121214 Final Polymer Properties
6 questions 4 pages

1) We often refer to a Gaussian chain when discussing a polymer in the theta-state.
a) What is the Gaussian function and how does it relate to a polymer in the theta-state?
b) Show how the Gaussian function can be used to determine the most probable chain
end-to-end distance.
¢) How can the Gaussian function be used to calculate <R*>? (Just outline the method to
solve for <R*> using the Gaussian probability.)
d) Show how the Gaussian probability can be used to quantify the energy associated with
extension of a theta-chain.
e) Obtain an expression for the spring constant for a theta-chain.

2) In a computer simulation it was found that the Kuhn length is 1 for a random walk but is 1.2
for a chain that does not take a back step and is 1.4 for a chain with fixed bond angle.
a) Show that the absence of a back step leads to I, = 1.22.
b) Show that a restricted bond angle of 109° leads to Iy = 1.4.
c) Experimental measurement for polyethylene finds C,, = 6.7. What is I?
d) Why is this value for Iy larger than 1.4 1y?
e) Do you expect C, for polyethylene (finite molecular weight) to be larger or smaller
than 6.7? Why?



3) The following plot (left) shows the behavior of R, (and Ry,) as a function of temperature for
polystyrene in cyclohexane. The plot to the right shows a schematic phase diagram of a
polymer solution displaying UCST behavior near the overlap concentration, c*.
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a) At what composition on the right plot would the behavior seen in the left plot be
observed? Why.

b) How would the left plot differ if a concentration to the right side of the right plot were
used?

c) Define c*.

d) At the lowest concentrations on the right plot the phase boundary is physically not
achievable. Explain what happens to the right plot at very low concentrations if c* is
accounted for.

e) Explain why the theta temperature is the critical point (critical temperature) for an
infinite molecular weight polymer. At what composition does the critical point for an
infinite molecular weight polymer occur? In the context of c¢* is it possible to achieve
this critical point?

4) a) Write the Flory-Huggins expression and explain what it describes, i.e. “the ... free energy
of mixing for ... per ... and per ...”.
b) Explain how the chemical potential for the solvent in a polymer solvent mixture can be
obtained from this expression.
c) For a mixture of two polymers of the same molecular weight, N, what is the value of
the critical interaction parameter? Why does this differ from the critical interaction
parameter for a high molecular weight polymer in a solvent (1/2)?
d) Sketch a plot of the Flory Huggins equation as a function of concentration for chi
below the critical chi, chi at the critical chi and chi above the critical chi.
e) For the plot with chi above the critical chi show where the meta-stable region is and
explain why it is meta-stable.



5)
Silly Putty™ 15 a typical viscoelastic material made from polydimethylsiloxane, silica and oils.
a) Propose 3 functions for the following behavior of Silly Puiiy.
-When left on the table for a long period of time the height, b, decays in the manner of
figure "a".
-When rapidly pulled and observed over only shot times (he length, 1, follows "b".
-When pulled at intermediate speed (1) and then released (2) the behavior of "c¢" results.
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b} -For question "a" which terms are related 1o permanent set in the silly putty?
~What relaxation times are involved in your answer Lo question "a™?

¢l Ifthe Silly Puily were subjected (o an oscillatory siress following a cosine function,
-which of terms in your equations would be related 1o the in-phase and out-of-phase
parts of the dynamic strain?
-On a plot of real and imaginary modulus versus frequency, w, atl room lemperatures,
where would vou expect 1o see the behavior of figures "a" and "b™7
-What do vou expect 1o be the behavior of creep compliance, J(U ~ e(t)o,, at long tmes
for Silly Putty?

d) Im addition to the two relaxation times related o Silly Putty, briefly describe two other
characteristic times discussed in class related to a bell and a grain of pollen subjected to
thermal motion. (Dn vowr deseription of the bell mention the basic features of the delta

function.)

el Ifthe velocity correlation function, C,, had the form:
What could vou sav about ©,7
What type of particles display such behavior? Why (give relationship)?



