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Stretching of a straight electrically charged viscoelastic jet
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Abstract

A charged polymer jet may be accelerated and stretched by an external electric field, and this process is relevant
to electrospinning for making nanofibers. The stretching of an electrified jet is governed by the interplay among
electrostatics, fluid mechanics and rheology, and the role of viscoelasticity has not been systematically explored
before. This paper presents a slender-body theory for the stretching of a straight charged jet of Giesekus fluid.
Results show strain-hardening as the most influential rheological property. It causes the tensile force to rise at the
start, which enhances stretching of the jet. Further downstream, however, the higher elongational viscosity tends
to suppress jet stretching. In the end, strain-hardening leads to thicker fibers. This confirms the main result of a
previous study using empirical rheological models. The behavior of the electrically driven jet forms an interesting
contrast to that in conventional fiber spinning.
© 2003 Published by Elsevier B.V.
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1. Introduction

The idea of using an electric field to spin fibers from a charged polymer melt or solution was conceived
in the 1930s. Electrospinning, as the process is called, has seen a dramatic revival of interest in recent
years because of its potential to produce ultra-fine nanofibers with sub-micrometer diameters[1]. Though
easily realizable in the laboratory, electrospinning is a complex phenomenon to analyze because of the
coupling between the electric field and the deformation of the fluid, the latter in turn determined by the
rheology of the material. Typically, electrospinning has two stages. In the first, the polymer jet issues
from a nozzle and thins steadily and smoothly downstream. In the second stage, the thin thread becomes
unstable to a non-axisymmetric instability and spirals violently in large loops. For stage one, Hohman et al.
[2] presented a slender-body theory for Newtonian fluids. Spivak and Dzenis[3] introduced a power-law
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viscosity. Reneker et al.[4] modeled the viscoelasticity of the jet by a linear Maxwell equation. For stage
two, Hohman et al.[2] and Reneker and coworkers[4,5] developed instability theories for Newtonian
and linear Maxwell fluids, respectively. None of these theories accounted for the nonlinear viscoelasticity
that undoubtedly arises during large-strain stretching of the polymer.

In an attempt to understand the role of rheology, Feng[6] introduced empirical models for the elonga-
tional viscosity into the slender-body theory of[2] for the steady stretching in stage one. Two special cases
were considered. The first is the small-Deborah-number limit where the polymer molecules equilibrate
instantaneously with respect to the local strain rate. Then the rheology reduces to a generalized Newtonian
elongational viscosity that may include both extension-thinning and thickening. In the second case, an
empirical expression for a strain-dependent Trouton ratio is used to incorporate strain-hardening:
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whereηs is the viscosity of a Newtonian solvent,γs is the strain at which a steady-state extensional
viscosity is attained, and the parameterp determines the steady-state Trouton ratio. Inspired by the data
of Tirtaatmadja and Sridhar[7] for dilute Boger fluids, this equation is a crude representation of the
memory effect and does not reflect certain aspects of the rheology of concentrated solutions and melts.
For instance, the strain rate is not included explicitly, and hence no account is taken of the Deborah
number. In real polymer melts,η̄+ depends not only on the accumulated strainγ but also on the strain
rate or Deborah number. The latter determines the point of onset and the magnitude of strain-hardening
([8], pp. 134–136). The rationale for the empirical approach in[6] was to treat the viscous and elastic
aspects of the rheology separately so as to simplify the calculation and data analysis.

In this paper, we advance a more rational approach by incorporating the Giesekus constitutive equation
into the slender-body theory. The choice of the Giesekus model is based on two considerations. First,
it is molecularly-based rather than phenomenological; it models packed polymer chains experiencing
anisotropic Brownian and viscous forces[9]. Second and more importantly, the Giesekus model strikes a
good balance between simplicity and satisfactory prediction for elongational rheology. Khan and Larson
[10] compared the predictions of various models with measurements on a linear HDPE melt for step
shear, startup of uniaxial elongation and step biaxial extension. Tirtaatmadja and Sridhar[11] bench-
marked an array of models using startup of elongation for Boger fluids. Both studies have reached similar
conclusions. Quasi-linear models such as the upper-convected Maxwell, Oldroyd-B and White–Metzner
models predict unbounded growth of the elongational viscosity while the measurements show a plateau at
large strains. The Giesekus model, arguably the simplest non-linear extension of the quasi-linear models,
correctly predicts the plateau, and “can describe the shear damping function and elongational viscosity
of an unbranched melt, such as HDPE, quite accurately”[10]. Its disadvantage, as compared with the
more sophisticated Larson and Phan–Thien–Tanner models, is in underpredicting the strain softening
in the biaxial damping function. Fortunately, this is of little concern in our context. One caveat is that
electrospinning may incur exceedingly high strain rates (∼ 103 s−1; see parameter values inSection 4),
at which little is known of the performance of any of the constitutive equations.

