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Polymer Physics 
Quiz 7 

February 26, 2021 
 
Polycantanes are polymers composed of interlinked ring polymers (Figure 1 below left). The 
bond is called a mechanical linkage as opposed to covalent bonds. Wu Z-T, Zhou J-J Mechanical 
Properties of Interlocked-ring Polymers: A Molecular Dynamics Simulation Study Chinese J. 
Polym. Sci. 37 1298-1304 (2019) simulated polycantanes in good solvent dilute solutions.  Wu 
used molecular dynamics (Langevin) simulations and varied the size of the rings and the number 
of rings in a chain.  They applied stretching forces to determine the mechanical properties of a 
single chain.   
 

a) Wu’s Figure 1 (replotted below right) is used to support their argument that the chain size 
scales with N0.6, where N is m x n, m is the number of beads in a cyclic, and n is the 
number of cyclics in the chain (see Raicher’s Figure 1 below, left). Derive an equation 
(following what was done in class) that explains this scaling behavior. 

b) Wu’s figure 1 actually shows deviation from the Flory-Krigbaum prediction.  The 
digitized data is shown below (right) with fits that show a slope of 0.81 for the low N and 
about 2 for the large N. A best fit to the low data using a fixed slope 0.6 is also shown.  
Would you expect to see deviations from Flory-Krigbaum behavior at large N or at 
small N and why?  Can you explain the observed behavior?  (What would be the 
slope be for a rod?  What about for a 3d object? Consider the simulation method.) 

   
From Raischer et al.        Data from Wu et al. Figure 1 

c) Wu’s Figure 2 (below, left top) shows the behavior of R for the cyclics as a function of 
the ring size m.  (Top line is for R ~ m1, bottom line for R ~ m3/5.)  Comment on the 
behavior.  Does it make sense?  Is a ring of 10 to 30 beads denser than a linear chain?  
Could this explain the low N behavior in the replot of Wu’s data above (right)? (A chain 
of N = 100 has 3 to 10 rings.) 

d) Pakula T, Jeszka K Simulation of Single Complex Macromolecules. 1. Structure and 
Dynamics of Catenanes Macromolecules 32 6821-6830 (1999) used a Metropolis Monte 
Carlo algorithm to obtain Figure 4 below, right top.  Compare this figure with that of Wu 
(above right).   
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e) Compare the results shown in Pakula’s Figure 4 (below top right) and that shown in 
Pakula’s Figure 5 (below bottom left) where P(q) is the scattered intensity.  Are these 
results consistent?  The last graph (below bottom right), Figure 10, is from Rauscher PM, 
Schweizer KS, Rowan SJ, de Pablo JJ Thermodynamics and Structure of 
Poly[n]catenane Melts Macromolecules 53 3390-3408 (2020) and is for polycantane’s in 
the melt (Gaussian chains) simulated using a similar algorithm to Wu.  Compare, in terms 
of the chain scaling regime, this simulated scattering pattern to that of Pakula’s (below 
bottom left) which is made for dilute chains in a good solvent (S(k) ~ P(q); k ~q). 

 
  From Wu et al.    From Pakula et al. 

        
 From Pakula et al.       From Raischer et al. 
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ANSWERS:  Polymer Physics 
Quiz 7 

February 24, 2021 
 

a) Wu’s Figure 1 (replotted below right) is used to support their argument that the chain 
size scales with N0.6, where N is m x n, m is the number of beads in a cyclic, and n is the 
number of cyclics in the chain (see Raicher’s Figure 1 below, left). Derive an equation 
(following what was done in class) that explains this scaling behavior. 

 
The 0.6 power law (3/5) is the Flory Krigbaum result.  To get <R2> = nl2 we integrated R2 times 
the normalized Gaussian distribution to obtain the average R2, 

 
Alternatively, we could take the derivative of this function and set it to 0 to obtain the most 
probable R2 value,  
0 = 2R(K1)exp(R2K2)+R2(K1)exp(R2K2)(-3R/(nl2)) 
Dividing by like terms yields, 
R2 = 2nl2/3 
Which has the same scaling and mass fractal dimension as <R2> obtained by integration. 
For exclusion of one monomer the probability is altered by (1 – V0/R3) and for n binary 
interactions (1 – V0/R3)n^2/2. To get this into the exponential we take the ln and use Sterling’s 
approximation to obtain exp(-n2V0/(2R3)) to arrive at, 

