Properties Quiz 1010403

In class we compared the structure of a polymer coil to the path of a Brownian particle.
a) -Give a function that describes the distance traveled on average for a Brownian particle.
-Compare this function with the function for the root mean square (RMS) end-to-end distance for a polymer coil.
b) -What function describes the probability of a given end-to-end distance (give the function and its name).
-Sketch this function on a probability versus distance plot.
-What is the probability of $\mathrm{R}=0$, where R is the end-to-end distance?
c) -Describe two problems with this description of a polymer coil.
d) -From a dimensional perspective how are a plate and a Brownian coil similar?
-From a dimensional perspective how do they differ?
e) -Explain how the pair correlation function, $g(r)$ is calculated.
-Give a plot of $g(r)$ for a solid sphere of diameter D.
-Could your sketch correspond to a structure other than a sphere?

Answers: Properties Quiz 1010403

a) $\mathrm{R}=\mathrm{kt}^{1 / 2}$ and $\left\langle\mathrm{R}^{2}\right\rangle^{1 / 2}=\mathrm{n}^{1 / 2} 1$

The two are comparable in that the Brownian particle traces out a random walk. If the path of the Brownian particle is decomposed into a series of n steps at constant rate and of step size 1 then the two equations can be converted to each other.
b) Gaussian Function
(see notes for equation)

R

Probability for $\mathrm{R}=0$ is $\left(2 \pi \mathrm{nb}^{2} / 3\right)^{-3 / 2}$
c) Short range interactions make the chain deviate from freely jointed state.

Long range interactions prevent the chain from crossing itself.
d) Both a plate and a Brownian coil are 2-dimensional objects.

They differ in that the connectivity dimension is 2 for a regular object such as a plate and 1 for a linear structure such as a polymer coil.
e) The pair correlation function is calculated by considering the density of a structure about a point as a function of the distance from a point, r and then averaging this density for all initial points in a structure. For a sphere this is a decay function in r that reaches 0 at the diameter of the sphere.

In calculating the correlation function phase information is lost so there is not a one to one correspondence between the structure, i.e. sphere, and the correlation function. The sphere correlation function could result from a structure other than a sphere.