As in [6], this paper is limited to the steady thinning of a straight electrified jet, relevant only to stage one
of electrospinning. For convenience, however, we refer to this process simply as electrospinning for the
rest of the paper. In a real electrospinning experiment, stage two is probably more significant in reducing
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the fiber diameter to nanometer scale. Nonetheless, the process studied here is important in that it not only
contributes directly to the thinning of the fiber, but also establishes the conditions for the onset of stage two.

2. Formulation of the problem

We consider a downward polymer jet in an electric field (Fig. 1). The deformation of the fluid is
determined by a balance among the electrostatic forces, gravity, surface tension, viscoelastic force and
inertia. We assume that the fluid is a leaky dielectric with charges only on the surface[12], that the process
is steady in an Eulerian sense, and that the slope of the jet surface is small. Then a 1D slender-body model
can be established based on mass conservation, momentum and electric charge balance, and Coulomb’s
law. All variables are assumed to be uniform on the cross-section of the jet, and to vary only alongz,
whose origin is at the nozzle.

In experiments, the slope of the jet surface can be fairly large near the nozzle[2], thus posing a difficulty
for a 1D model. On the other hand, 1D models have been applied to numerous problems where the gradient
along the axial direction may not be small at all locations. Examples include the detachment of a Newto-
nian drop from an orifice[13], breakup of a Newtonian liquid bridge[14] and the die-swell of a viscoelastic
fluid in conventional fiber spinning[15]. In these cases, the 1D models have been confirmed, by 2D com-
putations or experiments, to give accurate predictions beyond their expected range of applicability[6]. For
electrospinning, such validation is not yet available. A plausible treatment is to attach a 1D jet to a 2D Tay-
lor cone[16,17]. Unfortunately, this leads to a voltage-independent “universal current” that does not agree
with electrospinning experiments[2]. Without carrying out a 2D simulation of jet initiation, we will apply
the slender-body theory upstream to the nozzle, as has been done in previous electrospinning models[2,6].

2.1. Governing equations

The governing equations for jet radiusR, axial velocityv, axial electric fieldE and surface charge
densityσ have been derived in[2,6]:

πR2v = Q, (2)
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Fig. 1. Schematic of the setup for electrospinning.
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whereQ is the constant volume flow rate,K the conductivity of the liquid,I the constant total current
in the jet andρ the fluid density.T is the tensile force in the jet,γ is the surface tension andε andε̄ are
the dielectric constants of the jet and the ambient air, respectively.E∞ is the externally imposed constant
field, andχ is the “aspect ratio” of the jet (=lengthL/initial radiusR0), andβ = ε/ε̄ − 1. The prime
indicates derivatives with respect toz.

The tensile forceT = πR2(τzz − τrr) is related to the strain rate via a constitutive equation, for which
we use the Giesekus model[8,9]:

τ = τp + ηs(∇v + ∇vT), (6)

τp + λτp(1) + α
λ

ηp
τp · τp = ηp(∇v + ∇vT), (7)

where the subscript (1) denotes the upper convected derivative,α is the mobility factor,λ is the relaxation
time, andηs andηp are viscosities due to the solvent and the polymer, respectively. For the non-uniform
uniaxial extension considered here (see[8], p. 382 for the strain-rate tensor),Eq. (7)reduces to two scalar
equations for the polymer normal stress components:

τprr + λ(vτ ′
prr + v′τprr) + α

λ

ηp
τ2

prr = −ηpv
′, (8)

τpzz + λ(vτ ′
pzz − 2v′τpzz) + α

λ

ηp
τ2

pzz = 2ηpv
′. (9)

Now Eqs. (2)–(5), (8) and (9)determine the six unknown functionsR(z), v(z), E(z), σ(z), τprr(z) and
τpzz(z). Note thatQ andI have to be input as parameters. In an electrospinning experiment, the control
parameter is typically the external fieldE∞, which determinesQ andI for a particular experimental
device. Having to specifyQ andI independently is a trade-off for neglecting details of the experimental
setup, which may have strong effects on the dynamics of the jet[2].