 
Taking the derivative with respect to R and setting it to 0 we obtain, 

 
Using R02 = nl2 this can be written,  

 
For the large size change on coil expansion the power 5 term is much larger than the power 3 
term so we can approximate this as, 

 
 

b) Wu’s figure 1 actually shows deviation from the Flory-Krigbaum prediction.  The 
digitized data is shown below (right) with fits that show a slope of 0.81 for the low N and 
about 2 for the large N. A best fit to the low data using a fixed slope 0.6 is also shown.  
Would you expect to see deviations from Flory-Krigbaum behavior at large N or at 
small N and why?  Can you explain the observed behavior?  (What would be the slope 
be for a rod?  What about for a 3d object? Consider the simulation method.) 
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The slope is 1/df, and df can be between 1 and 3 in 3d space.  So the slope can be between 1 and 
0.33.  A value of 0.81 is more extended than a self-avoiding walk.  A power of 2 is not possible.  
Any deviations from FK theory should occur at small N where the approximation of ignoring the 
cubed term would have most impact.  When things go bad at large N in a dynamic simulation it 
could be that the simulation was not run sufficiently long to reach equilibrium.  The low N 
behavior indicates that the presence of cyclics leads to a more rigid structure than a self-avoiding 
walk of the FK type.   
 

   
From Raischer et al.        Data from Wu et al. Figure 1 

c) Wu’s Figure 2 (below, left top) shows the behavior of R for the cyclics as a function of 
the ring size m.  (Top line is for R ~ m1, bottom line for R ~ m3/5.)  Comment on the 
behavior.  Does it make sense?  Is a ring of 10 to 30 beads denser than a linear chain?  
Could this explain the low N behavior in the replot of Wu’s data above (right)? (A chain 
of N = 100 has 3 to 10 rings.) 

 
The completely flexible rings display FK behavior, the stiffer rings are rod like.  This makes 
sense for a linear chain but not for a ring.  A small ring (10 to 30 beads) should be denser than a 
linear chain so it shouldn’t follow the scaling shown in Figure 2, especially the rod like scaling.  
The low-N behavior in the right figure above shows a more rod like behavior compared to a FK 
chain.  The unusually low dimensionality of the rings could have some impact on that.   
 

d) Pakula T, Jeszka K Simulation of Single Complex Macromolecules. 1. Structure and 
Dynamics of Catenanes Macromolecules 32 6821-6830 (1999) used a Metropolis Monte 
Carlo algorithm to obtain Figure 4 below, right top.  Compare this figure with that of Wu 
(above right).   

 
The results of Pakula are unusually perfect fits to the expected results.  Comparing with Wu’s 
results which show some scatter (which is normal) the Pakula results seem suspect unless it can 
be explained why they are in perfect agreement with the expectations.  The results are too good 
to believe.  All of the results are a perfect match to FK behavior.   
 

e) Compare the results shown in Pakula’s Figure 4 (below top right) and that shown in 
Pakula’s Figure 5 (below bottom left) where P(q) is the scattered intensity.  Are these 
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results consistent?  The last graph (below bottom right), Figure 10, is from Rauscher 
PM, Schweizer KS, Rowan SJ, de Pablo JJ Thermodynamics and Structure of 
Poly[n]catenane Melts Macromolecules 53 3390-3408 (2020) and is for polycantane’s in 
the melt (Gaussian chains) simulated using a similar algorithm to Wu.  Compare, in 
terms of the chain scaling regime, this simulated scattering pattern to that of Pakula’s 
(below bottom left) which is made for dilute chains in a good solvent (S(k) ~ P(q); k ~q). 

 
Pakula’s Figure 4 shows that the chains have a mass fractal dimension of 5/3 (FK self-avoiding 
walk), while the results in Figure 5 display a mass-fractal dimension of 2 (Gaussian).  These do 
not agree.  The df 2 results are what is expected in a melt, such as in Raischer’s simulation.  If the 
Pekula results can be believed, it seems that the main result of introducing long-range 
interactions is to remove the collapse of the rings which are observed in the data of Raischer by 
the -4 slope at intermediate q.  -4 is surface scattering from smooth interfaces of a solid object.  
So Rauscher’s results support collapsed globular rings in a Gaussian random walk, Pakula’s 
results show no distinction between the rings and the chains, and both show a Gaussian random 
walk with no self-avoidance.  Raischer’s results are more believable.   
 

 
  From Wu et al.    From Pakula et al. 

        
 From Pakula et al.       From Raischer et al. 


