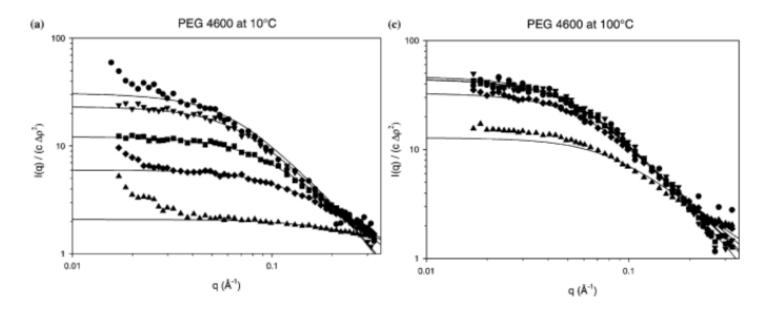
Quiz 7 Polymer Properties March 4, 2016


Debye obtained the following scattering function for a single Gaussian polymer coil,

$$g(q)_{Gaussian} = \frac{2}{Q^2} [Q - 1 + \exp(-Q)]$$

where
$$Q = q^2 N b^2 / 6 = q^2 R_g^2$$
 (1)

The function was derived following the same logic that we used to obtain the radius of gyration for a Gaussian polymer chain.

- a) How is the radius of gyration for a Gaussian chain related to the chain end to end distance $n^{1/2}$ 1?
- b) Show that Debye's function matches Guinier's law at low-q.
- c) Explain why you would expect a power-law of -2 for a fractal structure with $d_f = 2$ using $I(q) = N n_e^2$.
- d) Show that Debye's function displays this behavior at high-q.
- e) Explain the behavior seen in the following two plots of Pederson and Sommer that show increasing concentration from 1, 2, 5, 10, and 20% polyethylene glycol in water at two temperatures.

Progr Colloid Polym Sci (2005) 130: 70-78

ANSWERS: Quiz 7 Polymer Properties March 4, 2016

a)
$$R_g = n^{1/2} 1/\sqrt{6}$$

- b) At low q, Q is small so the exponential term can be expanded to $1-Q+Q^2/2-Q^3/6+...$ The bracketed term becomes $Q^2/2-Q^3/6$. Dividing by Q^2 from the lead term, and using the exponential expansion for low-Q we have $exp(-q^2R_g^2/3)$.
- c) For a fractal structure at sizes between the overall size, R and the substructural size d_p , the structure can be thought of as composed of spheres of radius $r=2\pi/q$. Each sphere has $n=(r/d_p)^{df}$ primary structures and there are $M=N/n=(R/r)^{df}$ spheres in the fractal. The scattering at a given value of q or r is given by $I(q)=Mn^2=(R/r)^{df}$ (r/d_p) $^{2df}=(R^{df}/d_p^{2df})$ $r^{df}\sim q^{-df}$
- d) At high-q, Q is large so the exponential goes to 0 and Q>>1 so the bracketed term is Q. The scattering is then $I(q) = 2/Q = 2/q^2 R_g^2 \sim q^{-2}$ or $d_f = 2$.
- e) As the concentration increases structural screening occurs that obscures the low-q scattering at sizes larger than the correlation length. The screening is related to the interaction parameter/second virial coefficient, that have a temperature dependence.