If we scaleR(z), v(z), E(z), σ(z), τprr(z) andτpzz(z), respectively, byR0 (the radius at the origin of
the jet just outside the nozzle),v0 = Q/(πR2

0), E0 = I/(πR2
0K), σ0 = ε̄E0 andτ0 = η0v0/R0 with

η0 = ηs + ηp, and scalez by R0, the governing equations can be made dimensionless (we use the same
symbols for brevity):

R2v = 1, (10)

ER2 + PeRvσ = 1, (11)
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E = E∞ − ln χ[(σR)′ − 1
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whereTp = R2N1 = R2(τpzz − τprr) is the dimensionless tensile force due to the polymer andN1 is the
first normal stress difference of the polymer. The dimensionless groups are:

Pe = 2ε̄v0

KR0
(electric Peclet number),

Fr = v2
0

gR0
(Froude number),

Re = ρv0R0

η0
(Reynolds number),

We = ρv2
0R0

γ
(Weber number),

E = ε̄E2
0

ρv2
0

,

β = ε

ε̄
− 1,

χ = L

R0
(aspect ratio),

De = λv0

R0
(Deborah number),

rη = ηp

η0
(viscosity ratio).

2.2. Boundary conditions

Eliminatingv andσ amongEqs. (10)–(15), we obtain two second-order ordinary differential equations
(ODEs) forR andE and two first-order ODEs for the polymer stress components. Six boundary conditions
are required. At the lower end of the jet, the asymptotic scalingR ∼ z−1/4 prevails. This was first derived
by Kirichenko et al.[18] for an inviscid jet, but can be easily shown to hold for viscous and viscoelastic
fluids as well. Asz → ∞, R → 0. Eqs. (10) and (11)imply v = R−2 andσ ∼ (Rv)−1 ∼ R → 0.
Thus, the electric field becomes uniformE = E∞ from Eq. (13), and of the three terms of electrostatic
forces inEq. (12), only 2Eσ/R ∼ E∞ remains finite. The solvent and polymer tensile force terms and
the surface tension term all vanish (to be confirmed a posteriori), while gravity remains finite. Thus, the
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Fig. 2. Effects of the stress boundary condition on (A) jet radiusR(z) and (B) normal stress differenceN1(z) = τpzz(z) − τprr(z).
For curves a, b and c,τprr(0) = −0.13, −0.20 and−0.33 with τpzz(0)/τprr(0) = −2. Curve N corresponds to the Newtonian
condition inEqs. (20) and (21).
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inertia on the left-hand-side has to be finite also:vv′ = −2R−5R′ = O(1), which leads to the scaling
R ∼ z−1/4. Now we can verify that the constitutive equations revert to Newtonian sincev′ ∼ z−1/2 → 0.
Then the tensile force terms scale asz−3/2 and the surface tension asz−3/4, both negligible as compared
to the finite gravity and tangential electric force. Thus, we have the following exit conditions atz = χ:

R + 4zR′ = 0, (16)

E = E∞. (17)

As is usually the case with 1D models, the upstream boundary condition is a delicate issue. Following
previous work[13,15], we use conditions at the nozzle as entrance conditions for the 1D model even
though|R′| may not be small there:

R(0) = 1. (18)

An issue specific to electrospinning is the upstream conditionE(0). Feng[6] showed that the influence
of E(0) is limited to a tiny layer below the nozzle whose thickness is a few percent ofR0. Thus,E(0) is
assigned some valueE0 so as to avoid a sharp gradient inside the layer:

E(0) = E0. (19)

