Quiz 4 4/24/01 Polymer Properties

- a) For a polymer chain with $N_p = 300$ and $l_p = 6\text{\AA}$ calculate: R_F for a very good solvent R_F for a theta solvent R_F for a good solvent with , $_t = 30\text{\AA}$ R_F for a very good solvent in the semi-dilute regime with $_p = 30\text{\AA}$
- b) Sketch the log I versus log q scattering curves for the above 4 cases. Make sure to indicate any changes in the radius of gyration.
- c) How does the overlap concentration, c*, depend on molecular weight, N?
- d) Calculate the dependence of the concentration blob size $_{p}$ on concentration, c, given that: $_{p} = R_{F0} (c/c^{*})^{P}$ where P is a power you need to determine, and R_{F0} is the coil size in the dilute regime for a very good solvent. (Hint: You need to know the N dependence of $_{p}$ to do this calculation.)
- e) Write an expression for the themal (thermic) blob size, t, as a function of the persistence length, l_p and the interaction parameter 12.
 -Give and explain the three regimes defined by this expression.

Answers: Quiz 4 4/24/01 Polymer Properties

a) Very Good Solvent
$$R_F = N^{3/5} l_p = 300^{3/5} 6 = 184 \text{ Å}$$

Theta Solvent $R_F = N^{1/2} l_p = 300^{1/2} 6 = 104 \text{ Å}$
Good Solvent $t = 30\text{ Å} = n_t^{1/2} l_p, n_t = 25 \text{ so } N_t = (300/25) = 12$
 $R_F = N_t^{3/5} t_t = 133\text{ Å}$
Semi-Dilute $p = 30\text{ Å} = n_t^{3/5} l_p, n_t = 14.6 \text{ so } N_t = (300/14.6) = 20.5$
 $R_F = N_p^{1/2} t_p = 136\text{ Å}$

c)
$$c^* = N/R_F^3 = N^{1-3/df} = N^{-4/5}$$

d) $_{p}$ doesn't depend on molecular weight, while c* has the dependence in c) and R_{F0} goes as $N^{3/5}$. $N^{0} = N^{3/5} (N^{4/5})^{P}$, so P must equal -3/4.

e)
$$_{t} = l_{p} / (1 - 2_{12})$$

This equation defines three regimes:

 $_{12}$ <0 where $_t$ doesn't exist

 $_{12}=0$ where $_{t}$ just equals l_{p}

and the thermic blob regime, $_{12}>0$ where $_{12}>l_p$. The thermic blob exists as a compromise between entropically driven miscibility at large scales and enthalpically driven phase separation at small scales.

b)