Quiz 13 Polymer Properties November 21, 2014

- a) The concept of osmotic pressure is based on an analogy between an ideal gas and a colloid in solution. Show how osmotic pressure depends on molecular weight of a colloid by writing the ideal gas law; sketching an analogy between a colloid in solution and an ideal gas; and giving an expression for M_n of a colloid in dilute solution based on this analogy.
- b) The Flory-Huggins equation is also based on an analogy between a polymer and an ideal gas, or a real gas with a simple binary enthalpic interaction term if $\chi \neq 0$.
- -Write the Boltzmann equation for the energy of a gas atom subject to thermal motion;
- -from this obtain an expression for the entropy of such a gas;
- -use this entropy to calculate the energy of an athermal binary mixture of gas-like dissolved monomers in a gas-like solvent;
- -add a term for binary interactions between monomer and solvent molecules;
- -polymerize the monomers and modify your equation for polymer chains in a solvent. How does the F-H model differ from the colloid model of part "a"?
- c) Sketch χN versus composition for a symmetric polymer blend (matched molecular weights) for conditions below the critical χN ; at the critical χN ; and above the critical χN . Show the spinodal and binodal points.

Witten wrote the following in a review article, [Witten, TA Rev. Mod. Phys. 70 1531 1996.] "... a polymer, like any other molecule, moves via diffusion: the motion is a random walk, whose mean squared distance $\langle x^2 \rangle$ is the diffusion coefficient times the elapsed time, Dt... As the concentration approaches ϕ^* this ceases to be true... To characterize the motion we must specify two diffusion coefficients: the self-diffusion coefficient, D_s is defined by the motion of an individual chain, $D_s = \langle x^2 \rangle / t$, as introduced above... D_s decreases as the concentration increases. The other important aspect of diffusion is the spreading of extra local concentration in the solution. The extra material spreads over a distance x whose square is proportional to time. The "cooperative diffusion coefficient" D_c gives the constant of proportionality: $D_c = x^2/t$. A small region of extra concentration is under extra osmotic pressure. This extra osmotic pressure...tends to spread apart the chains in the **concentrated region faster** than they would otherwise spread... Thus, as the concentration increases from zero, D_c increases from its limiting value of D, just as D_s decreases...The diffusion coefficient is inversely proportional to the radius, ξ : $D_c = kT/(6\pi\eta_s\xi)$...the blob size decreases with concentration: $\xi = a\phi^{-3/4}$. Combining these equation we infer that $D_c =$ $\phi^{3/4}kT/(a\eta_s)$. The cooperative diffusion becomes faster as the concentration increases. But joining the chains to make them longer has no effect on the cooperative diffusion.

- d) Calculate the scaling relationship of osmotic pressure with concentration in the semidilute regime using Witten's expression for D_c and the fact that $PV \sim kT$, the volume being given by ξ_c^3 , and P being π in this case.
- e) If osmotic pressure can drive random thermal motion, how does it differ from our normal concept of pressure? Does this impact your analogy from question "a"?

ANSWERS: Quiz 13 Polymer Properties November 21, 2014

b) Probability = $\exp(-E/kT)$ => S = -kT $\ln(\phi)$ (temperature dependent part of energy, E = H - TS). Where the probability is proportional to the volume fraction.

 $F/kT = \phi \ln(\phi) + (1-\phi) \ln(1-\phi)$ Helmholtz free energy per kT per monomer of mixing.

Add binary interactions: $F/kT = \phi \ln(\phi) + (1-\phi) \ln(1-\phi) + \phi (1-\phi) \chi$

For a polymer the number fraction of polymers is ϕ/N so:

$$F/kT = \phi/N \ln(\phi) + (1-\phi) \ln(1-\phi) + \phi (1-\phi) \chi$$

d) In the semi-dilute regime $\pi \sim (c/c^*)^{9/4}$. This drives the cooperative diffusion of the chains. Witten proposes that $D_c \sim (c/c^*)^{3/4}$.

Energy = kT = PV, for the semidilute regime P is π , and V $\sim \xi_c^3$.

So, $\pi \sim kT/\xi_c^3 \sim D_c(6\pi\eta_s\xi_c)/\xi_c^3$. For the concentration blob, $\xi_c \sim (c/c^*)^{-3/4}$.

Using the scaling expression for $D_{\text{\tiny C}}$ from Witten,

$$\pi \sim (c/c^*)^{3/4} / (c/c^*)^{-6/4} \sim (c/c^*)^{9/4}$$
.

e) When chains cluster in the semi-dilute regime due to random thermal motion, osmotic

pressure drives these chains apart. This is identical to the role of pressure in a gas serving to flatten out density fluctuations. So the analogy is strengthened between these two types of pressure.