This phenomenology compensates for not accounting for the upstream charges which defineE(0) in
reality. In the same vein,τprr(0) andτpzz(0) are determined by the upstream deformation history. Previous
work on conventional fiber spinning has either specified the stress at the spinneret[19,20]or postulated a
deformation history[21]. We assume that the shear inside the nozzle is ineffective in stretching polymer
molecules as compared with the elongation downstream, such that the stress atz = 0 is purely Newtonian:

τprr = −rηv′ = 2rη

R′

R3
, (20)

τpzz = −2τprr. (21)

Numerical experiments show that the prediction of the model is rather insensitive to the stress boundary
conditions. As an example,Fig. 2 compares results computed using various values ofτprr(0) while
keepingτpzz(0) = −2τprr(0). The influence of the initial stress is limited to roughly a distance of 10R0

downstream. In particular, the final fiber radius is little affected. This is reminiscent of conventional
fiber spinning whereτprr quickly drops toward zero downstream regardless of its initial value[19]. Also
notable is that aτprr(0) that is too large or too small causes under- or overshoots in the profiles, and the
“Newtonian conditions” (Eqs. (20) and (21)) apparently give the most reasonable results.

The six coupled ODEs are discretized on a non-uniform grid, with denser nodes near the nozzle to
resolve the larger gradients, and solved using a relaxation method[22]. Convergence with grid size has
been confirmed by grid refinement.

3. Numerical results

It is useful to review briefly the rheological predictions of the Giesekus model. Forα > 0, a steady
state is always achieved in uniaxial elongation, with an elongational viscosity that increases with the
extension rate (extension-thickening)[8]. Fig. 3plots the transient elongational viscosityη̄+ after startup
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Fig. 3. Transient elongational viscosity of a Giesekus fluid after startup of uniaxial extension. The Hencky strainε = ε̇t, andη̄+
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of a uniaxial extension at a constant rateε̇. For a smallα and/or a largėελ, η̄+ rises steeply as the molecules
transform from a coiled to a stretched state. This behavior, known as strain-hardening, is typical of polymer
solutions and melts[8]. Asα increases, the degree of strain-hardening decreases although it onsets at more
or less the same Hencky strain (Fig. 3(a)). This behavior has been reproduced by the empiricalEq. (1)with
a decreasingp (cf. Fig. 13 of[6]). Fig. 3(b), on the other hand, represents new rheology not contained in
Eq. (1). With increasing extension rateε̇, not only is the viscosity plateau elevated (extension-thickening),
but the onset of strain-hardening occurs at earlier times. The former occurs in reality at smallerε̇, and is
followed by extension-thinning at higherε̇ [23]. The latter is a hallmark of nonlinear viscoelasticity, true
of all published measurements of melts and concentrated solutions[10,8].

Fig. 4 shows a typical solution for the following parameter values:α = 0.01, De = 10, rη = 0.9,
χ = 600, β = 40, Re = 2.5 × 10−3, We = 0.1, Fr = 0.1, Pe = 0.1, E = 1 andE∞ = 0.1. The
same qualitative features prevail over wide ranges of the parameters. According toFig. 4(a), most of the
thinning of the jet occurs at the nozzle;|R′| is maximum atz = 0 and relaxes gradually toward zero
downstream. In fact,R′(z = 0) = −0.23 appears to violate the precondition for a slender-body theory:
|R′| � 1. Yet, slender-body models have performed remarkably well in problems with much greater
axial gradients[13,14]. Both E andσ rise at the beginning, reach their respective peaks and then relax
downstream. The maximumE occurs very close to the nozzle and is shown in the inset inFig. 4(b). The
key to understand these features is to realize that they are interconnected. At the nozzle, the shrinking
cross-section area reduces the amount of charges that can be conducted. Charge conservation demands
a higher rate of convection and hence a rising surface charge densityσ. The charges then lead to an
increase in the axial fieldE. As the jet becomes thinner further downstream, the increasing jet speedv

reducesσ and brings about the decline in|R′| andE as well. For these parameters, the tensile forceT(z)

decreases monotonically along the fiber (Fig. 4(c)), as is characteristic of the regime of “mild stretching”.
FromEq. (12), therefore,T acts to resist the acceleration and extension of the fiber. For shorter and more
conducting jets, “severe stretching” may occur in whichT(z) has a humped shape. Detailed discussion
of these two regimes is given by Feng[6].

