020417 Quiz 4 Properties

- Flory defined the persistence length, using the equation a = l'/(1-).
 Explain each of the terms in this equation.
 Define the persistence length using a sketch of a polymer coil.
 Explain how the persistence length could be measured.
 What is a typical value for a bond length and the persistence length in a polymer.
- 2) How does the overlap concentration, c*, depend on molecular weight, N?
- 3) Calculate the dependence of the concentration blob size $_{p}$ on concentration, c, given that: $_{p} = R_{F0} (c/c^{*})^{P}$

where P is a power you need to determine, and R_{F0} is the coil size in the dilute regime for a very good solvent. (Hint: You need to know the N dependence of $_{p}$ to do this calculation.)

Answers: 020417 Quiz 4 Properties

1) l' is an arbitrary step size that could be a chemical bond length. $= \cos(')$, where ' is the average angle between two steps.

The average dot product between unit vectors associated with l' steps is a decaying function of the distance between the steps. The function has a value of 1 at zero step length and a value of 0 for infinite step length. The persistence length is similar to the standard deviation of this orientation distribution function and it occurs when the average cosine is equal to 1/e. The chain direction is, on average, random beyond this size. The persistence length is measured in a neutron scattering experiment as the transition point between the coil scaling and persistence scaling. For PE the bond length is about 1.5Å and the persistence length is about 5.8Å.

- 2) $c^* = N/R_F^3 = N^{1-3/df} = N^{-4/5}$
- 3) $_{p}$ doesn't depend on molecular weight, while c* has the dependence in 2) and R_{F0} goes as N^{3/5}. N⁰ = N^{3/5}(N^{4/5})^P, so P must equal -3/4.