6)

The Rouse maodel represents a polvmer coidl as a series of beads and springs.

a) The Rouse spning has a spring constant based on rubber elasticity theory, This is sometimes
called the ideal rubber law in analogy to an ideal gas.
-What is the association beteeen an ideal rubber and an ideal gas?

b} The Mapvwell model for visco-glasticity 1s hased on a dash pot (viscous element) and & spring
(Hookean clastic). This is similar o the Rowse model.
-What is the difference between the Maxowell model and the Rouse mode] consider:
-The assumptions involved in defining a Rouse unit,
-The molecular and theoretical basis of a Rouse spring,
-The molecular and theoretical basis for a Fouse bead,
-The ability of the 2 models to predict behavior in terms of molecular features.

¢) The relaxation time for a Maxwell element is the viscosity of the dash pot divided by the
spring constant for the spring, T=n/k,,.. The following expression,
1 =L/ {4by, sin“(8/2)}, was obtain for a Rouse chain of infinite molecular weight.
-What are the similarities between the two relaxation times?
-What are the differcnces?
-Describe the terms in the Bouse relaxation time with respect to the Rouse Model,
-What is & and what values can it take for an infinite chain?

d} The term "Free-Draining” is often associated with the Rouse model. Free draining means that
solvent or other polymer chains have no effect on the dynamic response of a chain, Le.
the solvent can freely mowve in and out of the Rouse chain
-Explain why free-draining might be associated with the Rouse model.

-Why would the ratio of the Rouse friction factor. to the mean square Rouse size, Ca/a,’,
be constant in the number of mer units for a Rouse unit under a free-draining model

¢) The Rouse mode] is in some ways identical in dvnamic behavior to the dumb bell model.
This similarity relies on the dominance of the lowest order modes on the dynamic
response 25 will be discussed in class.
-(zive expressions for the relaxation time for the dumb-bell and Bouse models,
-How docs the dumb-bell model cormpare with a Maxwell elernent in terms of the
relaxation time?



ANSWERS: 121214 Final Polymer Properties

1) a) The Gaussian function is P(R) = Kexp(—3R2/(2nklk2)). In the theta-state the chain adopts a
Gaussian conformation displaying a mass fractal dimension of 2.

b) The most probable end-to-end distance, R*, can be obtained by taking the derivative of
d(R*P(R))/dR which yeilds (R*)* = 2/3 nl* for the Gaussian distribution function. The most
probable end-to-end distance also scales with n'? so it reflects a 2-dimensional chain.

TRZP(R)dR
Q) (R)==—
[ P(R)dR

d) The entropy can be obtained from S = In(P(R)) ~ -3R*(2nl%) and the chain energy can be
obtained from E = -kgT S =3 kgT Rz/(2nklk2) for chains with no enthalpic interactions (athermal
chains).

e) For extension the change in energy, dE, with estension is eczlual to the applied force, F, times
the change in end-to-end distance, dR, dE/dR = F = (3 kgT/(nil”)) R = kg R.

2) a)
(r.)=3, b =0

For exclusion of the previous step this sum
does not equal 0
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( r > - f The second to the last equality is the result of the Sum of Geometric Progression Rule,
! riRangelnteractis ( = l) lim n->e0 of a + ar + ar’ +... = a/(1-r)
> substituting x=1/(z-1) results in 2/(1-x) - | = 2(z-D)i(z-2) - | =2/(z-2)

For Cartesian simulation z = 6 and b - is 1.22 b so about a 25% increase for one step self-avoidance.

b) Use same approach as in (a) replacing 1/(z-1) with cos(71°). The final equation is
nb*(1+cos(71°)/(1-cos(71°)) = 2 nb”. So begr= 1.4 b.

o) ly=1.54 A*6.7=10.3 A.

d) It is larger due to bond rotation restrictions and higher order restrictions to chain flexibility.



e) C, should be smaller due to end group effects that serve to reduce persistence due to a higher
degree of flexibility for chain ends. In class we suggested an end-group functionality,
1 1 2K

C_n - C°° Mil

3) a) The left plot is for a single coil going through the collapse transition. This occurs at
concentrations below the overlap concentration and presumably below the critical composition
(peak value on the miscibility limit curve in figure 1) b. So the behavior would be seen to the far
left of the right plot.

b) In more concentrated conditions the coils would overlap (above c*) so that interactions would
be screened at large scales. This means that a different mechanism for coil collapse would be
observed. At large scales the coils would be in the theta state at all temperatures, at small scales
we would observe coil collapse. The situation would be complex. On reaching the miscibility
limit the system would separate into two distinct phases with the less dense phase on the top, like
oil and water.