The electrically driven stretching of the jet forms an interesting contrast to the mechanical stretching
in conventional fiber spinning. First, there is no die swell in electrospinning. Not having accounted for
the detailed deformation history upstream, our 1D model of course precludes die swell a priori. But
even electrospinning experiments do not show die swell; instead a Taylor cone forms at the nozzle with
rapid and monotonic thinning of the jet[24]. Indeed, this difference is partly responsible for the much
thinner fibers produced by electrospinning. If we take die swell to be a manifestation of the recoil of
extended molecules upon exiting the spinneret[25], then it is easily understood how electrostatic forces,
acting mostly on the free surface, continue to stress the jet and thus inhibit the elastic recovery. Another
fundamental difference between conventional fiber spinning and electrospinning is that the former applies
the “pulling force” locally at the wind-up spool while the latter exerts a distributed force. Thus, in the
former the total tensile forceT remains more or less constant throughout the fiber[20], while it generally
decreases alongz in the latter (Fig. 4(c)). In conventional fiber spinning, therefore, the normal stress
differenceN1 increases monotonically downstream as the fiber becomes thinner. In electrospinning, on
the other hand,N1 typically has a humped shape. The effect of this onR(z) is evident inFig. 4(a),
where we have replotted the 1D calculations of Fisher and Denn[20] of conventional fiber spinning
using a White-Metzner model, as well as experimental data for isothermal spinning of polystyrene. When
electrically driven, the thinning of the fiber occurs mostly at the nozzle. In conventional spinning, on the
other hand, the rate of thinning is sustained over the entire length of the fiber.
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To elucidate the role of rheology in our 1D theory, we examine the effects of the parameters in the
Giesekus model:α, De and rη. Fig. 5 compares the thinning curvesR(z) and polymer tensile force
profile Tp(z) for several values ofα. With increasingα, the thinning of the jet is suppressed initially,
within roughly 3R0 from the nozzle (see inset inFig. 5(a)). Further downstream, the trend is reversed and
eventually thinner fibers are produced for largerα. This behavior is caused by strain-hardening, and can be
explained via the polymer tensile forceTp (Fig. 5(b)). Referring toFig. 3(a), smallerα gives rise to greater
strain-hardening. Forα = 0.01, this effect is so strong as to overcome the shrinking cross-section area and
produce an initial rise inTp, which, throughEq. (12), promotes stretching and thinning at the beginning
of the jet. This effect contradicts our intuition that the more viscous the fluid is, the less it will stretch.
The key to this “paradox” is the difference illustrated inFig. 4(a). The role ofTp(z) in electrospinning is
dictated by the distributive nature of the electrostatic force, while the above intuition derives from more
familiar situations of mechanical stretching.

Further downstream,Tp has to decrease owing again to the distributive nature of the electrostatic force.
Now the elevated elongational viscosity for smallerα implies a steeper decline inTp, which suppresses
stretching of the jet as is evident inFig. 5(a). Notably, the trend inFig. 5is the same as previously predicted
[6] using the empirical Trouton ratio ofEq. (1)fitted to filament stretching experiments of Tirtaatmadja
and Sridhar[7]. This is not surprising since, as mentioned in relation toFig. 3(a), the empirical constitutive
equation has embodied strain-hardening, albeit in an ad hoc fashion.

The effect of increasingDe is to enhance stretching at the beginning and suppress it further downstream
(Fig. 6). This is a direct consequence ofFig. 3(b)which shows earlier onset of strain-hardening at higher
De. One should be cautious, however, since the nominal Deborah numberDe = λv0/R0 does not reflect
the local rate of extensionv′, andFig. 6 does not correspond to a startup of elongation at a constantε̇.
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Inspection ofv′(z) profiles shows that a higherDe indeed corresponds to a largerv′ in the first few radii
of the jet. As a result,̄η+ initially grows more rapidly withz for largerDe, and that explains the effect
in Fig. 6. Because the extension never attains steady state in a Lagrangian sense, it is not possible to
positively identify the role of extension-thickening inFig. 6. In the latter half of the jet wherev′ varies
relatively slowly, extension-thickening probably has contributed to arresting jet stretching for largerDe.
One may note the resemblance between decreasingα in Fig. 5(a)and increasingDe in Fig. 6. However,
the latter stems from a distinct rheological effect (cf.Fig. 3(b)) not included in the empiricalEq. (1).

