
Quiz 3 Polymer Properties 4/17/01

The left figure below (from Strobl) is intended to demonstrate the existence of good solvent scaling. The right figure (from Doi) shows the behavior of R_g and R_H with temperature.

- a) **-Explain** the axes on this plot. (You will need a scaling law and a generalized scattering law).
- b) **-How can** the scaling law used in "a" be obtained from $(R/R_0)^5 - (R/R_0)^3 = (9 \ 6/16)V_0 \ N/b^3$?
- c) **-What is** V_0 in the equation in "b"?

-Explain the meaning.

-Explain how this term can be expanded to included enthalpic effects (give and equation).

- d) -Can the expanded definition of V0 in "c" explain the Doi figure (right above)?-Explain your answer.
- e) The intrinsic viscosity [] is proportional to 1/ , where ~ is the density of the polymer coil, $N_{coil}/V_{coil}.$

-Show that for a theta solvent [] scales with $N^{1/2}$.

-What is the scaling for and expanded coil?

-Explain the values of "a" in the Mark-Houwink equation, $[] = K N^a$, where "a" ranges from 0.5 to close to 1.

-Should [] depend on R_g or R_H in the right figure above? Why?

Answers: Quiz 3 Polymer Properties 4/17/01

a) The plot reflects a curve such as described by a generalized OZ plot, $I(q) = K/(1 + (qR_g)^{df}/d_f)$, then 1/I is plotted versus q^{df} and a line should result.

b) If R/R0 is big then the 5'th power term is much bigger than the 3'rd power term. Also R_0 scales with $N^{1/2}$ so,

 $(R)^5 = (9 \ 6/16)V_0 \ N/b^3 (C \ N^{5/2}) = C \ N^{6/2}$

and

 $R = C N^{3/5}$

c) V0 is the excluded volume. This reflects the volume of a single persistence unit in the original definition (hard core potential). It can be expanded in meaning by including a Boltzmann potential function under a lattice model to V_0 (1 - 2), where c = z / kT.

d) The expanded definition of V_0 doesn't explain the behavior shown in the right graph since the function still predicts only two states, expanded and Gaussian.

e) [] = K/ = $KR_F^3/N = K N^{3/2}/N = K N^{1/2}$.

For a good solvent coil, $R_F = C N^{3/5}$ so, [] = K N^{0.8}

The MH equation doesn't explain blob behavior so can not completely explain the scaling behavior of real polymer coils. Numbers larger than 0.8 for a are generally associated with rod like behavior.

 $[\]$ should depend on $R_{\rm H}$ since the coil profile is the important feature and it is a dynamic measurement.