c) c* is the concentration where polymer coils (or other structures) just begin to overlap. It is
the mass of the molecule divided by the volume of the molecule z/R®. For a mass fractal object z
~R%s0 ¢* =z/R* ~ 2"

d) Below c* the coil can not be diluted further since it maintains a concentration of ¢* within the
coil. Under these conditions the miscibility limit is frozen at the c* value and the phase diagram
would have a horizontal line to lower concentrations. That is, coil collapse would happen at the
same temperature for all compositions more dilute than c*.

e) The critical point on the phase diagram follows .
TAN)=0/(1+1\N)?=0—-20/yN, N—o=, (1)
¢ (N)=1/(1+N)=1N, Nocx, 2
soas N=>o0 T, => 6 and ®. => 0. It is not possible to reach this critical concentration since we

are limited to concentrations above c*. However, as we approach N => oo, ¢* => 0 so in the limit
of an infinite chain we can reach this critical composition.



4) a) The Flory Huggins equation
describes the Helmholtz mixing free energy per lattice site, kKTT (¢) for a Polymer/Solvent system

in terms of the volume fraction polymer, ¢, the degree of polymerization, N, and the Flory-

Huggins interaction parameter, % = (z/2kT) [&

+ g, - 2¢,], where z is the coordination number
for the lattice,

Fp

f(9)=¢In¢ /N +(1-¢) In(1- ¢) + % ¢ (1- )

The features of this equation should be familiar to you. The Helmholtz (Volumetric) free energy
change on mixing for a given system is given by the above expression times the number of lattice

sites in the system, Q, F_(Q,¢) = Q kT £ (¢).
b)

The chemical potential, here p, or p,, for one component of a mixture is the derivative of the
Gibbs free energy for the system with respect to the number of moles of that component. The
Gibbs free energy is related to the Helmholtz free energy by, G = F +PV. For the Flory lattice

system the volume equals the number of lattice sites time the volume of one site, V = QV _, where

£ =n_+ n,/N and N is the degree of polymerization. Changing the number of moles of one
component in the Flory lattice model, while retaining the number of moles of the other component

will result in a change in the lattice size, £2 and the volume fraction ¢, and system volume, V. This
means,

ML p, T, P constant ('p’ P" T) - M(;>(T} = {&Ffag}n.l'(agfan>}np *(&F'Illaq}} T (Er(bfaﬂj ap + PV..

Where p’ (T) is the chemical potential of the pure solvent.

From the definition of €, (8€/8n,),, = 1; and given that ¢ = nN/(n, N + n) = n N/Q, so
(80/6Q),, = -n N/Q. (8/6n)),, = (0/6Q),, (8Q/0n,),, = -n N/Q = -¢/Q. (8F/8Q), , = kT £, (9),
and (8F/5¢) ., = Q KT (8£,/80) o, SO,

np np

By up, 1. constan (92 Py T) = W (T) + KT (£,(9) - ¢ (8£,/8¢) o, )+ PV,

c¢) In general, the critical interaction parameter is given by,



(N% +Np )2

Z Critical =

2N,N,
If Ny = N =N, for a symmetric blend,
_ 4N 2
X critical = 2_]\72 = N
If N4 =1 for a solvent and Ny is large then,
—_ NB _ 1
X critical = 7 NB - E

d) Critical chi is 2 in plot below.
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e) In the plot below, the meta-stable region is between the circle and square. In this region for
small fluctuations in composition the system is stable since the curve is a smile (positive
curvature) and the upward fluctuation always contributes more positive free energy than the
downward fluctuation. For large fluctuations that over come the central peak all fluctuations
decompose. So if a large enough nucleation site is present the system will phase separate but for

small fluctuations the system is stable.



F-H fiphi)

L e o o o o o e e

C LI B B I LA L N L L L L L L L L B
0,02 3
i

—— N1_Chi2p25 JE:

004 |- |
-tl.l]ﬁ:—ll -
F ]
oos - ;
Fo e
010 =
a1z -
- e— E

: O g
.0-“:_ G___H_,_,.p—" k-ﬂ*\‘__g _:
S T B S B S A I T B
LX) 02 04 .6 08 1.

