Polymer Properties Quiz 3 September 12, 2014

Gerstl et al. compared the characteristic ratio of polyolefins $(CH_2CHR)_n$ with polyalkylene oxides $(CH_2CHR-O_{-})_n$ and found the behavior shown in the figure below. In class we noted that C_{∞} for polyethylene is 6.7 and for polyethylene oxide is 4.0 (for R = H and m_b = 1).

Figure 4. C_{∞} vs the mass per backbone bond m_b for poly(olefin)s (filled squares; data taken from ref 10) and PAO's (empty circles). The value for PPO is calculated from ref 2. The line shows the value obtained from the BE model.

 m_b is the molecular weight of branch groups (R), for example, when $m_b = 15$ the chain is polypropylene for a polyolefin.

Gerstl C, Schneider GJ, Pyckhout-Hintzen W, Allgaier J, Willbold S, Hofmann D, Disko U, Frielinghaus H, Richter D *Macromolecules* **44** 6077 (2011)

- a) What is the characteristic ratio? What property does it reflect?
- b) Gerstl calculates C_{∞} using $C_{\infty} = \langle R^2 \rangle / (N_{mono}n_b \langle l_0^2 \rangle)$ where N_{mono} is the number of monomers per chain, n_b is the number of bonds in a monomer, and $\langle l_0^2 \rangle$ is the average length of a bond in a monomer backbone. (The molecular weight is around 10,000 g/mole for his samples.) Critique this function.
- c) For polyolefins (filled circles) C_{∞} increases from 6.7 for polyethylene to almost 8 for polypropylene ($m_b = 15$ for CH₃). How could this be possible? (Think of structural/organizational changes that are possible for a chain).
- d) After polypropylene, increases in m_b first lead to a decrease then increase C_∞. The decrease is caused by a breakup of structure described in your answer to part "c". What might cause the increase at longer branch lengths, m_b?
- e) The PAO's (open circles) show a constant value for C_{∞} after the initial increase from 4 for polyethylene oxide (PEO). Why do PAO's show a constant value? (What is the main difference in chain flexibility between polyolefins and PAO's?)

ANSWERS: Polymer Properties Quiz 3 September 12, 2014

2) a) $C_{\infty} = n_k l_k^2 / (n_{bond} l_{bond}^2) = l_k / l_{bond}$. C_{∞} is a measure of chain rigidity.

b) C_{∞} is for an infinite molecular weight chain since the end groups have a lower rigidity. His function with N at around 10,000 is not a good approximation for the infinite molecular weight behavior. His values should be too low by this logic.

c) Polypropylene displays a helical structure that enhances chain rigidity. Polyethylene doesn't have an equivalent helical structure.

d) The increase at large m_b is due to steric interference of the branches that force the chain to straighten out.

e) PAO's have an oxygen in the main chain. This adds a large amount of flexibility to the structure since the O-C bond is completely freely rotating. So the steric interference of the side branches has little effect on C_{∞} beyond the initial jump from 4 to 5.48.