Quiz 9 Polymer Properties 5/31/01

a) The Finger tensor for uniaxial extension is given by:

$$B = 0 \frac{1}{0} 0 \frac{1}{0} 0$$
$$0 \frac{1}{0} \frac{1}{2} 0$$

Give the expression for the stress tensor in a bulk rubber and **From this** give an expression for the tensile stress _{zz} in terms of . **How does** this relate to the Mooney-Rivlin Plot?

b) For simple shear extension the Finger tensor is:

$$\begin{pmatrix} 2 \\ +1 \end{pmatrix} = 0$$

$$B = 1 \quad 0$$

$$0 \quad 0 \quad 1$$

Write expressions for the shear stress, _{xy}, and

the first, $x_x - z_z$, and the second, $x_x - y_y$, normal stress differences. Are these results consistent with Hookean behavior?

c) Shear flow can be described using the equation of state for a rubber (expression for stress from question "a") with a constant rate of shear strain (question "b") and applying the Boltzmann superposition position principle. The Boltzmann principle states that the present state of stress (or other property) is a result of the accumulated strains times a time dependent modulus (memory function).

Do you expect this approach to yield a first normal stress difference, $x_x - z_z$? Why? **Do you** expect this approach to yield a second normal stress difference, $x_x - y_y$? Why?

- d) The Stress-Optical Law states that $n = C_{opt} (z_z x_x)^{Doi/Edwards p. 222}$
 - i. **Does C_{opt} depend** on temperature?
 - ii. **Does C_{opt} depend** on molecular weight?
 - iii. Does C_{opt} depend on branching or cross link density?
 - iv. **Does C**_{opt} depend on polymer concentration in a concentrated solution?
 - v. **Does** C_{opt} depend on the relationship between stress and shear rate in flow?
- e) The Stress-Optical Law indicates that stress and birefringence (n) have the same physical origin.

What is the physical origin that unites these two properties?

Answers: Quiz 9 Polymer Properties 5/31/01

a) =
$$\mathbf{G} \cdot \mathbf{B} - \mathbf{P} \mathbf{I}$$

 $_{zz} = {}_{c} \mathbf{k} \mathbf{T}^{2} - \mathbf{P}$
 $_{xx} = {}_{yy} = {}_{c} \mathbf{k} \mathbf{T}/ - \mathbf{P}$
for $_{xx} = {}_{yy} = \mathbf{0}, \mathbf{P} = {}_{c} \mathbf{k} \mathbf{T}/$, and
 $_{zz} = {}_{c} \mathbf{k} \mathbf{T}({}^{2} - \mathbf{1}/)$

The latter equation is the basis of the Mooney-Rivlin Plot (Strobl p. 323) of reduced tensile stress, $/(-1/^2)$, versus the inverse of strain, 1/.

b)
$$_{xy} = (n_c/V) kT$$

 $_{xx} - _{zz} = (n_c/V) kT^{-2}$
 $_{yy} - _{zz} = 0$

The expression for the shear stress is Hook's Law for shear if (n_c/V) kT is constant in strain. The first normal stress difference is not consistent with Hook's Law since Hookean behavior does not accommodate a normal stress difference. The second normal stress difference is consistent with Hook's law.

c) A first normal stress difference is expected since question b results in a first normal stress difference. A second normal stress difference is not expected since question b does not predict a second normal stress difference.

d) C_{opt} is linear in temperature

C_{opt} does not depend on molecular weight

 C_{opt} does not depend on cross linking or branching

 C_{opt} does depend on polymer concentration

 C_{opt} does not depend on the relationship between stress and strain rate.

e) "Orientational ordering in the polymer segments" Doi/Edwards p. 222 The theory of polymer dynamics.