Phi

e




5)

al "a"is tvpical of Newtonian fow, o~ n (de/dt) so e~ a, Un.
"b" is twpical of a Hookean Elastic, o~ Eeore~ Ja.
"o is typical of a complex viscoelastic response composed of Jow, elasticity and an
anelastic response, e =~ K, t+ K, + K3 (l-e"").

b} The flow term (lerm linear in time) is related (o the set of the silly putty seen in fgure "¢”.
The viscosity is proportional o a characterisic relaxation tme for flow in the material.
The anelastic relaxation is also governed by a characteristic time given by taw in the
equation.

¢l -Flow is related o the imaginary modulus, vy'w ~ E7, the real modulus if related o the
Hookean response, E - E.
-The long time, flow behavior would be seen at low frequencies, the short time Hookean
behavior would be seen at high frequencies. The loss modulus iz related to flow and the
real medulus is related (o Hookean behavior.
-J(0 U at long tmes where Mewlonian behavior dominates.

d} Two other characteristic tirmes.
-Translational velocity relaxation time for center of mass thermal mofion of a pollen
grain subjected to Brownian motion, ©, © m/E, where £ is the friction factor given by
Stokes law for a sphere, and m is the mass of the pollen grain. WV W, exp{i’t,), describes
randars thermal motion dampened by a Stokes friction factor.
-A bell resonates at a frequency g, that is inversely related 1o a characteristic time, ©
Iy, The bell responds to a delia funclion stress, o) -« o, 804 ), where &((,) has a value
of 0 at all times except {;, and bas a value of =0 at ;. The integral of &1} over all time s
equal to 1.

2] The translational velocity correlation function shown 15 similar (o that of a polvmer coil in
that the relaxation tme can be assumed {o be O for all times accessible o experiment.
Under the assumption of simple spherical particles in a dilule solution subjected 1o
thermal motion, T, = m{Grna), where m is the mass of the particle, 1 1s the solvent
viscosity and a is the radivus of the spherical particle. m 15 tvpically very small for
polymer coils compared o colloidal particles such as pollen prains,



6)

a) Both the ideal rabber and the ideal gas assume no change in enthalpy with deformation. That
is, both are hased on a purely entropic response for the systems. Because of this, both cases
result in a responding force that is progortional to temperature.

b} The difference between the Maxowell model and the Rouse mode] involves the molecular
basis for the springs and viscous clements in the Rouse model. The Bowse units are physically
linked to the real structure of the chain while the Maxcasell units are empirical constructions. The
Bouse unit must be large enough so that rubber elasticity and Stokes law can be applicd but
small encugh so that a preferred direction of dynamic response can be observed, ie. the
definition of a Rouse unit is identical o the definition of a sub-volume element, "v™ in our
discussion of the fluctuation dissipation theroem. The Rouse spring will follow, by = 3kT/a:"
The Fouse bead will follow F, =T, de dt. Where £, is the friction faction for a Rouse bead that

fisllows the ideal rabber law, &, = 3k Ti<a, =,

¢} The similarity is that the viscosity, n and the frction factor 2, describe viscous features for
the system and the spring constant, k, and rubber elasticity term, by, describe Hookean behavior.
The phase factor, &, gives a description of the temporal relationship in response between Rouse
units. For an infinite chain 4 1s a continuous function betecen -x and m. The Rouse cguation is
based on molecular structure while the Maxwell squation is empirical, i.e. the viscosity and
spring constant do not have a connection with the structure of the material in any real way.

d} The "frec-draining limit" pertains to polymers in dilute solution. Under a non-draining
assumption the coil 15 assumed to ap all solvent molecules within the coil leading to the
gxpected behavior or the intrinsic viscosity for theta and good solvents (Mark-Houwink
parameter of 0.5 and 0.8 respectively). For a "free draining coil”, i.e. & Rouse coil, no solvent is
trapped and only the effect of the added Rouse scgments or chain units with molecular weight is
observed. The Mark-Houwink parameter is 1.0 under these conditions. The assumption that
(C./a,") is constant means that cach chain unit or Rouse segment adds linearly to the dynamic
response. For a free draining chain the size of the Bouse unit is of no consequence.

) The Rouse expression is given in question "a". The dumb-bell model yields T = £k, . The
dumb-bell mode] is basically the same as a Maxwell model.
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