Quiz 2 Polymer Properties 4/10/01

The mean size of a polymer molecule depends on the molecular weight, N, topology, branch content, and path dimension of the chain. These effects can be summarized in a general fractal scaling law $R_g (N)^{1/df}$ where d_f is the mass fractal dimension and N is the degree of polymerization. For example:

	d_{f}	
Gaussian Chain	2.0	
SAW Chain	1.67	
Randomly Branched		
Gaussian	2.5	
Randomly Branched		
SAW	2.0	
(SAW is a self-avoiding	walk, or good solvent scaling))

- a) -Why is R_g used in this description and not the RMS end-to-end distance?
 -What is C (connectivity dimension) for each case?
- b) -Give an equation to calculate R_g from the chain index.
 -What is the relationship between R_g and the RMS end-to-end distance for a Gaussian chain?

c) **-Show** the difference in a log intensity versus log q plot for these 4 structures if N is the same for all 4.

- d) -Give two general functions that could be used to determine R_g and d_f respectively from the plots of part c.
 -Show the part of the plots where these two equations apply.
- e) A generalized Ornstein-Zernike function is sometimes used to describe both regimes of part d.

-Give the Ornstein-Zernike function for a Gaussian chain and -explain how it could be generalized in this way.

Answers: Quiz 2 Polymer Properties 4/10/01

a) R_g is used since the end-to-end distance is not well defined for a randomly branched chain. C for the Gaussian chain and the SAW chain is 1.0. For the randomly branched chain it is 1.5 (i.e. bigger than for a linear chain).

b) $R_g^2 = (1/2N^2) < (R_n - R_m)^2 > = (1/N) < (R_n - R_G)^2 >$ For a Gaussian Chain $6R_g^2 = R_{eted}^2$

d) R_g from Guinier's Law, $I(q) = G \exp(-q^2 R_g^2/3)$

 d_f from power-law equation $I(q) = B q^{df}$

e) OZ equation $I(q) = N/(1 + (qR_g)^2/2)$ Generalized OZ equation

 $I(q) = N/(1 + (qR_g)^{df}/d_f)$

Function is generalized with no analytic justification.