Finally, Fig. 7 illustrates the effect of the solvent by varyingrη while keeping the total viscosityη0

fixed. Since a largerrη implies more polymer contribution to the stress, the effect of strain-hardening is
more pronounced: stretching is intensified initially but suppressed downstream.

4. Comparison with experiment

The thinning curveR(z) is relatively easy to measure in the laboratory, but comparison between model
prediction and measurement is hampered to some degree by the fact that no single study has reported
all the material and operating parameters. InFig. 8, we have chosen to compare the predicted jet radius
R(z) with the measurement of Doshi and Reneker[26] for a 4% PEO solution. Doshi and Reneker[26]
give three parameters: the electric field (E∞ = 40 kV m−1), the nozzle radius (R0 = 45�m) and the
length of the straight jet (L = 30 mm). The density and dielectric constant are found in Hohman et al.
[2]: ρ = 1.2 × 103 kg m−3, ε/ε̄ = 42.7. Fong et al.[27] have provided additional material properties
for a 4% PEO solution: viscosityη0 = 12.5 P; surface tensionγ = 76.6 dyn cm−1, and conductivity
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Fig. 8. Comparison of our model predictions with the experimental data of Doshi and Reneker[26] for a 4% PEO solution. The
theoretical curves a, b and c correspond to flow ratesQ = 10, 20 and 25�l min−1. Other parameters are given in the text.
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K = 4.902× 10−3 !−1 m−1. The solvent viscosity isηs = 10−2 poise for water. The relaxation time
of concentrated solutions and melts ranges from 1 s to hundreds of seconds ([28], pp. 342–345), and we
have assumedλ = 10 s. Since the strain-rate is exceedingly high,De is easily in the thousands. Thus, the
polymer stretches elastically and the exact value ofDe (or λ) has little effect on the model prediction.
We have chosenα = 0.01 since it produces strain-hardening of roughly two orders of magnitude (cf.
Fig. 3(a)), comparable to data for concentrated solutions and melts[8].

As for operating parameters, Fong and Reneker[29] have plottedI andQ as functions of the applied field
for a 2.44% PEO solution in the following ranges: 0.1�A < I < 6�A, 10�l min−1 < Q < 80�l min−1.
The electric field used by Doshi and Reneker[26] corresponds toI = 0.12�A, Q = 10�l min−1. For
these parameters, our model overpredicts the thinning of the jet (curve a inFig. 8). Increasing the flow rate
Q to 20 or 25�l min−1 shifts the prediction closer to experimental data (curves b and c). A more rigorous
test of the model is not possible since theQ andI values in[29] are for a 2.44% solution while the
measuredR(z) is for a 4% solution. Nonetheless, the data being enveloped by model predictions over a
reasonable range ofQ lends some confidence to the model in qualitative terms. In addition, Hohman et al.
[2] have shown that details of the experimental setup, such as the protrusion of the nozzle, can influence
the jet greatly. Such features are not explicitly accounted for in our model, but are implicitly incorporated,
to some degree, via the parametersE(0), Q andI. We have found no systematic measurements of the
effects of rheological parameters on electrospinning to validate model predictions inFigs. 5–7.

In summary, we have incorporated the Giesekus model into a 1D slender-body theory and examined
the role of nonlinear rheology in the stretching of an electrically charge jet. Strain-hardening promotes jet
thinning at the beginning but suppresses it further downstream to produce thicker fibers. This prediction of
the Giesekus model confirms that of the empirical model employed in[6]. In addition, the Giesekus model
also predicts earlier onset of strain-hardening at higher strain rate. Though definitive comparison with
experiments cannot be made, the theory appears to predict jet thinning on the right order of magnitude.
The behavior of the jet forms an interesting contrast to its counterpart in conventional fiber spinning.
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