

In this paper I have shown that the Lin-Noolandi
conjecture for the entanglement molecular weight of
polymers in the meltsthat an entanglement results
from a fixed number of polymer chains cohabiting the
same volumescan be extended to solutions, under both
Θ- and good-solvent conditions. In the case of Θ solu-
tions, the conjecture is found to be consistent with the
Colby-Rubinstein theoretical picture, which states that
a fixed number of binary contacts between chains
constitutes an entanglement strand.

In the case of semidilute solutions in good solvents,
earlier authors had in effect assumed a proportionality
between the number of correlation volumes or “blobs”
in the solution and the number of entanglements, i.e.,
a plateau modulus that is a universal constant 1/B times
“kT per blob”, or a fixed universal number B of blobs
per entanglement strand.

Experiments of Raspaud et al.,11 measuring the
osmotic and plateau moduli K and G by light-scattering
and rheology respectively for three polymer-solvent
systems, show that this simple view is incorrect. They
find that the osmotic modulus K is indeed “kT per blob”
as simple scaling arguments would suggest. However,
they find that the number of blobs per entanglement
strand K/G is a constant for each system studied, but
differs by as much as a factor of 5 from one polymer-
solvent system to another.

In the present work, I construct a unified phenom-
enological description of counting entanglements that
encompasses melts, Θ solutions, and good-solvent condi-
tions. As a consequence of nearly equal scaling expo-
nents in the Θ-solvent and good-solvent regimes, the
concentration dependence of the plateau modulus is well

w ) 1
4π ∫∫ (drb1 × drb2)‚(rb1 × rb2)

|rb1 × rb2|3
(29)
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described phenomenologically by G(φ) ) G0φ
2.3 from the

melt all the way down to the overlap concentration. This
apparent simplicity belies the complexity of the cross-
over from the Edwards regime (high-concentration,
mean-field behavior) to the good-solvent regime.

This unified description implies that the number of
entanglements per blob B must depend on the ratio of
two microscopic lengths, the packing length lp and the
swelling length ls, as (lp/ls)2/3. The swelling length
determines the length scale on which repulsive inter-
actions between monomers in solution first lead to
significant distortion of chain conformations, and the
packing length likewise determines the length scale on
which incompressibility necessitates deviations from
random-walk statistics in the melt. Together, the two
length scales provide a way of quantifying the effects
of monomer interactions, chain stiffness, and bulkiness.

As solvent quality is reduced (monomer repulsions
weakened), the swelling length increases; at any given
concentration, ls eventually reaches the blob size ê,
which brings the system from the semidilute good-
solvent regime to the Θ-solvent regime. The existence
of this continuous crossover requires that the entangle-
ment density under semidilute good-solvent conditions
depend on the packing and swelling lengths, since the
entanglement density under Θ conditions depends on
the packing length and the location of the crossover
depends on the swelling length.

The dependence of B on lp/ls reflects the fact that, even
in the semidilute good-solvent regime, the number of
close contacts between chains is affected by the physics
on length scales below the swelling length. For chains
that are more flexible, are more bulky, or have more
strongly repulsive monomer interactions, steric hin-
drance and self-avoidance more effectively prevent close
contacts between chains, and lead to a larger value of
B.

Packing lengths for real polymers can be obtained
from experimental data on chain dimensions in the melt
combined with melt densities and chain molecular
weights. Swelling lengths for real polymers can be
obtained from experimental data combined with the
“swelling crossover” curve of Graessley et al.,17,24 ob-
tained from molecular dynamics simulations of self-
avoiding random walks of various lengths and repulsive
interaction strengths and experimental data on various
polymer-solvent systems. Essentially, one can tell from
the ratio of the radius of gyration in solution to that in
the melt how strongly self-avoiding is a given polymer-
solvent system and thus determine the swelling length.

Given values of lp and ls and the present scaling
theory, the number of blobs per entanglement length
in good solution can be computed. Good agreement is
found with the data of ref 11 for the three systems they
studied. The predictions of this paper could be further
tested experimentally by examining a wider range of
polymer-solvent systems or by examining the temper-
ature dependence of the osmotic and plateau moduli in
a semidilute system as the Θ temperature is ap-
proached.

Finally, I argue that local packing constraints influ-
ence the density of windings and unwindings between
chains, which leads to a relation between truly topologi-
cal quantities, the tube diameter, and the packing
length. To study topological invariants, it makes sense
to consider a “thought ensemble” of ring polymers, but
with the partition function summed over all configura-

tions without respecting uncrossability. This gives well-
defined Gauss winding numbers in each configuration,
but averages over configurations as for an ensemble of
entangled linear polymers. I show that a well-defined
topological quantitysthe sum of the variances of the
Gauss winding numbers between all pairs of ring
polymers, divided by the system volumesscales as φ2/
lp

3, which is the same as the inverse of the volume of a
tube segment 1/a3(φ). This suggests an interpretation
of the tube diameter as: a tube segment contains about
one winding or unwinding of some pair of chains.
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Appendix
In the present work, I have taken numerical prefac-

tors in the definition of packing length lp and plateau
modulus G that differ from those of Fetters et al.4

Denoting the corresponding quantities of ref 4 with
an overbar, the relations corresponding to my eqs 3 and
5 take the form

and

Equations 1 and 2 take the same form in ref 4 as in
the present work. As a consequence, quantities in the
present work are related to those of ref 4 as follows:
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