020404 Quiz 2 Properties

1) Calculate the radius of gyration for a rod of length L and radius R. The answer should be

$$R_g^2 = \frac{R^2}{2} + \frac{L^2}{12}$$

This can be obtained by integration over a differential volume element, $dV \sim rdrdl$, where the distance from the center of mass is given by $R^2 = (r^2 + l^2)$. You will need to integrate from r = 0 to R and from l = 0 to L/2 since the distance from the center of mass to the end of the rod is L/2.

- 2) Give the Debye scattering function for a Gaussian polymer coil.
 -Show mathematically that the low-q limit is Guinier's law
 -and that the high-q limit is a mass-fractal scaling law.
- For a polymer coil the step size b is related to a physical feature, the persistence length (or Kuhn step length = 2l_{per}) that can be measured using rheology, dynamic light scattering or static neutron scattering. The persistence length is a size where chain scaling has a transition to linear scaling at high-q.

-Sketch the neutron scattering curve for a Gaussian chain with persistence in a log I versus log q plot.

-Plot the same curve on a Kratky plot, Iq² versus q,

-and on a modified Kratky plot, Iq versus q.

4) How can the number of Kuhn units in a chain, N_K, be determined from the first plot of question 3?

Answers: 020404 Quiz 2 Properties

1)

$$R_g^2 = \frac{(density)(volume)(Position)^2}{(density)(volume)}$$

Consider a differential volume element, dV, for a rod, dV ~ rdrdl, and the density is constant in the rod. The squared position from the center of mass is $(l^2 + r^2)$ so,

$$R_{g}^{2} = \frac{\binom{R}{2}}{\binom{r^{2} + l^{2}}{r} dr dl} = \frac{\binom{R}{2} \frac{Lr^{3}}{2} + \frac{L^{3}r}{24} dr}{\binom{R}{2} \frac{Lr^{3}}{4} + \frac{L^{3}R^{2}}{48}} = \frac{\frac{R^{2}}{4} + \frac{L^{2}}{48}}{\frac{Lr^{2}}{4}} = \frac{\frac{R^{2}}{2} + \frac{L^{2}}{12}}{\frac{LR^{2}}{4}}$$

2)

Extensions of the Debye Equation for an Ideal Polymer Coil.

The Debye equation for polymer coils was given above,

$$g(q)_{Gaussian} = \frac{2N}{Q^2} [Q - 1 + \exp(-Q)]$$

where $Q = (qR_g)^2$. At low-q this function extrapolates to N (expansion of exp(-x) for small x is $1 - x + x^2/2$). At high-q the Debye function extrapolates to $2N/(qR_g)^2$ (at high-q, exp(-Q) goes to 0 and Q >>1). This high-q limit is a -2 slope power-law for intensity in q, so a log I vs log q plot will be a line with slope -2. In general, weak slopes in log-log plots of this type reflect the negative of the mass-fractal dimension of the object. The cutoff between this power-law behavior and the constant intensity behavior at low-q is governed by R_g .

3)

4) R_g^2 for the chain = $N_K 2l_{per}^2/3$. The plot yields R_g and l_{per} so N_K can be determined. $/l_{per}$ is the intercept of the modified Kratky plot or can be obtained from R_g for the persistence transition using the function obtained in question 1.