020404 Quiz 2 Properties

1) Calculate the radius of gyration for a rod of length L and radius R. The answer should be $R_{g}^{2}=\frac{R^{2}}{2}+\frac{L^{2}}{12}$
This can be obtained by integration over a differential volume element, $\mathrm{dV} \sim$ rdrdl, where the distance from the center of mass is given by $R^{2}=\left(r^{2}+l^{2}\right)$. You will need to integrate from $\mathrm{r}=0$ to R and from $\mathrm{l}=0$ to $\mathrm{L} / 2$ since the distance from the center of mass to the end of the rod is $\mathrm{L} / 2$.
2) Give the Debye scattering function for a Gaussian polymer coil.
-Show mathematically that the low-q limit is Guinier's law -and that the high-q limit is a mass-fractal scaling law.
3) For a polymer coil the step size b is related to a physical feature, the persistence length (or

Kuhn step length $=21_{\text {per }}$) that can be measured using rheology, dynamic light scattering or static neutron scattering. The persistence length is a size where chain scaling has a transition to linear scaling at high-q.
-Sketch the neutron scattering curve for a Gaussian chain with persistence in a \log I versus $\log \mathrm{q}$ plot.
-Plot the same curve on a Kratky plot, Iq^{2} versus q, -and on a modified Kratky plot, Iq versus q.
4) How can the number of Kuhn units in a chain, N_{K}, be determined from the first plot of question 3 ?

Answers: 020404 Quiz 2 Properties

1)

$$
R_{g}^{2}=\frac{\sum(\text { density })(\text { volume })(\text { Position })^{2}}{\sum(\text { density })(\text { volume })}
$$

Consider a differential volume element, dV , for a rod, $\mathrm{dV} \sim \mathrm{rdrdl}$, and the density is constant in the rod. The squared position from the center of mass is $\left(1^{2}+r^{2}\right)$ so,
$R_{g}^{2}=\frac{\int_{0}^{\pi / 2} \int_{0}^{1 / 2}\left(r^{2}+l^{2}\right) r d r d l}{\int_{0}^{1} \int_{0}^{1 / 2} r d r d l}=\frac{\int_{0}^{r}\left(\frac{L r^{3}}{2}+\frac{L^{3} r}{24}\right) d r}{\int_{0}^{\int} \frac{L r}{2} d r}=\frac{\left(\frac{L R^{4}}{8}+\frac{L^{3} R^{2}}{48}\right)}{\left(\frac{L R^{2}}{4}\right)}=\frac{R^{2}}{2}+\frac{L^{2}}{12}$
2)

Extensions of the Debye Equation for an Ideal Polymer Coil.

The Debye equation for polymer coils was given above,

$$
g(q)_{\text {Gaussian }}=\frac{2 N}{Q^{2}}[Q-1+\exp (-Q)]
$$

where $\mathrm{Q}=(\mathrm{qR})^{2}$. At low-q this function extrapolates to N (expansion of $\exp (-\mathrm{x})$ for small x is $1-x+x^{2} / 2$). At high-q the Debye function extrapolates to $2 N /\left(\mathrm{qR}_{\mathrm{g}}\right)^{2}$ (at high- q , $\exp (-\mathrm{Q})$ goes to 0 and $\mathrm{Q} \gg 1$). This high-q limit is a -2 slope power-law for intensity in q , so a $\log \mathrm{I}$ vs $\log \mathrm{q}$ plot will be a line with slope -2. In general, weak slopes in log-log plots of this type reflect the negative of the mass-fractal dimension of the object. The cutoff between this power-law behavior and the constant intensity behavior at low- q is governed by R_{g}.
3)

4) R_{g}^{2} for the chain $=N_{K} 2 l_{\text {per }}^{2} / 3$. The plot yields R_{g} and $l_{\text {per }}$ so N_{K} can be determined. $\pi / l_{\text {per }}$ is the intercept of the modified Kratky plot or can be obtained from R_{g} for the persistence transition using the function obtained in question 1.

